Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Luliconazole Topical Dermal Drug Delivery for Superficial Fungal Infections: Penetration Hurdles and Role of Functional Nanomaterials

Author(s): Chanti Katta Babu, Shubhra, Shaik Mahammad Ghouse, Pankaj Kumar Singh, Dharmendra Kumar Khatri, Srinivas Nanduri, Shashi Bala Singh and Jitender Madan*

Volume 28, Issue 20, 2022

Published on: 05 July, 2022

Page: [1611 - 1620] Pages: 10

DOI: 10.2174/1381612828666220623095743

Price: $65

Abstract

Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations, like lower skin permeation and shorter skin retention of drug. Therefore, the present review is an attempt to unravel the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we have also summarized the activity of functional nanomaterials-based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on a case-to-case basis. In addition, efforts have also been made to unveil the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using the in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target, owing to the formation of hydrogen bonds with Glu132, Glu133, and Arg143, in addition to a few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase, and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA), leading to commercial success of luliconazole.

Keywords: Luliconazole, topical fungal infections, drug delivery, isoquercetin, in-silico docking, artificial neural network.

[1]
Sharma B, Nonzom S. Superficial mycoses, a matter of concern: Global and Indian scenario-an updated analysis. Mycoses 2021; 64(8): 890-908.
[http://dx.doi.org/10.1111/myc.13264] [PMID: 33665915]
[2]
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47(1): 91-111.
[http://dx.doi.org/10.1080/1040841X.2020.1843400] [PMID: 33482069]
[3]
Bonifaz A, Rojas R, Tirado-Sánchez A, et al. Superficial mycoses associated with diaper dermatitis. Mycopathologia 2016; 181(9-10): 671-9.
[http://dx.doi.org/10.1007/s11046-016-0020-9] [PMID: 27193417]
[4]
Gupta AK, Daigle D. A critical appraisal of once-daily topical luliconazole for the treatment of superficial fungal infections. Infect Drug Resist 2016; 9: 1-6.
[http://dx.doi.org/10.2147/IDR.S61998] [PMID: 26848272]
[5]
Denison HJ, Worswick J, Bond CM, et al. Oral versus intra-vaginal imidazole and triazole anti-fungal treatment of uncomplicated vulvo-vaginal candidiasis (thrush). Cochrane Database Syst Rev 2020; 8: CD002845.
[PMID: 32845024]
[6]
Saunders J, Maki K, Koski R, Nybo SE. Tavaborole, efinaconazole, and luliconazole: three new antimycotic agents for the treatment of dermatophytic fungi. J Pharm Pract 2017; 30(6): 621-30.
[http://dx.doi.org/10.1177/0897190016660487] [PMID: 27488125]
[7]
Koga H, Tsuji Y, Inoue K, et al. In vitro antifungal activity of luliconazole against clinical isolates from patients with dermatomycoses. J Infect Chemother 2006; 12(3): 163-5.
[http://dx.doi.org/10.1007/s10156-006-0440-4] [PMID: 16826352]
[8]
Sant DG, Tupe SG, Ramana CV, Deshpande MV. Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 2016; 121(6): 1498-510.
[http://dx.doi.org/10.1111/jam.13301] [PMID: 27667746]
[9]
Niwano Y, Ohmi T, Seo A, Kodama H, Koga H, Sakai A. Lanoconazole and its related optically active compound NND-502: Novel antifungal imidazoles with a ketene dithioacetal structure. Curr Med Chem -Anti-Infect Agents 2005; 2: 147-60.
[10]
Dos Santos Porto D, Bajerski L, Donadel Malesuik M, Soldateli Paim C. A review of characteristics, properties, application of nanocarri-ers and analytical methods of luliconazole. Crit Rev Anal Chem 2021; 19: 1-8.
[http://dx.doi.org/10.1080/10408347.2021.1926219] [PMID: 34011234]
[11]
Watanabe S, Kishida H, Okubo A. Efficacy and safety of luliconazole 5% nail solution for the treatment of onychomycosis: A multicen-ter, double-blind, randomized phase III study. J Dermatol 2017; 44(7): 753-9.
[http://dx.doi.org/10.1111/1346-8138.13816] [PMID: 28332720]
[12]
Mochizuki T, Tsuboi R, Iozumi K, et al. Guidelines for the management of dermatomycosis (2019). J Dermatol 2020; 47(12): 1343-73.
[http://dx.doi.org/10.1111/1346-8138.15618] [PMID: 32978814]
[13]
Jones TM, Jarratt MT, Mendez-Moguel I, et al. A randomized, multicenter, double-blind, vehicle-controlled study evaluating the efficacy and safety of luliconazole cream 1% once daily for 7 days in patients aged ≥ 12 years with tinea cruris. J Drugs Dermatol 2014; 13(1): 32-8.
[PMID: 24385117]
[14]
Jarratt M, Jones T, Adelglass J, et al. Efficacy and safety of once-daily luliconazole 1% cream in patients ≥12 years of age with interdigi-tal tinea pedis: a phase 3, randomized, double-blind,vehicle-controlled study. J Drugs Dermatol 2014; 13(7): 838-46.
[PMID: 25007368]
[15]
Jerajani H, Janaki C, Kumar S, Phiske M. Comparative assessment of the efficacy and safety of sertaconazole (2%) cream versus terbinafine cream (1%) versus luliconazole (1%) cream in patients with dermatophytoses: a pilot study. Indian J Dermatol 2013; 58(1): 34-8.
[http://dx.doi.org/10.4103/0019-5154.105284] [PMID: 23372210]
[16]
Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019; 5(5): e01688.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01688] [PMID: 31193099]
[17]
Sharma M, Mundlia J, Kumar T, Ahuja M. A novel microwave-assisted synthesis, characterization and evaluation of luliconazole-loaded solid lipid nanoparticles. Polym Bull 2021; 78(5): 2553-67.
[http://dx.doi.org/10.1007/s00289-020-03220-5]
[18]
Kishii K. Pharmacological and clinical properties of luliconazole (Lulicon Cream 1%, Lulicon Solution 1%), a novel topical antifungal agent. Nippon Yakurigaku Zasshi 2006; 127(5): 408-14.
[http://dx.doi.org/10.1254/fpj.127.408] [PMID: 16819248]
[19]
Koppa Raghu P, Bansal KK, Thakor P, et al. Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals (Basel) 2020; 13(8): 167.
[http://dx.doi.org/10.3390/ph13080167] [PMID: 32726897]
[20]
Chahal SK, Sodhi RK, Madan J. Duloxetine hydrochloride loaded film forming dermal gel enriched with methylcobalamin and geranium oil attenuates paclitaxel-induced peripheral neuropathy in rats. IBRO Rep 2020; 9: 85-95.
[http://dx.doi.org/10.1016/j.ibror.2020.07.006] [PMID: 32760845]
[21]
Jyoti K, Malik G, Chaudhary M, et al. Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: Strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. Int J Biol Macromol 2020; 161: 325-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.230] [PMID: 32485249]
[22]
Manchanda G, Sodhi RK, Jain UK, Chandra R, Madan J. Iodinated curcumin bearing dermal cream augmented drug delivery, antimicro-bial and antioxidant activities. J Microencapsul 2018; 35(1): 49-61.
[http://dx.doi.org/10.1080/02652048.2018.1425749] [PMID: 29308689]
[23]
Kaur M, Singh K, Jain SK. Luliconazole vesicular based gel formulations for its enhanced topical delivery. J Liposome Res 2020; 30(4): 388-406.
[http://dx.doi.org/10.1080/08982104.2019.1682602] [PMID: 31631734]
[24]
Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicro-bial hybrid system for burn infection. Int J Biol Macromol 2016; 85: 625-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.013] [PMID: 26794314]
[25]
Shetty S, Jose J, Kumar L, Charyulu RN. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J Cosmet Dermatol 2019; 18(3): 862-9.
[http://dx.doi.org/10.1111/jocd.12765] [PMID: 30171656]
[26]
Omar MM, Eleraky NE, El Sisi AM, Ali Hasan O. Development and evaluation of in-situ nasal gel formulations of nanosized trans-ferosomal sumatriptan: Design, optimization, in vitro and in vivo evaluation. Drug Des Devel Ther 2019; 13: 4413-30.
[http://dx.doi.org/10.2147/DDDT.S235004] [PMID: 31920290]
[27]
Firdaus S, Hassan N, Mirza MA, et al. FbD directed fabrication and investigation of luliconazole based SLN gel for the amelioration of candidal vulvovaginitis: a 2 T (thermosensitive & transvaginal) approach. Saudi J Biol Sci 2021; 28(1): 317-26.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.005] [PMID: 33424312]
[28]
Boonme P, Kaewbanjong J, Amnuaikit T, Andreani T, Silva AM, Souto EB. Microemulsion and microemulsion-based gels for topical antifungal therapy with phytochemicals. Curr Pharm Des 2016; 22(27): 4257-63.
[http://dx.doi.org/10.2174/1381612822666160603015436] [PMID: 27262324]
[29]
Hussain A, Samad A, Singh SK, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evalua-tion. Drug Deliv 2016; 23(2): 642-7.
[http://dx.doi.org/10.3109/10717544.2014.933284] [PMID: 25013957]
[30]
Madan S, Nehate C, Barman TK, Rathore AS, Koul V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: in vitro and in vivo studies. Drug Dev Ind Pharm 2019; 45(3): 395-404.
[http://dx.doi.org/10.1080/03639045.2018.1546310] [PMID: 30442066]
[31]
Natsheh H, Vettorato E, Touitou E. Ethosomes for dermal administration of natural active molecules. Curr Pharm Des 2019; 25(21): 2338-48.
[http://dx.doi.org/10.2174/1381612825666190716095826] [PMID: 31333087]
[32]
Fu X, Shi Y, Wang H, et al. Ethosomal gel for improving transdermal delivery of thymosin β-4. Int J Nanomedicine 2019; 14: 9275-84.
[http://dx.doi.org/10.2147/IJN.S228863] [PMID: 31819429]
[33]
Garg AK, Maddiboyina B, Alqarni MHS, et al. Solubility enhancement, formulation development and antifungal activity of luliconazole niosomal gel-based system. J Biomat Sci Polymer Edition 2021; 32: 1009-23.
[34]
Dave V, Bhardwaj N, Gupta N, Tak K. Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech 2020; 10: 1-5.
[35]
Baghel S, Nair VS, Pirani A, et al. Luliconazole-loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections. Dermatol Ther (Heidelb) 2020; 33(6): e13959.
[http://dx.doi.org/10.1111/dth.13959] [PMID: 32618400]
[36]
Mahmood A, Rapalli VK, Gorantla S, Waghule T, Singhvi G. Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res 2022; 12(5): 1118-35.
[http://dx.doi.org/10.1007/s13346-021-00986-7] [PMID: 33895936]
[37]
Dandagi PM, Pandey P, Gadad AP, Mastiholimath VS. Formulation and evaluation of microemulsion based luliconazole gel for topical delivery. Ind J Pharm Edu Res 2020; 54(2): 293-301.
[http://dx.doi.org/10.5530/ijper.54.2.34]
[38]
Kansagra H, Mallick S. Microemulsion-based antifungal gel of luliconazole for dermatophyte infections: formulation, characterization and efficacy studies. J Pharm Investig 2016; 46(1): 21-8.
[http://dx.doi.org/10.1007/s40005-015-0209-9]
[39]
Ghose A, Nabi B, Rehman S, et al. Development and evaluation of polymeric nanosponge hydrogel for terbinafine hydrochloride: Statis-tical optimization, in vitro and in vivo studies. Polymers (Basel) 2020; 12(12): 2903.
[http://dx.doi.org/10.3390/polym12122903] [PMID: 33287406]
[40]
Kamble M, Zaheer Z, Mokale S, Zainuddin R. Formulation optimization and biopharmaceutical evaluation of imatinib mesylate loaded β-cyclodextrin nanosponges. Pharm Nanotechnol 2019; 7(5): 343-61.
[http://dx.doi.org/10.2174/2211738507666190919121445] [PMID: 31549599]
[41]
Panda S, Vijayalakshmi S, Pattnaik S, Swain RP. Nanosponges: A novel carrier for targeted drug delivery. Int J Pharm Tech Res 2015; 8: 213-24.
[42]
Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif Cells Nanomed Biotechnol 2018; 46(5): 1064-75.
[http://dx.doi.org/10.1080/21691401.2017.1360324] [PMID: 28758795]
[43]
Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. Novel drug delivery system of luliconazole - Formulation and characterisation. J Drug Deliv Sci Technol 2020; 55: 101302.
[http://dx.doi.org/10.1016/j.jddst.2019.101302]
[44]
Rajput RL, Narkhede JS, Mujumdar A, Naik JB. Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: in vitro and ex vivo assessment. Polymer-Plastics Technol Mater 2020; 59(15): 1654-66.
[http://dx.doi.org/10.1080/25740881.2020.1759633]
[45]
Dhamoon RK, Goyal RK, Popli H, Gupta M. Luliconazole-loaded thermosensitive hydrogel as aqueous based nail lacquer for the treat-ment of onychomycosis. Drug Deliv Lett 2019; 9(4): 321-9.
[http://dx.doi.org/10.2174/2210303109666190520081552]
[46]
Hassan N, Singh M, Sulaiman S, et al. Molecular docking-guided ungual drug-delivery design for amelioration of onychomycosis. ACS Omega 2019; 4(5): 9583-92.
[http://dx.doi.org/10.1021/acsomega.9b00436] [PMID: 31460049]
[47]
Ito T, Ito N, Saathoff M, et al. Immunology of the human nail apparatus: the nail matrix is a site of relative immune privilege. J Invest Dermatol 2005; 125(6): 1139-48.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23927.x] [PMID: 16354183]
[48]
Gupta AK, Foley KA. Evidence for biofilms in onychomycosis. G Ital Dermatol Venereol 2019; 154(1): 50-5.
[http://dx.doi.org/10.23736/S0392-0488.18.06001-7] [PMID: 29683287]
[49]
Perlin DS, Shor E, Zhao Y. Update on antifungal drug resistance. Curr Clin Microbiol Rep 2015; 2(2): 84-95.
[http://dx.doi.org/10.1007/s40588-015-0015-1] [PMID: 26120512]
[50]
Pai V, Ganavalli A, Kikkeri NN. Antifungal resistance in dermatology. Int J Dermatol 2018; 63(5): 361-8.
[PMID: 30210155]
[51]
Yun J, Lee H, Ko HJ, Woo ER, Lee DG. Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim Biophys Acta 2015; 1848(2): 695-701.
[http://dx.doi.org/10.1016/j.bbamem.2014.11.019] [PMID: 25445674]
[52]
Strange RW, Antonyuk SV, Hough MA, Doucette PA, Valentine JS, Hasnain SS. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. J Mol Biol 2006; 356(5): 1152-62.
[http://dx.doi.org/10.1016/j.jmb.2005.11.081] [PMID: 16406071]
[53]
Strushkevich N, Usanov SA, Park HW. Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 2010; 397(4): 1067-78.
[http://dx.doi.org/10.1016/j.jmb.2010.01.075] [PMID: 20149798]
[54]
Arya A, Azarmehr N, Mansourian M, Doustimotlagh AH. Inactivation of the superoxide dismutase by malondialdehyde in the nonalco-holic fatty liver disease: a combined molecular docking approach to clinical studies. Arch Physiol Biochem 2021; 127(6): 557-64.
[http://dx.doi.org/10.1080/13813455.2019.1659827] [PMID: 31475569]
[55]
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152: 169-90.
[http://dx.doi.org/10.1016/j.addr.2019.05.001] [PMID: 31071378]
[56]
Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm 2019; 563: 110-21.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.056] [PMID: 30935913]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy