Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Role of m6A in Osteoporosis and the Differentiation of Mesenchymal Stem Cells into Osteoblasts and Adipocytes

Author(s): Weifei Zhang, Ke Tao Tao, Jianjing Lin, Peng Liu, Zhiping Guan, Jiapeng Deng, Deli Wang and Hui Zeng*

Volume 18, Issue 3, 2023

Published on: 26 August, 2022

Page: [339 - 346] Pages: 8

DOI: 10.2174/1574888X17666220621155341

Price: $65

Abstract

Osteoporosis is a systemic disease in which bone mass decreases, leading to an increased risk of bone fragility and fracture. The occurrence of osteoporosis is believed to be related to the disruption of the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. N6-adenylate methylation (m6A) modification is the most common type of chemical RNA modification and refers to a methylation modification formed by the nitrogen atom at position 6 of adenine (A), which is catalyzed by a methyltransferase. The main roles of m6A are the post-transcriptional level regulation of the stability, localization, transportation, splicing, and translation of RNA; these are key elements of various biological activities, including osteoporosis and the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. The main focus of this review is the role of m6A in these two biological processes.

Keywords: Mesenchymal stem cells, osteoporosis, bone fragility, methyltransferase, adenine, splicing.

Graphical Abstract

[1]
Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C. Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol 2019; 15(9): 535-47.
[http://dx.doi.org/10.1038/s41574-019-0220-8] [PMID: 31189982]
[2]
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785-95.
[http://dx.doi.org/10.1001/jama.285.6.785] [PMID: 11176917]
[3]
Acurcio FA, Moura CS, Bernatsky S, Bessette L, Rahme E. Opioid use and risk of nonvertebral fractures in adults with rheumatoid arthritis: A nested case-control study using administrative databases. Arthritis Rheumatol 2016; 68(1): 83-91.
[http://dx.doi.org/10.1002/art.39422] [PMID: 26360963]
[4]
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Tosteson, Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 2007; 22: 465-75.
[5]
Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359(9319): 1761-7.
[http://dx.doi.org/10.1016/S0140-6736(02)08657-9] [PMID: 12049882]
[6]
Mithal A, Kaur P. Osteoporosis in Asia: A call to action. Curr Osteoporos Rep 2012; 10(4): 245-7.
[http://dx.doi.org/10.1007/s11914-012-0114-3] [PMID: 22898971]
[7]
Sánchez A, Blanco R. Osteonecrosis of the jaw (ONJ) and atypical femoral fracture (AFF) in an osteoporotic patient chronically treated with bisphosphonates. Osteoporos Int 2017; 28: 1145-7.
[8]
Yuan F, Peng W, Yang C, Zheng J. Teriparatide versus bisphosphonates for treatment of postmenopausal osteoporosis: A meta-analysis. Int J Surg 2019; 66: 1-11.
[9]
Lv F, Cai X, Yang W, et al. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systematic review and meta- analysis. Bone 2020; 130: 115121.
[http://dx.doi.org/10.1016/j.bone.2019.115121] [PMID: 31678488]
[10]
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet 2019; 393(10169): 364-76.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[11]
Che M, Gong W, Zhao Y, Liu M. Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med 2020; 26(1): 106.
[http://dx.doi.org/10.1186/s10020-020-00219-6] [PMID: 33176682]
[12]
Zhi F, Ding Y, Wang R, Yang Y, Luo K, Hua F. Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther 2021; 12(1): 157.
[http://dx.doi.org/10.1186/s13287-021-02214-y] [PMID: 33648601]
[13]
Qiu M, Zhai S, Fu Q, Liu D. Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther 2021; 32(13-14): 717-29.
[http://dx.doi.org/10.1089/hum.2020.005] [PMID: 33107350]
[14]
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 1974; 71(10): 3971-5.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[15]
Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res 2018; 46(D1): D303-7.
[http://dx.doi.org/10.1093/nar/gkx1030] [PMID: 29106616]
[16]
Akichika S, Hirano S, Shichino Y, et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 2019; 363(6423): 363.
[http://dx.doi.org/10.1126/science.aav0080] [PMID: 30467178]
[17]
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014; 15(5): 293-306.
[http://dx.doi.org/10.1038/nrg3724] [PMID: 24662220]
[18]
Ries RJ, Zaccara S, Klein P, et al. m6A enhances the phase separation potential of mRNA. Nature 2019; 571(7765): 424-8.
[http://dx.doi.org/10.1038/s41586-019-1374-1] [PMID: 31292544]
[19]
Wu Y, Xie L, Wang M, et al. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun 2018; 9(1): 4772.
[http://dx.doi.org/10.1038/s41467-018-06898-4] [PMID: 30429466]
[20]
Consensus development conference. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94(6): 646-50.
[http://dx.doi.org/10.1016/0002-9343(93)90218-E] [PMID: 8506892]
[21]
Zhang J, Dennison E, Prieto-Alhambra D. Osteoporosis epidemiology using international cohorts. Curr Opin Rheumatol 2020; 32(4): 387-93.
[http://dx.doi.org/10.1097/BOR.0000000000000722] [PMID: 32453035]
[22]
Zeng Q, Li N, Wang Q, et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J Bone Miner Res 2019; 34: 1789-97.
[23]
Xu Y, Wu Q. Trends in osteoporosis and mean bone density among type 2 diabetes patients in the US from 2005 to 2014. Sci Rep 2021; 11(1): 3693.
[http://dx.doi.org/10.1038/s41598-021-83263-4] [PMID: 33580184]
[24]
Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: A randomised, open-label, phase 3 trial. Lancet 2017; 390(10102): 1585-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31613-6] [PMID: 28755782]
[25]
van Dijk FS, Zillikens MC, Micha D, et al. PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 2013; 369(16): 1529-36.
[http://dx.doi.org/10.1056/NEJMoa1308223] [PMID: 24088043]
[26]
Cui L, Chen L, Xia W, et al. Vertebral fracture in postmenopausal Chinese women: A population-based study. Osteoporos Int 2017; 28: 2583-90.
[27]
van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone 2001; 29(6): 517-22.
[http://dx.doi.org/10.1016/S8756-3282(01)00614-7] [PMID: 11728921]
[28]
Fu SH, Wang CY, Hung CC, et al. Increased fracture risk after discontinuation of anti-osteoporosis medications among hip fracture patients: A population-based cohort study. J Intern Med 2021; 290(6): 1194-205.
[http://dx.doi.org/10.1111/joim.13354] [PMID: 34237171]
[29]
Leder BZ, Tsai JN, Uihlein AV, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): Extension of a randomised controlled trial. Lancet 2015; 386(9999): 1147-55.
[http://dx.doi.org/10.1016/S0140-6736(15)61120-5] [PMID: 26144908]
[30]
Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull 2020; 133(1): 105-17.
[PMID: 32282039]
[31]
Böcker W, Doobare IU, Khachatryan A, et al. Fractures in untreated patients with osteoporosis in Germany: An InGef healthcare insurance database analysis. Osteoporos Int 2021.
[32]
Cui L, Jackson M, Wessler Z, Gitlin M, Xia W. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among women in China: A simulation projection model from 2020 to 2040. Arch Osteoporos 2021; 16(1): 118.
[http://dx.doi.org/10.1007/s11657-021-00958-x] [PMID: 34338927]
[33]
Ensrud KE, Schousboe JT. Anabolic therapy for osteoporosis. JAMA 2021; 326(4): 350-1.
[http://dx.doi.org/10.1001/jama.2021.0233] [PMID: 34313699]
[34]
Bonaccorsi G, Giganti M, Nitsenko M, Pagliarini G, Piva G, Sciavicco G. Predicting treatment recommendations in postmenopausal osteoporosis. J Biomed Inform 2021; 118: 103780.
[http://dx.doi.org/10.1016/j.jbi.2021.103780] [PMID: 33857641]
[35]
Skjødt MK, Ernst MT, Khalid S, et al. The treatment gap after major osteoporotic fractures in Denmark 2005-2014: A combined analysis including both prescription-based and hospital-administered anti-osteoporosis medications. Osteoporos Int 2021.
[36]
Bellavia D, Dimarco E, Costa V, et al. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends Endocrinol Metab 2021; 32(2): 76-94.
[http://dx.doi.org/10.1016/j.tem.2020.11.007] [PMID: 33288387]
[37]
Langdahl B. Treatment of premenopausal women with osteoporosis. J Clin Endocrinol Metab 2020; 105(12): 105.
[http://dx.doi.org/10.1210/clinem/dgaa678] [PMID: 32960952]
[38]
Tominaga A, Wada K, Kato Y, Nishi H, Terayama Y, Okazaki K. Early clinical effects, safety, and appropriate selection of bone markers in romosozumab treatment for osteoporosis patients: A 6-month study. Osteoporos Int 2021; 32: 653-61.
[39]
McCloskey E, Rathi J, Heijmans S, et al. The osteoporosis treatment gap in patients at risk of fracture in European primary care: A multi-country cross-sectional observational study. Osteoporos Int 2021; 32: 251-9.
[40]
Langdahl B. Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: Combined and sequential approaches. Bone 2020; 139: 115516.
[http://dx.doi.org/10.1016/j.bone.2020.115516] [PMID: 32622871]
[41]
Cosman F. Anabolic therapy and optimal treatment sequences for patients with osteoporosis at high risk for fracture. Endocr Pract 2020; 26: 777-86.
[42]
Tominaga A, Wada K, Okazaki K, et al. Effect of the duration of previous osteoporosis treatment on the effect of romosozumab treatment. Osteoporos Int 2022; 33: 1265-73.
[43]
Ishimoto T, Saito M, Ozasa R, Matsumoto Y, Nakano T. Ibandronate suppresses changes in apatite orientation and young’s modulus caused by estrogen deficiency in rat vertebrae. Calcif Tissue Int 2022; 110(6): 736-45.
[http://dx.doi.org/10.1007/s00223-021-00940-2] [PMID: 34989822]
[44]
Dömötör ZR, Vörhendi N, Hanák L, et al. Oral treatment with bisphosphonates of osteoporosis does not increase the risk of severe gastrointestinal side effects: A meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2020; 11: 573976.
[http://dx.doi.org/10.3389/fendo.2020.573976] [PMID: 33240217]
[45]
Martín-Merino E, Petersen I, Hawley S, et al. Risk of venous thromboembolism among users of different anti-osteoporosis drugs: A population-based cohort analysis including over 200,000 participants from Spain and the UK. Osteoporos Int 2018; 29: 467-78.
[46]
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY, Yu SN. A network meta-analysis on the short-term efficacy and adverse events of different anti-osteoporosis drugs for the treatment of postmenopausal osteoporosis. J Cell Biochem 2018; 119(6): 4469-81.
[http://dx.doi.org/10.1002/jcb.26550] [PMID: 29227547]
[47]
Fuggle NR, Cooper C, Harvey NC, et al. Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 2020; 80(15): 1537-52.
[http://dx.doi.org/10.1007/s40265-020-01364-2] [PMID: 32725307]
[48]
Chelmicki T, Roger E, Teissandier A, et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 2021; 591(7849): 312-6.
[http://dx.doi.org/10.1038/s41586-020-03135-1] [PMID: 33442060]
[49]
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519(7544): 482-5.
[http://dx.doi.org/10.1038/nature14281] [PMID: 25799998]
[50]
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537(7620): 369-73.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[51]
Cui Q, Shi H, Ye P, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep 2017; 18(11): 2622-34.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[52]
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 2015; 43(1): 373-84.
[http://dx.doi.org/10.1093/nar/gku1276] [PMID: 25452335]
[53]
Meyer KD, Jaffrey SR. Rethinking m6A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol 2017; 33: 319-42.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060758] [PMID: 28759256]
[54]
Shi H, Zhang X, Weng YL, et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 2018; 563(7730): 249-53.
[http://dx.doi.org/10.1038/s41586-018-0666-1] [PMID: 30401835]
[55]
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69(7): 1193-205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639] [PMID: 31582403]
[56]
Zhang C, Chen Y, Sun B, et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature 2017; 549(7671): 273-6.
[http://dx.doi.org/10.1038/nature23883] [PMID: 28869969]
[57]
Cui YH, Yang S, Wei J, et al. Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun 2021; 12(1): 2183.
[http://dx.doi.org/10.1038/s41467-021-22469-6] [PMID: 33846348]
[58]
Mo XB, Zhang YH, Lei SF. Genome-wide identification of m(6)A-associated SNPs as potential functional variants for bone mineral density. Osteoporos Int 2018; 29: 2029-39.
[59]
Zhang Q, Riddle RC, Yang Q, et al. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci USA 2019; 116(36): 17980-9.
[http://dx.doi.org/10.1073/pnas.1905489116] [PMID: 31434789]
[60]
Yan G, Yuan Y, He M, et al. m6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. Mol Ther Nucleic Acids 2020; 19: 421-36.
[http://dx.doi.org/10.1016/j.omtn.2019.12.001] [PMID: 31896070]
[61]
Sun Z, Wang H, Wang Y, et al. MiR-103-3p targets the m6 A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell 2021; 20(2): e13298.
[http://dx.doi.org/10.1111/acel.13298] [PMID: 33440070]
[62]
Feng MG, Yang SL, Luo DW, Peng SL, Lou FZ, Xiao JG. Osteogenic Capacity and Mettl14 and Notch1 Expression of Adipose-Derived Stem Cells from Osteoporotic Rats. Sichuan Da Xue Xue Bao Yi Xue Ban 2021; 52(3): 423-9.
[PMID: 34018360]
[63]
Guo Y, Liu H, Yang TL, et al. The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One 2011; 6(11): e27312.
[http://dx.doi.org/10.1371/journal.pone.0027312] [PMID: 22125610]
[64]
Shen GS, Zhou HB, Zhang H, et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864(12): 3644-54.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.015] [PMID: 30279140]
[65]
Li Y, Yang F, Gao M, et al. miR-149-3p Regulates the Switch between Adipogenic and Osteogenic Differentiation of BMSCs by Targeting FTO. Mol Ther Nucleic Acids 2019; 17: 590-600.
[http://dx.doi.org/10.1016/j.omtn.2019.06.023] [PMID: 31382190]
[66]
Zhang X, Wang Y, Zhao H, et al. Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res Ther 2020; 11(1): 227.
[http://dx.doi.org/10.1186/s13287-020-01707-6] [PMID: 32522250]
[67]
Liu J, Chen M, Ma L, Dang X, Du G. piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging (Albany NY) 2021; 13(19): 23361-75.
[http://dx.doi.org/10.18632/aging.203630] [PMID: 34645714]
[68]
Liu T, Zheng X, Wang C, et al. The m6A “reader” YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death Dis 2021; 12(11): 1078.
[http://dx.doi.org/10.1038/s41419-021-04312-4] [PMID: 34772913]
[69]
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018; 562(7725): 133-9.
[http://dx.doi.org/10.1038/s41586-018-0554-8] [PMID: 30250253]
[70]
Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119(12): 3666-77.
[http://dx.doi.org/10.1172/JCI39832] [PMID: 19920351]
[71]
Liu Y, Yang R, Liu X, et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 2014; 15(1): 66-78.
[http://dx.doi.org/10.1016/j.stem.2014.03.005] [PMID: 24726192]
[72]
Li CJ, Xiao Y, Yang M, et al. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 2018; 128(12): 5251-66.
[http://dx.doi.org/10.1172/JCI99044] [PMID: 30352426]
[73]
Li B, He X, Dong Z, et al. Ionomycin ameliorates hypophosphatasia via rescuing alkaline phosphatase deficiency-mediated L-type Ca2+ channel internalization in mesenchymal stem cells. Bone Res 2020; 8: 19.
[http://dx.doi.org/10.1038/s41413-020-0090-7] [PMID: 32351759]
[74]
Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics 2020; 10(5): 2293-308.
[http://dx.doi.org/10.7150/thno.39238] [PMID: 32089743]
[75]
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019; 52(6): e12688.
[http://dx.doi.org/10.1111/cpr.12688] [PMID: 31557368]
[76]
Yang L, Li Y, Gong R, et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 2019; 27: 394-410.
[77]
Han HS, Ju F, Geng S. In vivo and in vitro effects of PTH1-34 on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stem cells through regulating microRNA-155. J Cell Biochem 2018; 119(4): 3220-35.
[http://dx.doi.org/10.1002/jcb.26478] [PMID: 29091308]
[78]
Lin CH, Li NT, Cheng HS, Yen ML. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J Cell Mol Med 2018; 22(2): 786-96.
[PMID: 28975701]
[79]
Wu M, Wang Y, Shao JZ, Wang J, Chen W, Li YP. Cbfβ governs osteoblast-adipocyte lineage commitment through enhancing β - catenin signaling and suppressing adipogenesis gene expression. Proc Natl Acad Sci USA 2017; 114(38): 10119-24.
[http://dx.doi.org/10.1073/pnas.1619294114] [PMID: 28864530]
[80]
Fan Y, Hanai JI, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 2017; 25(3): 661-72.
[http://dx.doi.org/10.1016/j.cmet.2017.01.001] [PMID: 28162969]
[81]
Qi M, Zhang L, Ma Y, et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics 2017; 7(18): 4498-516.
[http://dx.doi.org/10.7150/thno.17949] [PMID: 29158841]
[82]
Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125(4): 1509-22.
[http://dx.doi.org/10.1172/JCI77716] [PMID: 25751060]
[83]
Qi Q, Wang Y, Wang X, et al. Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPα and canonical Wnt signaling. Cell Mol Life Sci 2020; 77(12): 2407-21.
[http://dx.doi.org/10.1007/s00018-019-03289-w] [PMID: 31515577]
[84]
Meng J, Ma X, Wang N, et al. Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through -catenin. Stem Cell Reports 2016; 6(4): 579-91.
[http://dx.doi.org/10.1016/j.stemcr.2016.02.002] [PMID: 26947974]
[85]
Yao Y, Bi Z, Wu R, et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner. FASEB J 2019; 33(6): 7529-44.
[http://dx.doi.org/10.1096/fj.201802644R] [PMID: 30865855]
[86]
Yu J, Shen L, Liu Y, et al. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Mol Cell Biochem 2020; 463(1-2): 203-10.
[http://dx.doi.org/10.1007/s11010-019-03641-5] [PMID: 31643040]
[87]
Li Z, Wang P, Li J, et al. The N6-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis 2021; 12(6): 578.
[http://dx.doi.org/10.1038/s41419-021-03869-4] [PMID: 34088896]
[88]
Tian C, Huang Y, Li Q, Feng Z, Xu Q. Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci 2019; 20(3): 20.
[http://dx.doi.org/10.3390/ijms20030551] [PMID: 30696066]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy