Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Phytochemical based Modulation of Endoplasmic Reticulum Stress in Alzheimer's Disease

Author(s): Venzil Lavie Dsouza, Apoorva Bettagere Shivakumar, Nikshitha Kulal, Gireesh Gangadharan, Dileep Kumar and Shama Prasada Kabekkodu*

Volume 22, Issue 22, 2022

Published on: 23 September, 2022

Page: [1880 - 1896] Pages: 17

DOI: 10.2174/1568026622666220624155357

Price: $65

Abstract

Alzheimer's disease (AD) is a severe progressive neurodegenerative condition that shows misfolding and aggregation of proteins contributing to a decline in cognitive function involving multiple behavioral, neuropsychological, and cognitive domains. Multiple epi (genetic) changes and environmental agents have been shown to play an active role in ER stress induction. Neurodegeneration due to endoplasmic reticulum (ER) stress is considered one of the major underlying causes of AD. ER stress may affect essential cellular functions related to biosynthesis, assembly, folding, and post-translational modification of proteins leading to neuronal inflammation to promote AD pathology. Treatment with phytochemicals has been shown to delay the onset and disease progression and improve the well-being of patients by targeting multiple signaling pathways in AD. Phytochemical's protective effect against neuronal damage in AD pathology may be associated with the reversal of ER stress and unfolding protein response by enhancing the antioxidant and anti-inflammatory properties of the neuronal cells. Hence, pharmacological interventions using phytochemicals can be a potential strategy to reverse ER stress and improve AD management. Towards this, the present review discusses the role of phytochemicals in preventing ER stress in the pathology of AD.

Keywords: Alzheimer's disease, Endoplasmic reticulum stress, Unfolded protein response, Reactive oxygen species, Apopto-sis, Neuronal cell death, Phytochemicals, Antioxidant.

« Previous
Graphical Abstract

[1]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7(1), 2.
[http://dx.doi.org/10.1186/s40035-018-0107-y] [PMID: 29423193]
[2]
Gao, F.; Gao, K.; He, C.; Liu, M.; Wan, H.; Wang, P. Multi-site dynamic recording for Aβ oligomers-induced Alzheimer’s disease in vitro based on neuronal network chip. Biosens. Bioelectron., 2019, 133, 183-191.
[http://dx.doi.org/10.1016/j.bios.2019.03.025] [PMID: 30928737]
[3]
Prince, M.; Ali, G.C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther., 2016, 8(1), 23-35.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[4]
Webster, S.J.; Bachstetter, A.D.; Nelson, P.T.; Schmitt, F.A.; Van Eldik, L.J. Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet., 2014, 5(88), 88.
[http://dx.doi.org/10.3389/fgene.2014.00088] [PMID: 24795750]
[5]
Wu, X.; Li, J.; Zhou, W.; Tam, K. Animal models for alzheimer’s disease: A focused review of transgenic rodent models and behavioral assessment methods. ADMET DMPK, 2015, 3(3), 242-253.
[http://dx.doi.org/10.5599/admet.3.3.195]
[6]
Giri, M.; Zhang, M.; Lü, Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging, 2016, 11, 665-681.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[7]
Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), 1-10.
[http://dx.doi.org/10.1101/cshperspect.a006296] [PMID: 23028126]
[8]
Schwarz, D.S.; Blower, M.D. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell. Mol. Life Sci., 2016, 73(1), 79-94.
[http://dx.doi.org/10.1007/s00018-015-2052-6] [PMID: 26433683]
[9]
English, A.R.; Voeltz, G.K. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a013227.
[http://dx.doi.org/10.1101/cshperspect.a013227] [PMID: 23545422]
[10]
Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016, 529(7586), 326-335.
[http://dx.doi.org/10.1038/nature17041] [PMID: 26791723]
[11]
Braakman, I.; Hebert, D.N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2013, 5(5), a013201.
[http://dx.doi.org/10.1101/cshperspect.a013201] [PMID: 23637286]
[12]
Cherepanova, N.; Shrimal, S.; Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr. Opin. Cell Biol., 2016, 41, 57-65.
[http://dx.doi.org/10.1016/j.ceb.2016.03.021] [PMID: 27085638]
[13]
Braakman, I.; Bulleid, N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem., 2011, 80, 71-99.
[http://dx.doi.org/10.1146/annurev-biochem-062209-093836] [PMID: 21495850]
[14]
Kaneko, M.; Imaizumi, K.; Saito, A.; Kanemoto, S.; Asada, R.; Matsuhisa, K.; Ohtake, Y. ER Stress and disease: Toward prevention and treatment. Biol. Pharm. Bull., 2017, 40(9), 1337-1343.
[http://dx.doi.org/10.1248/bpb.b17-00342] [PMID: 28867719]
[15]
Ghemrawi, R.; Khair, M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(17), 1-25.
[http://dx.doi.org/10.3390/ijms21176127] [PMID: 32854418]
[16]
Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol., 2015, 10, 173-194.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104649] [PMID: 25387057]
[17]
Karagöz, G.E.; Acosta-Alvear, D.; Walter, P. The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2019, 11(9), 1-18.
[http://dx.doi.org/10.1101/cshperspect.a033886] [PMID: 30670466]
[18]
Li, Y.; Guo, Y.; Tang, J.; Jiang, J.; Chen, Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(8), 629-640.
[http://dx.doi.org/10.1093/abbs/gmu048] [PMID: 25016584]
[19]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[20]
Rodriguez-Casado, A. The health potential of fruits and vegetables phytochemicals: Notable examples. Crit. Rev. Food Sci. Nutr., 2016, 56(7), 1097-1107.
[http://dx.doi.org/10.1080/10408398.2012.755149] [PMID: 25225771]
[21]
Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1260-1270.
[http://dx.doi.org/10.1080/10408398.2016.1251390] [PMID: 28605204]
[22]
Martel, J.; Ojcius, D.M.; Ko, Y.F.; Ke, P.Y.; Wu, C.Y.; Peng, H.H.; Young, J.D. Hormetic effects of phytochemicals on health and longevity. Trends Endocrinol. Metab., 2019, 30(6), 335-346.
[http://dx.doi.org/10.1016/j.tem.2019.04.001] [PMID: 31060881]
[23]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4(1), 29-50.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[24]
Götz, J.; Ittner, L.M. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci., 2008, 9(7), 532-544.
[http://dx.doi.org/10.1038/nrn2420] [PMID: 18568014]
[25]
Salari, S.; Bagheri, M.A. Review of animal models of alzheimer’s disease: A brief insight into pharmacologic and genetic models. Physiol. Pharmacol., 2016, 20(1), 5-11.
[26]
Armstrong, R.A. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol., 2009, 47(4), 289-299.
[PMID: 20054780]
[27]
Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[28]
Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789-5817.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[29]
Samaey, C.; Schreurs, A.; Stroobants, S.; Balschun, D. Early cognitive and behavioral deficits in mouse models for tauopathy and alzheimer’s disease. Front. Aging Neurosci., 2019, 11(335), 335.
[http://dx.doi.org/10.3389/fnagi.2019.00335] [PMID: 31866856]
[30]
Sosa, L.J.; Cáceres, A.; Dupraz, S.; Oksdath, M.; Quiroga, S.; Lorenzo, A. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J. Neurochem., 2017, 143(1), 11-29.
[http://dx.doi.org/10.1111/jnc.14122] [PMID: 28677143]
[31]
Li, X.; Bao, X.; Wang, R. Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening (Review). Int. J. Mol. Med., 2016, 37(2), 271-283.
[http://dx.doi.org/10.3892/ijmm.2015.2428] [PMID: 26676932]
[32]
Blasko, I.; Stampfer-Kountchev, M.; Robatscher, P.; Veerhuis, R.; Eikelenboom, P.; Grubeck-Loebenstein, B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: The role of microglia and astrocytes. Aging Cell, 2004, 3(4), 169-176.
[http://dx.doi.org/10.1111/j.1474-9728.2004.00101.x] [PMID: 15268750]
[33]
Metaxas, A.; Kempf, S.J. Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen. Res., 2016, 11(10), 1579-1581.
[http://dx.doi.org/10.4103/1673-5374.193234] [PMID: 27904486]
[34]
Apostolova, L.G. Alzheimer disease. Continuum (Minneap. Minn.), 2016, 22(2), 419-434.
[http://dx.doi.org/10.1212/CON.0000000000000307] [PMID: 27042902]
[35]
Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 2000, 163(2), 495-529.
[http://dx.doi.org/10.1006/exnr.2000.7397] [PMID: 10833325]
[36]
Terry, A.V., Jr; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[37]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[38]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[39]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[40]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[41]
Paroni, G.; Bisceglia, P.; Seripa, D. Understanding the amyloid hypothesis in Alzheimer’s disease. J. Alzheimers Dis., 2019, 68(2), 493-510.
[http://dx.doi.org/10.3233/JAD-180802] [PMID: 30883346]
[42]
Mohandas, E.; Rajmohan, V.; Raghunath, B. Neurobiology of Alzheimer’s disease. Indian J. Psychiatry, 2009, 51(1), 55-61.
[http://dx.doi.org/10.4103/0019-5545.44908] [PMID: 19742193]
[43]
van Slegtenhorst, M.; Lewis, J.; Hutton, M. The molecular genetics of the tauopathies. Exp. Gerontol., 2000, 35(4), 461-471.
[http://dx.doi.org/10.1016/S0531-5565(00)00114-5] [PMID: 10959034]
[44]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci., 2018, 12(25), 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[45]
Esquerda-Canals, G.; Montoliu-Gaya, L.; Güell-Bosch, J.; Villegas, S. Mouse models of Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1171-1183.
[http://dx.doi.org/10.3233/JAD-170045] [PMID: 28304309]
[46]
Higgins, L.S.; Rodems, J.M.; Catalano, R.; Quon, D.; Cordell, B. Early Alzheimer disease-like histopathology increases in frequency with age in mice transgenic for β-APP751. Proc. Natl. Acad. Sci. USA, 1995, 92(10), 4402-4406.
[http://dx.doi.org/10.1073/pnas.92.10.4402] [PMID: 7753818]
[47]
Quon, D.; Wang, Y.; Catalano, R.; Scardina, J.M.; Murakami, K.; Cordell, B. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature, 1991, 352(6332), 239-241.
[http://dx.doi.org/10.1038/352239a0] [PMID: 1906990]
[48]
Braidy, N.; Muñoz, P.; Palacios, A.G.; Castellano-Gonzalez, G.; Inestrosa, N.C.; Chung, R.S.; Sachdev, P.; Guillemin, G.J. Recent rodent models for Alzheimer’s disease: Clinical implications and basic research. J. Neural Transm. (Vienna), 2012, 119(2), 173-195.
[http://dx.doi.org/10.1007/s00702-011-0731-5] [PMID: 22086139]
[49]
Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 2003, 39(3), 409-421.
[http://dx.doi.org/10.1016/S0896-6273(03)00434-3] [PMID: 12895417]
[50]
Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; Berry, R.; Vassar, R. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci., 2006, 26(40), 10129-10140.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[51]
Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol., 2017, 133(2), 155-175.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[52]
Cai, Y.; Arikkath, J.; Yang, L.; Guo, M.L.; Periyasamy, P.; Buch, S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy, 2016, 12(2), 225-244.
[http://dx.doi.org/10.1080/15548627.2015.1121360] [PMID: 26902584]
[53]
Santos, L.E.; Ferreira, S.T. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer’s disease. Neuropharmacology, 2018, 136(Pt B), 350-360.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.016] [PMID: 29129774]
[54]
Katayama, T.; Imaizumi, K.; Manabe, T.; Hitomi, J.; Kudo, T.; Tohyama, M. Induction of neuronal death by ER stress in Alzheimer’s disease. J. Chem. Neuroanat., 2004, 28(1-2), 67-78.
[http://dx.doi.org/10.1016/j.jchemneu.2003.12.004] [PMID: 15363492]
[55]
Soejima, N.; Ohyagi, Y.; Nakamura, N.; Himeno, E.; Iinuma, K.M.; Sakae, N.; Yamasaki, R.; Tabira, T.; Murakami, K.; Irie, K.; Kinoshita, N.; LaFerla, F.M.; Kiyohara, Y.; Iwaki, T.; Kira, J. Intracellular accumulation of toxic turn amyloid-β is associated with endoplasmic reticulum stress in Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(1), 11-20.
[PMID: 22950910]
[56]
Deaton, C.A.; Johnson, G.V.W. Presenilin 1 regulates membrane homeostatic pathways that are dysregulated in Alzheimer’s disease. J. Alzheimers Dis., 2020, 77(3), 961-977.
[http://dx.doi.org/10.3233/JAD-200598] [PMID: 32804090]
[57]
Ye, J.; Yin, Y.; Yin, Y.; Zhang, H.; Wan, H.; Wang, L.; Zuo, Y.; Gao, D.; Li, M.; Li, J.; Liu, Y.; Ke, D.; Wang, J.Z. Tau-induced upregulation of C/EBPβ-TRPC1-SOCE signaling aggravates tauopathies: A vicious cycle in Alzheimer neurodegeneration. Aging Cell, 2020, 19(9), e13209.
[http://dx.doi.org/10.1111/acel.13209] [PMID: 32815315]
[58]
Di Meco, A.; Curtis, M.E.; Lauretti, E.; Praticò, D. Autophagy dysfunction in alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol. Psychiatry, 2020, 87(9), 797-807.
[http://dx.doi.org/10.1016/j.biopsych.2019.05.008] [PMID: 31262433]
[59]
Tramutola, A.; Di Domenico, F.; Barone, E.; Perluigi, M.; Butterfield, D.A. It is all about (U)biquitin: Role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxid. Med. Cell. Longev., 2016, 2016, 2756068.
[http://dx.doi.org/10.1155/2016/2756068] [PMID: 26881020]
[60]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[61]
Poothong, J.; Jang, I.; Kaufman, R.J. Defects in protein folding and/or quality control cause protein aggregation in the endoplasmic reticulum. Prog. Mol. Subcell. Biol., 2021, 59, 115-143.
[http://dx.doi.org/10.1007/978-3-030-67696-4_6] [PMID: 34050864]
[62]
Fonseca, A.C.R.G.; Ferreiro, E.; Oliveira, C.R.; Cardoso, S.M.; Pereira, C.F. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells. Biochim. Biophys. Acta, 2013, 1832(12), 2191-2203.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.007] [PMID: 23994613]
[63]
Goswami, P.; Afjal, M.A.; Akhter, J.; Mangla, A.; Khan, J.; Parvez, S.; Raisuddin, S. Involvement of endoplasmic reticulum stress in amyloid β (1-42)-induced Alzheimer’s like neuropathological process in rat brain. Brain Res. Bull., 2020, 165, 108-117.
[http://dx.doi.org/10.1016/j.brainresbull.2020.09.022] [PMID: 33011197]
[64]
Nijholt, D.A.T.; van Haastert, E.S.; Rozemuller, A.J.M.; Scheper, W.; Hoozemans, J.J.M. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J. Pathol., 2012, 226(5), 693-702.
[http://dx.doi.org/10.1002/path.3969] [PMID: 22102449]
[65]
Prasanthi, J.R.P.; Larson, T.; Schommer, J.; Ghribi, O. Silencing GADD153/CHOP gene expression protects against Alzheimer’s disease-like pathology induced by 27-hydroxycholesterol in rabbit hippocampus. PLoS One, 2011, 6(10), e26420.
[http://dx.doi.org/10.1371/journal.pone.0026420] [PMID: 22046282]
[66]
Abisambra, J.F.; Jinwal, U.K.; Blair, L.J.; O’Leary, J.C., III; Li, Q.; Brady, S.; Wang, L.; Guidi, C.E.; Zhang, B.; Nordhues, B.A.; Cockman, M.; Suntharalingham, A.; Li, P.; Jin, Y.; Atkins, C.A.; Dickey, C.A. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J. Neurosci., 2013, 33(22), 9498-9507.
[http://dx.doi.org/10.1523/JNEUROSCI.5397-12.2013] [PMID: 23719816]
[67]
Rankin, C.A.; Sun, Q.; Gamblin, T.C. Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol. Neurodegener., 2007, 2(1), 12.
[http://dx.doi.org/10.1186/1750-1326-2-12] [PMID: 17598919]
[68]
Llorens-Martín, M.; Jurado, J.; Hernández, F.; Ávila, J. GSK-3β, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci., 2014, 7(46), 46.
[PMID: 24904272]
[69]
Resende, R.; Ferreiro, E.; Pereira, C.; Oliveira, C.R. ER stress is involved in Abeta-induced GSK-3β activation and tau phosphorylation. J. Neurosci. Res., 2008, 86(9), 2091-2099.
[http://dx.doi.org/10.1002/jnr.21648] [PMID: 18335524]
[70]
Stoveken, B.J. Tau pathology as a cause and consequence of the UPR. J. Neurosci., 2013, 33(36), 14285-14287.
[http://dx.doi.org/10.1523/JNEUROSCI.2961-13.2013] [PMID: 24005281]
[71]
Jankowsky, J.L.; Fadale, D.J.; Anderson, J.; Xu, G.M.; Gonzales, V.; Jenkins, N.A.; Copeland, N.G.; Lee, M.K.; Younkin, L.H.; Wagner, S.L.; Younkin, S.G.; Borchelt, D.R. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: Evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet., 2004, 13(2), 159-170.
[http://dx.doi.org/10.1093/hmg/ddh019] [PMID: 14645205]
[72]
Galla, L.; Redolfi, N.; Pozzan, T.; Pizzo, P.; Greotti, E. Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein presenilin 2. Int. J. Mol. Sci., 2020, 21(3), 1-23.
[http://dx.doi.org/10.3390/ijms21030770] [PMID: 31991578]
[73]
Sato, N.; Hori, O.; Yamaguchi, A.; Lambert, J.C.; Chartier-Harlin, M.C.; Robinson, P.A.; Delacourte, A.; Schmidt, A.M.; Furuyama, T.; Imaizumi, K.; Tohyama, M.; Takagi, T. A novel presenilin-2 splice variant in human Alzheimer’s disease brain tissue. J. Neurochem., 1999, 72(6), 2498-2505.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0722498.x] [PMID: 10349860]
[74]
Sato, N.; Imaizumi, K.; Manabe, T.; Taniguchi, M.; Hitomi, J.; Katayama, T.; Yoneda, T.; Morihara, T.; Yasuda, Y.; Takagi, T.; Kudo, T.; Tsuda, T.; Itoyama, Y.; Makifuchi, T.; Fraser, P.E.; St George-Hyslop, P.; Tohyama, M. Increased production of β-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2. J. Biol. Chem., 2001, 276(3), 2108-2114.
[http://dx.doi.org/10.1074/jbc.M006886200] [PMID: 11031265]
[75]
Manabe, T.; Ohe, K.; Katayama, T.; Matsuzaki, S.; Yanagita, T.; Okuda, H.; Bando, Y.; Imaizumi, K.; Reeves, R.; Tohyama, M.; Mayeda, A. HMGA1a: Sequence-specific RNA-binding factor causing sporadic Alzheimer’s disease-linked exon skipping of presenilin-2 pre-mRNA. Genes Cells, 2007, 12(10), 1179-1191.
[http://dx.doi.org/10.1111/j.1365-2443.2007.01123.x] [PMID: 17903177]
[76]
Shao, Y.; Li, M.; Wu, M.; Shi, K.; Fang, B.; Wang, J. FAD-linked Presenilin-1 V97L mutation impede tranport regulation and intracellular Ca2+ homeostasis under ER stress. Int. J. Clin. Exp. Med., 2015, 8(11), 20742-20750.
[PMID: 26884997]
[77]
Sadleir, K.R.; Popovic, J.; Vassar, R. ER stress is not elevated in the 5XFAD mouse model of Alzheimer’s disease. J. Biol. Chem., 2018, 293(48), 18434-18443.
[http://dx.doi.org/10.1074/jbc.RA118.005769] [PMID: 30315100]
[78]
Kitamura, M. Control of NF-κB and inflammation by the unfolded protein response. Int. Rev. Immunol., 2011, 30(1), 4-15.
[http://dx.doi.org/10.3109/08830185.2010.522281] [PMID: 21235322]
[79]
Oeckinghaus, A.; Ghosh, S. The NF-KB family of transcription factors and. Cold Spring Harb. Perspect. Biol., 2009, 1(4), 1-14.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[80]
Jha, N.K.; Jha, S.K.; Kar, R.; Nand, P.; Swati, K.; Goswami, V.K. Nuclear factor-kappa β as a therapeutic target for Alzheimer’s disease. J. Neurochem., 2019, 150(2), 113-137.
[http://dx.doi.org/10.1111/jnc.14687] [PMID: 30802950]
[81]
Oliveira, M.M.; Lourenco, M.V.; Longo, F.; Kasica, N.P.; Yang, W.; Ureta, G.; Ferreira, D.D.P.; Mendonça, P.H.J.; Bernales, S.; Ma, T.; De Felice, F.G.; Klann, E.; Ferreira, S.T. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease. Sci. Signal., 2021, 14(668), 1-12.
[http://dx.doi.org/10.1126/scisignal.abc5429] [PMID: 33531382]
[82]
Uddin, M.S.; Tewari, D.; Sharma, G.; Kabir, M.T.; Barreto, G.E.; Bin-Jumah, M.N.; Perveen, A.; Abdel-Daim, M.M.; Ashraf, G.M. Molecular mechanisms of ER stress and UPR in the pathogenesis of Alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 2902-2919.
[http://dx.doi.org/10.1007/s12035-020-01929-y] [PMID: 32430843]
[83]
Liu, X.; Xu, K.; Yan, M.; Wang, Y.; Zheng, X. Protective effects of galantamine against Abeta-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem. Int., 2010, 57(5), 588-599.
[http://dx.doi.org/10.1016/j.neuint.2010.07.007] [PMID: 20655346]
[84]
Zhang, L.; Yu, J.; Pan, H.; Hu, P.; Hao, Y.; Cai, W.; Zhu, H.; Yu, A.D.; Xie, X.; Ma, D.; Yuan, J. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19023-19028.
[http://dx.doi.org/10.1073/pnas.0709695104] [PMID: 18024584]
[85]
Smith, H.L.; Li, W.; Cheetham, M.E. Molecular chaperones and neuronal proteostasis. Semin. Cell Dev. Biol., 2015, 40, 142-152.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.003] [PMID: 25770416]
[86]
Kim, J.; Choi, T.G.; Ding, Y.; Kim, Y.; Ha, K.S.; Lee, K.H.; Kang, I.; Ha, J.; Kaufman, R.J.; Lee, J.; Choe, W.; Kim, S.S. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress. J. Cell Sci., 2008, 121(Pt 21), 3636-3648.
[http://dx.doi.org/10.1242/jcs.028654] [PMID: 18946027]
[87]
Oh, Y.; Kim, E.Y.; Kim, Y.; Jin, J.; Jin, B.K.; Jahng, G.H.; Jung, M.H.; Park, C.; Kang, I.; Ha, J.; Choe, W. Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells. Free Radic. Biol. Med., 2011, 51(4), 905-920.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.036] [PMID: 21683784]
[88]
Wiley, J.C.; Pettan-Brewer, C.; Ladiges, W.C. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice. Aging Cell, 2011, 10(3), 418-428.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00680.x] [PMID: 21272191]
[89]
Nunes, A.F.; Amaral, J.D.; Lo, A.C.; Fonseca, M.B.; Viana, R.J.S.; Callaerts-Vegh, Z.; D’Hooge, R.; Rodrigues, C.M.P. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol., 2012, 45(3), 440-454.
[http://dx.doi.org/10.1007/s12035-012-8256-y] [PMID: 22438081]
[90]
Blair, L.J.; Sabbagh, J.J.; Dickey, C.A. Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin. Ther. Targets, 2014, 18(10), 1219-1232.
[http://dx.doi.org/10.1517/14728222.2014.943185] [PMID: 25069659]
[91]
Bohush, A.; Bieganowski, P.; Filipek, A. Hsp90 and its co-chaperones in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(20), 4976-4990.
[http://dx.doi.org/10.3390/ijms20204976] [PMID: 31600883]
[92]
Sidrauski, C.; McGeachy, A.M.; Ingolia, N.T.; Walter, P. The small molecule ISRIB reverses the effects of EIF2α phosphorylation on translation and stress granule assembly. eLife, 2015, 2015(4), 1-16.
[93]
Rozpędek, W.; Pytel, D.; Popławski, T.; Walczak, A.; Gradzik, K.; Wawrzynkiewicz, A.; Wojtczak, R.; Mucha, B.; Diehl, J.A.; Majsterek, I. Inhibition of the PERK-Dependent unfolded protein response signaling pathway involved in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res., 2019, 16(3), 209-218.
[http://dx.doi.org/10.2174/1567205016666190228121157] [PMID: 30819079]
[94]
Cui, W.; Wang, S.; Wang, Z.; Wang, Z.; Sun, C.; Zhang, Y. Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in Alzheimer’s disease. Neurochem. Res., 2017, 42(11), 3052-3060.
[http://dx.doi.org/10.1007/s11064-017-2338-1] [PMID: 28819903]
[95]
Wang, Z.J.; Zhao, F.; Wang, C.F.; Zhang, X.M.; Xiao, Y.; Zhou, F.; Wu, M.N.; Zhang, J.; Qi, J.S.; Yang, W.; Wang, X. Xestospongin C, a reversible ip3 receptor antagonist, alleviates the cognitive and pathological impairments in APP/PS1 mice of alzheimer’s disease. J. Alzheimers Dis., 2019, 72(4), 1217-1231.
[http://dx.doi.org/10.3233/JAD-190796] [PMID: 31683484]
[96]
Gao, X.; Xu, Y. Therapeutic effects of natural compounds and small molecule inhibitors targeting endoplasmic reticulum stress in Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 9, 745011.
[http://dx.doi.org/10.3389/fcell.2021.745011] [PMID: 34540853]
[97]
Gerakis, Y.; Hetz, C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J., 2018, 285(6), 995-1011.
[http://dx.doi.org/10.1111/febs.14332] [PMID: 29148236]
[98]
Song, L.; Piao, Z.; Yao, L.; Zhang, L.; Lu, Y. Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats. Exp. Anim., 2020, 69(3), 363-373.
[http://dx.doi.org/10.1538/expanim.19-0146] [PMID: 32336744]
[99]
Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, parkinson’s disease, and huntington’s disease: A mini review. Oxid. Med. Cell. Longev., 2016, 2016, 8590578.
[http://dx.doi.org/10.1155/2016/8590578] [PMID: 28116038]
[100]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[101]
Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 898, 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[102]
Katayama, S.; Corpuz, H.M.; Nakamura, S. Potential of plant-derived peptides for the improvement of memory and cognitive function. Peptides, 2021, 142, 170571.
[http://dx.doi.org/10.1016/j.peptides.2021.170571] [PMID: 33965441]
[103]
Ma, R.H.; Ni, Z.J.; Thakur, K.; Zhang, F.; Zhang, Y.Y.; Zhang, J.G.; Wei, Z.J. Natural compounds play therapeutic roles in various human pathologies via regulating endoplasmic reticulum pathway. Med. Drug Discov., 2020, 8, 100065.
[http://dx.doi.org/10.1016/j.medidd.2020.100065]
[104]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1-9.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[105]
Henríquez, G.; Gomez, A.; Guerrero, E.; Narayan, M. Potential role of natural polyphenols against protein aggregation toxicity: In vitro, in vivo, and clinical studies. ACS Chem. Neurosci., 2020, 11(19), 2915-2934.
[http://dx.doi.org/10.1021/acschemneuro.0c00381] [PMID: 32822152]
[106]
Tang, M.; Taghibiglou, C.; Liu, J. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(4), 1003-1016.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[107]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s Disease. Pharmacol. Rep., 2011, 63(5), 1101-1108.
[http://dx.doi.org/10.1016/S1734-1140(11)70629-6] [PMID: 22180352]
[108]
Huang, H.C.; Tang, D.; Xu, K.; Jiang, Z.F. Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J. Recept. Signal Transduct., 2014, 34(1), 26-37.
[http://dx.doi.org/10.3109/10799893.2013.848891] [PMID: 24188406]
[109]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[110]
Cheng, J.; Xia, X.; Rui, Y.; Zhang, Z.; Qin, L.; Han, S.; Wan, Z. The combination of 1α,25 dihydroxy vitamin D3 with resveratrol improves neuronal degeneration by regulating endoplasmic reticulum stress, insulin signaling and inhibiting tau hyperphosphorylation in SH-SY5Y cells. Food Chem. Toxicol., 2016, 93, 32-40.
[http://dx.doi.org/10.1016/j.fct.2016.04.021] [PMID: 27133915]
[111]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[112]
Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M.K.; Nakamura, T.; Kato, Y.; Ito, M.; Miyamoto, K.; Tsuji, A.; Kawai, Y.; Terao, J. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med., 2011, 51(7), 1329-1336.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.017] [PMID: 21741473]
[113]
Abuznait, A.H.; Qosa, H.; Busnena, B.A.; El Sayed, K.A.; Kaddoumi, A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: In vitro and in vivo studies. ACS Chem. Neurosci., 2013, 4(6), 973-982.
[http://dx.doi.org/10.1021/cn400024q] [PMID: 23414128]
[114]
Chesser, A.S.; Ganeshan, V.; Yang, J.; Johnson, G.V.W. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr. Neurosci., 2016, 19(1), 21-31.
[http://dx.doi.org/10.1179/1476830515Y.0000000038] [PMID: 26207957]
[115]
Du, Y.; Qu, J.; Zhang, W.; Bai, M.; Zhou, Q.; Zhang, Z.; Li, Z.; Miao, J. Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. Neuropharmacology, 2016, 108, 1-13.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.008] [PMID: 27067919]
[116]
Mota, S.I.; Costa, R.O.; Ferreira, I.L.; Santana, I.; Caldeira, G.L.; Padovano, C.; Fonseca, A.C.; Baldeiras, I.; Cunha, C.; Letra, L.; Oliveira, C.R.; Pereira, C.M.F.; Rego, A.C. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim. Biophys. Acta, 2015, 1852(7), 1428-1441.
[http://dx.doi.org/10.1016/j.bbadis.2015.03.015] [PMID: 25857617]
[117]
Li, L.; Zhang, Q.G.; Lai, L.Y.; Wen, X.J.; Zheng, T.; Cheung, C.W.; Zhou, S.Q.; Xu, S.Y. Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxid. Med. Cell. Longev., 2013, 2013, 159864.
[http://dx.doi.org/10.1155/2013/159864] [PMID: 24228138]
[118]
Hayakawa, M.; Itoh, M.; Ohta, K.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S.; Suzuki, C.; Ohzawa, K.; Kobori, M.; Inuzuka, T.; Nakagawa, T. Quercetin reduces eIF2α phosphorylation by GADD34 induction. Neurobiol. Aging, 2015, 36(9), 2509-2518.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.05.006] [PMID: 26070242]
[119]
Xu, T.T.; Zhang, Y.; He, J.Y.; Luo, D.; Luo, Y.; Wang, Y.J.; Liu, W.; Wu, J.; Zhao, W.; Fang, J.; Guan, L.; Huang, S.; Wang, H.; Lin, L.; Zhang, S.J.; Wang, Q. Bajijiasu ameliorates β-Amyloid-Triggered endoplasmic reticulum stress and related pathologies in an alzheimer’s disease model. Cell. Physiol. Biochem., 2018, 46(1), 107-117.
[http://dx.doi.org/10.1159/000488414] [PMID: 29587274]
[120]
Kosuge, Y.; Koen, Y.; Ishige, K.; Minami, K.; Urasawa, H.; Saito, H.; Ito, Y. S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid β-protein- and tunicamycin-induced neuronal death. Neuroscience, 2003, 122(4), 885-895.
[http://dx.doi.org/10.1016/j.neuroscience.2003.08.026] [PMID: 14643758]
[121]
Zhang, J.S.; Zhou, S.F.; Wang, Q.; Guo, J.N.; Liang, H.M.; Deng, J.B.; He, W.Y. Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer’s disease. Neuroscience, 2016, 325, 1-9.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.024] [PMID: 26987953]
[122]
Lin, L.; Liu, G.; Yang, L. Crocin improves cognitive behavior in rats with alzheimer’s disease by regulating endoplasmic reticulum stress and apoptosis. BioMed Res. Int., 2019, 2019, 9454913.
[http://dx.doi.org/10.1155/2019/9454913] [PMID: 31534969]
[123]
Mu, J.S.; Lin, H.; Ye, J.X.; Lin, M.; Cui, X.P. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer’s disease. Mol. Med. Rep., 2015, 12(3), 3862-3868.
[http://dx.doi.org/10.3892/mmr.2015.3853] [PMID: 26016457]
[124]
Ahmadi, A.; Hayes, A.W.; Karimi, G. Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytother. Res., 2021, 35(10), 5564-5583.
[http://dx.doi.org/10.1002/ptr.7192] [PMID: 34114705]
[125]
Zhao, H.; Zhang, Y.; Shu, L.; Song, G.; Ma, H. Resveratrol reduces liver endoplasmic reticulum stress and improves insulin sensitivity in vivo and in vitro. Drug Des. Devel. Ther., 2019, 13, 1473-1485.
[http://dx.doi.org/10.2147/DDDT.S203833] [PMID: 31118581]
[126]
Oh, J.H.; Choi, J.S.; Nam, T.J. Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar. Drugs, 2018, 16(10), 1-15.
[http://dx.doi.org/10.3390/md16100368] [PMID: 30301140]
[127]
Tang, L.; Ren, X.; Han, Y.; Chen, L.; Meng, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Sulforaphane attenuates apoptosis of hippocampal neurons induced by high glucose via regulating endoplasmic reticulum. Neurochem. Int., 2020, 136, 104728.
[http://dx.doi.org/10.1016/j.neuint.2020.104728] [PMID: 32199985]
[128]
Jo, G.H.; Kim, G.Y.; Kim, W.J.; Park, K.Y.; Choi, Y.H. Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: The involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway. Int. J. Oncol., 2014, 45(4), 1497-1506.
[http://dx.doi.org/10.3892/ijo.2014.2536] [PMID: 24993616]
[129]
Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS One, 2017, 12(6), e0178627.
[http://dx.doi.org/10.1371/journal.pone.0178627] [PMID: 28570634]
[130]
Srivastava, S.; Jain, G.; Dang, S.; Gupta, S.; Gabrani, R. Phytochemicals targeting endoplasmic reticulum stress to inhibit cancer cell proliferation. Anticancer Plants: Natural Products and Biotechnological Implements; Akhtar, M.S; Swamy, M.K., Ed.; Springer Nature Pte Ltd: Singapore, 2018, Vol. 2, pp. 273-287.
[http://dx.doi.org/10.1007/978-981-10-8064-7_12]
[131]
Lee, D.E.; Lee, S.J.; Kim, S.J.; Lee, H.S.; Kwon, O.S. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients, 2019, 11(11), 2702-2719.
[http://dx.doi.org/10.3390/nu11112702] [PMID: 31717261]
[132]
Gao, Y.; Jia, P.; Shu, W.; Jia, D. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes. Eur. J. Pharmacol., 2016, 774, 71-79.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.005] [PMID: 26845695]
[133]
Wu, J.; Xu, X.; Li, Y.; Kou, J.; Huang, F.; Liu, B.; Liu, K. Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur. J. Pharmacol., 2014, 745, 59-68.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.046] [PMID: 25446924]
[134]
Karthikeyan, B.; Harini, L.; Krishnakumar, V.; Kannan, V.R.; Sundar, K.; Kathiresan, T. Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration. Apoptosis, 2017, 22(1), 72-85.
[http://dx.doi.org/10.1007/s10495-016-1318-2] [PMID: 27778132]
[135]
Myers, A.; McGonigle, P. Overview of transgenic mouse models for Alzheimer’s disease. Curr. Protoc. Neurosci., 2019, 89(1), e81.
[http://dx.doi.org/10.1002/cpns.81] [PMID: 31532917]
[136]
Cummings, J. Drug development for psychotropic, cognitive-enhancing, and disease-modifying treatments for Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci., 2021, 33(1), 3-13.
[http://dx.doi.org/10.1176/appi.neuropsych.20060152] [PMID: 33108950]
[137]
Gaballah, H.H.; Zakaria, S.S.; Elbatsh, M.M.; Tahoon, N.M. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem. Biol. Interact., 2016, 251, 10-16.
[http://dx.doi.org/10.1016/j.cbi.2016.03.023] [PMID: 27016191]
[138]
Cho, J.A.; Park, S.H.; Cho, J.; Kim, J.O.; Yoon, J.H.; Park, E. Exercise and curcumin in combination improves cognitive function and attenuates ER stress in diabetic rats. Nutrients, 2020, 12(5), 1309-1322.
[http://dx.doi.org/10.3390/nu12051309] [PMID: 32375323]
[139]
Semis, H.S.; Kandemir, F.M.; Kaynar, O.; Dogan, T.; Arikan, S.M. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci., 2021, 287, 120104.
[http://dx.doi.org/10.1016/j.lfs.2021.120104] [PMID: 34743946]
[140]
Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of aucubin inhibits paclitaxel-induced mechanical allodynia via the inhibition of endoplasmic reticulum stress in peripheral Schwann cells. Biol. Pharm. Bull., 2017, 40(4), 473-478.
[http://dx.doi.org/10.1248/bpb.b16-00899] [PMID: 28381802]
[141]
Imai, T.; Kosuge, Y.; Ishige, K.; Ito, Y. Amyloid β-protein potentiates tunicamycin-induced neuronal death in organotypic hippocampal slice cultures. Neuroscience, 2007, 147(3), 639-651.
[http://dx.doi.org/10.1016/j.neuroscience.2007.04.057] [PMID: 17560726]
[142]
Panagaki, T.; Gengler, S.; Hölscher, C. The novel DA-CH3 dual incretin restores endoplasmic reticulum stress and autophagy impairments to attenuate Alzheimer-like pathology and cognitive decrements in the APPSWE/PS1ΔE9 mouse model. J. Alzheimers Dis., 2018, 66(1), 195-218.
[http://dx.doi.org/10.3233/JAD-180584] [PMID: 30282365]
[143]
Liang, Y.; Ye, C.; Chen, Y.; Chen, Y.; Diao, S.; Huang, M. Berberine improves behavioral and cognitive deficits in a mouse model of Alzheimer’s disease via regulation of β-amyloid production and endoplasmic reticulum stress. ACS Chem. Neurosci., 2021, 12(11), 1894-1904.
[http://dx.doi.org/10.1021/acschemneuro.0c00808] [PMID: 33983710]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy