Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer

Author(s): Yunyan Chen*, Shaozhen Wang, Qiyan Hu and Lingyun Zhou*

Volume 20, Issue 7, 2023

Published on: 22 August, 2022

Page: [919 - 926] Pages: 8

DOI: 10.2174/1567201819666220628094239

open access plus

Abstract

Background: Paclitaxel (PTX), voted as the promising natural medicine molecule, is widely used in the treatment of cancers. Nevertheless, its clinical application is strictly limited by its poor water solubility.

Objective: CP-MEs (Paclitaxel-coix seed oil coloaded microemulsion), a small-sized self-emulsifying nanoemulsion formed from a combination of PTX and coix seed oil (CSO), was developed in order to improve the solubility of paclitaxel and enhance anti-cervical cancer efficacy in vitro. CSO was selected as the oil phase to replace conventional organic solvents and achieve a synergistic anti-tumor effect with paclitaxel.

Methods: Pseudoternary phase diagram was applied to the study of CP-MEs formulation. CP-MEs were prepared and characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The encapsulation efficiency and drug loading efficiency (EE and LE) were detected by HPLC. MTT was adopted to evaluate the cytotoxicity of CP-MEs against HeLa cells. The cellular uptake and apoptotic ratio of CP-MEs were evaluated by flow cytometry. Notably, HeLa 3D tumor spheroid was adopted to evaluate tumor permeability of different size microemulsions as the model.

Results: The best self-emulsifying ability was exhibited by HS 15: PEG 400 combination. The appearance of CP-MEs was clear and transparent, which exhibited a small size (30.28 ± 0.36) and a slight negative surface charge (-4.40 ± 1.13) mV. The EE and LE of CP-MEs were 98.80% and 0.978%, respectively. The cumulative release rate within 48 h of the CP-MEs was 80.21%. In cellular studies, the uptake of fluorescein isothiocyanate (FITC) labeled CP-MEs (FITC/C-MEs) was 17.86-fold higher than the free FITC group, leading to significant synergistic anticancer activity in terms of cytotoxicity and apoptosis induction in vitro. The apoptotic rate of CP-MEs treated was 1.70-fold higher than PTXtreated. Notably, the penetration of CP-MEs in the HeLa 3D tumor sphere model was enhanced, which was related to deeply penetrated microemulsion of small size mediated at the tumor site.

Conclusion: With the advantage of the small-sized self-emulsifying system, CP-MEs hold great potential to become an efficient nano drug delivery system for cervical cancer treatment in the clinic.

Keywords: Paclitaxel, coix seed oil, pseudoternary diagram, self- emulsifying, small sized, anti-cervical cancer.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; Pitisuttithum, P.; Restrepo, J.A.; Stuart, G.; Woelber, L.; Yang, Y.C.; Cuzick, J.; Garland, S.M.; Huh, W.; Kjaer, S.K.; Bautista, O.M.; Chan, I.S.; Chen, J.; Gesser, R.; Moeller, E.; Ritter, M.; Vuocolo, S.; Luxembourg, A. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med., 2015, 372(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1405044] [PMID: 25693011]
[3]
Kirby, T. FDA approves new upgraded Gardasil 9. Lancet Oncol., 2015, 16(2), 56.
[http://dx.doi.org/10.1016/S1470-2045(14)71191-X]
[4]
Minig, L.; Patrono, M.G.; Romero, N.; Rodríguez Moreno, J.F.; Garcia-Donas, J. Different strategies of treatment for uterine cervical carcinoma stage IB2-IIB. World J. Clin. Oncol., 2014, 5(2), 86-92.
[http://dx.doi.org/10.5306/wjco.v5.i2.86] [PMID: 24829855]
[5]
Li, R.; Liu, G.Z.; Luo, S.Y.; Chen, R.; Zhang, J.X. Cyclin I promotes cisplatin resistance via CDK5 activation in cervical cancer. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(23), 4533-4541.
[PMID: 26698249]
[6]
Singh, S.; Dash, A.K. Paclitaxel in cancer treatment: Perspectives and prospects of its delivery challenges. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(4), 333-372.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i4.10] [PMID: 20001890]
[7]
Medina, C.; Santos-Martinez, M.J.; Radomski, A.; Corrigan, O.I.; Radomski, M.W. Nanoparticles: Pharmacological and toxicological significance. Br. J. Pharmacol., 2007, 150(5), 552-558.
[http://dx.doi.org/10.1038/sj.bjp.0707130] [PMID: 17245366]
[8]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[9]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[10]
Inkielewicz-Stepniak, I.; Santos-Martinez, M.J.; Medina, C.; Radomski, M.W. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int. J. Nanomedicine, 2014, 9, 1677-1687.
[PMID: 24729703]
[11]
Endres, T.; Zheng, M.; Beck-Broichsitter, M.; Samsonova, O.; Debus, H.; Kissel, T. Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques. J. Control. Release, 2012, 160(3), 583-591.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.013] [PMID: 22525320]
[12]
Marta, T.; Luca, S.; Serena, M.; Luisa, F.; Fabio, C. What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? promising scenarios for the near future. J. Nanomater., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/5436458]
[13]
Tang, L.; Gabrielson, N.P.; Uckun, F.M.; Fan, T.M.; Cheng, J. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol. Pharm., 2013, 10(3), 883-892.
[http://dx.doi.org/10.1021/mp300684a] [PMID: 23301497]
[14]
Ruan, S.; Xie, R.; Qin, L.; Yu, M.; Xiao, W.; Hu, C.; Yu, W.; Qian, Z.; Ouyang, L.; He, Q.; Gao, H. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett., 2019, 19(11), 8318-8332.
[http://dx.doi.org/10.1021/acs.nanolett.9b03968] [PMID: 31610656]
[15]
Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 2006, 355(24), 2542-2550.
[http://dx.doi.org/10.1056/NEJMoa061884] [PMID: 17167137]
[16]
Corson, T.W.; Crews, C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell, 2007, 130(5), 769-774.
[http://dx.doi.org/10.1016/j.cell.2007.08.021] [PMID: 17803898]
[17]
Zhao, H.; Li, R.; Wang, X.; Lu, X.; Hu, M.; Zhang, J.; Zhao, X.; Song, X.; Liu, Y. The role of apatinib combined with paclitaxel (aluminum binding type) in platinum-resistant ovarian cancer. J. Ovarian Res., 2020, 13(1), 113.
[http://dx.doi.org/10.1186/s13048-020-00719-3] [PMID: 32958014]
[18]
Li, F.; Lu, J.; Liu, J.; Liang, C.; Wang, M.; Wang, L.; Li, D.; Yao, H.; Zhang, Q.; Wen, J.; Zhang, Z.K.; Li, J.; Lv, Q.; He, X.; Guo, B.; Guan, D.; Yu, Y.; Dang, L.; Wu, X.; Li, Y.; Chen, G.; Jiang, F.; Sun, S.; Zhang, B.T.; Lu, A.; Zhang, G. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat. Commun., 2017, 8(1), 1390.
[http://dx.doi.org/10.1038/s41467-017-01565-6] [PMID: 29123088]
[19]
Faria, R.S.; de Lima, L.I.; Bonadio, R.S.; Longo, J.P.F.; Roque, M.C.; de Matos Neto, J.N.; Moya, S.E.; de Oliveira, M.C.; Azevedo, R.B. Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomed. Pharmacother., 2021, 142(5)112000
[http://dx.doi.org/10.1016/j.biopha.2021.112000] [PMID: 34426249]
[20]
Costa, B.; Matos, R.; Amorim, I.; Gärtner, F.; Vale, N. New insight into breast cancer cells involving drug combinations for dopamine and serotonin receptors. Appl. Sci. (Basel), 2021, 11(13), 6082.
[http://dx.doi.org/10.3390/app11136082]
[21]
Qian, Y.; Yang, B.; Xiong, Y.; Gu, M. Coix seed emulsion synergistically enhances the antitumor activity of gemcitabine in pancreatic cancer through abrogation of NF-κB signaling. Oncol. Rep., 2016, 36(3), 1517-1525.
[http://dx.doi.org/10.3892/or.2016.4958] [PMID: 27459907]
[22]
Yijia, W. Author Correction: Kanglaite sensitizes colorectal cancer cells to taxol via NF-κB inhibition and connexin 43 upregulation. Sci. Rep., 2018, 8(1), 6141.
[http://dx.doi.org/10.1038/s41598-018-24089-5] [PMID: 29643394]
[23]
Lu, Y.; Zhang, B.Y.; Jia, Z.X.; Wu, W.J.; Lu, Z.Q. Hepatocellular carcinoma HepG2 cell apoptosis and caspase-8 and Bcl-2 expression induced by injectable seed extract of Coix lacryma-jobi. Hepatobiliary Pancreat. Dis. Int., 2011, 10(3), 303-307.
[http://dx.doi.org/10.1016/S1499-3872(11)60050-7] [PMID: 21669575]
[24]
Lu, Y.; Wu, L.Q.; Dong, Q.; Li, C.S. Experimental study on the effect of Kang-Lai-Te induced apoptosis of human hepatoma carcinoma cell HepG2. Hepatobiliary Pancreat. Dis. Int., 2009, 8(3), 267-272.
[PMID: 19502166]
[25]
Duan, G.C. The effects of combination of coix seed extract and cisplatin on TAM and expression of HIF-1α in vivo in lewis lung carcinoma. Iran. J. Public Health, 2018, 47(6), 838-843.
[PMID: 30087869]
[26]
Wu, Y.; Zhang, J.; Hong, Y.; Wang, X. Effects of kanglaite injection on serum miRNA-21 in patients with advanced lung cancer. Med. Sci. Monit., 2018, 24, 2901-2906.
[http://dx.doi.org/10.12659/MSM.909719] [PMID: 29735968]
[27]
Wang, B.; Chen, H.; Xuewen, L. Clinical effect of Kanglaite injection on chemotherapy of gynecological malignant tumor. Clin. Med. (Lond.), 2017, 37(1), 38-39.
[28]
Chen, Y.; Qu, D.; Fu, R.; Guo, M.; Qin, Y.; Guo, J.; Chen, Y. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment. Int. J. Nanomedicine, 2018, 13, 7275-7287.
[http://dx.doi.org/10.2147/IJN.S182475] [PMID: 30510417]
[29]
Chen, Y.; Guo, M.; Qu, D.; Liu, Y.; Guo, J.; Chen, Y. Furin-responsive triterpenine-based liposomal complex enhances anticervical cancer therapy through size modulation. Drug Deliv., 2020, 27(1), 1608-1624.
[http://dx.doi.org/10.1080/10717544.2020.1827086] [PMID: 33179521]
[30]
Yehia, R.; Hathout, R.M.; Attia, D.A.; Elmazar, M.M.; Mortada, N.D. Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2017, 155, 512-521.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.031] [PMID: 28486181]
[31]
Jacobus Berlitz, S. Azelaic acid-loaded nanoemulsion with hyaluronic acid – a new strategy to treat hyperpigmentary skin disorders. Drug Dev. Ind. Pharm., 2019, 1-34.
[32]
Lim, H.Y.; Ong, P.S.; Wang, L.; Goel, A.; Ding, L.; Li-Ann Wong, A.; Ho, P.C.; Sethi, G.; Xiang, X.; Goh, B.C. Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Lett., 2021, 521, 252-267.
[http://dx.doi.org/10.1016/j.canlet.2021.08.030] [PMID: 34508794]
[33]
Zhang, T.; Jiang, Z.; Chen, L.; Pan, C.; Huang, P. PCN-Fe (III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res., 2020, 13(1), 273-281.
[http://dx.doi.org/10.1007/s12274-019-2610-6]
[34]
Morton, S.W.; Lee, M.J.; Deng, Z.J.; Dreaden, E.C.; Siouve, E.; Shopsowitz, K.E.; Shah, N.J.; Yaffe, M.B.; Hammond, P.T. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci. Signal., 2014, 7(325), ra44.
[http://dx.doi.org/10.1126/scisignal.2005261] [PMID: 24825919]
[35]
Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.L.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32(32), 8281-8290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[36]
Li, S.; Zhang, T.; Xu, W.; Ding, J.; Yin, F.; Xu, J.; Sun, W.; Wang, H.; Sun, M.; Cai, Z.; Hua, Y. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics, 2018, 8(5), 1361-1375.
[http://dx.doi.org/10.7150/thno.18299] [PMID: 29507626]
[37]
Ding, D.; Wang, J.; Zhu, Z.; Li, R.; Wu, W.; Liu, B.; Jiang, X. Tumor accumulation, penetration, and antitumor response of cisplatin-loaded gelatin/poly(acrylic acid) nanoparticles. ACS Appl. Mater. Interfaces, 2012, 4(3), 1838-1846.
[http://dx.doi.org/10.1021/am300138z] [PMID: 22364315]
[38]
Wang, J.; Mao, W.; Lock, L.L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano, 2015, 9(7), 7195-7206.
[http://dx.doi.org/10.1021/acsnano.5b02017] [PMID: 26149286]
[39]
Heldin, C.H.; Rubin, K.; Pietras, K.; Ostman, A. High interstitial fluid pressure - An obstacle in cancer therapy. Nat. Rev. Cancer, 2004, 4(10), 806-813.
[http://dx.doi.org/10.1038/nrc1456] [PMID: 15510161]

© 2025 Bentham Science Publishers | Privacy Policy