Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Biological Evaluation of Novel Quinoline Derivatives as Potential Anti-Proliferative Agents Against PC-3 and KG-1 Cells

Author(s): Kun Li, Yuanbo Xu, Jun Sun, Wei Zhang* and Peizhi Ma*

Volume 23, Issue 5, 2023

Published on: 13 September, 2022

Page: [599 - 611] Pages: 13

DOI: 10.2174/1871520622666220623103957

Price: $65

Abstract

Background: Cancer is a major public health problem worldwide, and is the leading cause of death. The discovery and development of cancer therapeutic drugs have become the most urgent measure, which significantly benefited from the usage of small molecule compounds. The quinoline core possessed a vast number of biological activities that were found to be imperative.

Objective: The aim is to design, synthesize and perform the biological evaluation of novel quinoline derivatives as potential anti-proliferative agents.

Methods: Quinoline as a privileged scaffold was adopted to introduce diverse effective nitrogen heterocycles through different linkers. The synthesized compounds were spectroscopically characterized and evaluated for their anti-proliferative activity using the CCK8 assay. The mechanism of action was investigated by flow cytometry and the inhibitory activity against Pim-1 kinase was measured by mobility shift assay. Molecular docking analysis was performed to rationalize biochemical potency as well.

Results: The majority of these quinolines displayed potent growth inhibitory effects, among which compounds 13e, 13f and 13h were the most effective ones, with GI50 values of 2.61/3.56, 4.73/4.88 and 4.68/2.98 μM, respectively. Structure-activity relationships indicated that both appropriate heterocycles at the C4 position of pyridine and suitable substituent at quinoline had a significant impact on improving activity. Compounds 13e and 24d exhibited moderate Pim-1 kinase inhibitory activity.

Conclusion: In this study, three series of novel molecules bearing quinoline scaffold were designed, synthesized and evaluated for their in-vitro anti-proliferative activity. The most promising candidate, 13e, caused cell cycle arrest in a concentration-dependent manner and further induced apoptosis, which might represent a novel antiproliferative agent working through Pim-1 kinase inhibition to a certain extent.

Keywords: Quinoline derivatives, anti-proliferative activity, pim-1 inhibition, cell cycle, apoptosis, molecular docking.

« Previous
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Zhang, J.; Xiong, H.; Yang, F.; He, J.; Chen, T.; Fu, D.; Zheng, P.; Tang, Q. Design, synthesis and biological evaluation of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2021, 33, 127740.
[http://dx.doi.org/10.1016/j.bmcl.2020.127740] [PMID: 33316412]
[3]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 global cancer statistics? Cancer Commun. (Lond.), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[4]
Rebbeck, T.R.; Burns-White, K.; Chan, A.T.; Emmons, K.; Freedman, M.; Hunter, D.J.; Kraft, P.; Laden, F.; Mucci, L.; Parmigiani, G.; Schrag, D.; Syngal, S.; Tamimi, R.M.; Viswanath, K.; Yurgelun, M.B.; Garber, J.E. Precision prevention and early detection of cancer: Fundamental principles. Cancer Discov., 2018, 8(7), 803-811.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1415] [PMID: 29907587]
[5]
Ke, B.; Tian, M.; Li, J.; Liu, B.; He, G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med. Res. Rev., 2016, 36(6), 983-1035.
[http://dx.doi.org/10.1002/med.21398] [PMID: 27357603]
[6]
Diethelm-Varela, B. Using NMR spectroscopy in the fragment-based drug discovery of small-molecule anticancer targeted therapies. ChemMedChem, 2021, 16(5), 725-742.
[http://dx.doi.org/10.1002/cmdc.202000756] [PMID: 33236493]
[7]
Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica, 2010, 95(6), 1004-1015.
[http://dx.doi.org/10.3324/haematol.2009.017079] [PMID: 20145274]
[8]
Wang, H.L.; Andrews, K.L.; Booker, S.K.; Canon, J.; Cee, V.J.; Chavez, F., Jr; Chen, Y.; Eastwood, H.; Guerrero, N.; Herberich, B.; Hickman, D.; Lanman, B.A.; Laszlo, J., III; Lee, M.R.; Lipford, J.R.; Mattson, B.; Mohr, C.; Nguyen, Y.; Norman, M.H.; Pettus, L.H.; Powers, D.; Reed, A.B.; Rex, K.; Sastri, C.; Tamayo, N.; Wang, P.; Winston, J.T.; Wu, B.; Wu, Q.; Wu, T.; Wurz, R.P.; Xu, Y.; Zhou, Y.; Tasker, A.S. Discovery of (R)-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H)-one, a potent and selective Pim-1/2 kinase inhibitor for hematological malignancies. J. Med. Chem., 2019, 62(3), 1523-1540.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01733] [PMID: 30624936]
[9]
Narlik-Grassow, M.; Blanco-Aparicio, C.; Carnero, A. The PIM family of serine/threonine kinases in cancer. Med. Res. Rev., 2014, 34(1), 136-159.
[http://dx.doi.org/10.1002/med.21284] [PMID: 23576269]
[10]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PIM kinase inhibitors: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2019, 172, 95-108.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.050] [PMID: 30954777]
[11]
Martínez-González, S.; Rodríguez-Arístegui, S.; Gómez de la Oliva, C.A.; Hernández, A.I.; González Cantalapiedra, E.; Varela, C.; García, A.B.; Rabal, O.; Oyarzabal, J.; Bischoff, J.R.; Klett, J.; Albarrán, M.I.; Cebriá, A.; Ajenjo, N.; García-Serelde, B.; Gómez-Casero, E.; Cuadrado-Urbano, M.; Cebrián, D.; Blanco-Aparicio, C.; Pastor, J. Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur. J. Med. Chem., 2019, 168, 87-109.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.022] [PMID: 30802730]
[12]
Brasó-Maristany, F.; Filosto, S.; Catchpole, S.; Marlow, R.; Quist, J.; Francesch-Domenech, E.; Plumb, D.A.; Zakka, L.; Gazinska, P.; Liccardi, G.; Meier, P.; Gris-Oliver, A.; Cheang, M.C.; Perdrix-Rosell, A.; Shafat, M.; Noël, E.; Patel, N.; McEachern, K.; Scaltriti, M.; Castel, P.; Noor, F.; Buus, R.; Mathew, S.; Watkins, J.; Serra, V.; Marra, P.; Grigoriadis, A.; Tutt, A.N. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat. Med., 2016, 22(11), 1303-1313.
[http://dx.doi.org/10.1038/nm.4198] [PMID: 27775704]
[13]
Merkel, A.L.; Meggers, E.; Ocker, M. PIM1 kinase as a target for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(4), 425-436.
[http://dx.doi.org/10.1517/13543784.2012.668527] [PMID: 22385334]
[14]
Drygin, D.; Haddach, M.; Pierre, F.; Ryckman, D.M. Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy. J. Med. Chem., 2012, 55(19), 8199-8208.
[http://dx.doi.org/10.1021/jm3009234] [PMID: 22924342]
[15]
Arunesh, G.M.; Shanthi, E.; Krishna, M.H.; Sooriya Kumar, J.; Viswanadhan, V.N. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Expert Opin. Ther. Pat., 2014, 24(1), 5-17.
[http://dx.doi.org/10.1517/13543776.2014.848196] [PMID: 24131033]
[16]
Le, B.T.; Kumarasiri, M.; Adams, J.R.J.; Yu, M.; Milne, R.; Sykes, M.J.; Wang, S. Targeting Pim kinases for cancer treatment: Opportunities and challenges. Future Med. Chem., 2015, 7(1), 35-53.
[http://dx.doi.org/10.4155/fmc.14.145] [PMID: 25582332]
[17]
Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM kinase as an executional target in cancer. J. Cancer Prev., 2018, 23(3), 109-116.
[http://dx.doi.org/10.15430/JCP.2018.23.3.109] [PMID: 30370255]
[18]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[19]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: A review. Eur. J. Med. Chem., 2019, 164, 121-170.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[20]
Zhou, Y.; Xu, X.; Wang, F.; He, H.; Qi, B. Discovery of 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)- 6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide as kinase inhibitor for the treatment of colorectal cancer. Bioorg. Chem., 2021, 106, 104511.
[http://dx.doi.org/10.1016/j.bioorg.2020.104511] [PMID: 33272707]
[21]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[22]
Banday, A.H.; Saeed, B.A.; Al-Masoudi, N.A. Synthesis, aromatase inhibitory, antiproliferative and molecular modeling studies of functionally diverse d-ring pregnenolone pyrazoles. Anticancer. Agents Med. Chem., 2021, 21(13), 1671-1679.
[http://dx.doi.org/10.2174/1871520620999201124213655] [PMID: 33238853]
[23]
Li, K.; Li, L.; Wang, S.; Li, X.; Ma, T.; Liu, D.; Jing, Y.; Zhao, L. Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability. Eur. J. Med. Chem., 2017, 126, 910-919.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.089] [PMID: 27997878]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy