Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Extensive Review on β-lactamase Enzymes and their Inhibitors

Author(s): Vidhu Agarwal, Akhilesh Tiwari and Pritish Varadwaj*

Volume 30, Issue 7, 2023

Published on: 14 September, 2022

Page: [783 - 808] Pages: 26

DOI: 10.2174/0929867329666220620165429

Price: $65

Abstract

β-lactam antibiotics treat bacterial infections very effectively, but overuse and misuse have led to resistance. β-lactamase enzymes hydrolyze β-lactam antibiotics and are the primary cause of resistance in bacteria. Bacteria evolve and clinically mutate to produce such β -lactamase enzymes, which could hydrolyze newly discovered antibiotics. Therefore, carbapenems are considered to be the last resort for antimicrobial treatment. Further, different inhibitors have been discovered to fight these evolving and mutating β- lactamase enzyme resistance. These inhibitors are given in combination with the β-lactam antibiotics to treat bacterial infections effectively. But in due course of time, it has been observed that bacteria develop resistance against this combination. This is an extensive review that discusses different classes of β-lactamase enzymes, their mechanism of action, and the role of critical structural elements like loops and catalytically relevant mutations. Such mutations and structural modifications result in expanding the spectrum of activity, making these β-lactamase enzymes resistant to the newly discovered β-lactam antibiotics and their inhibitors. Detailed knowledge of such mutations, catalytically relevant structural modifications, related kinetics, and action mechanisms could help develop new inhibitors effectively. Further, a detailed discussion of available inhibitors against each class of β-lactamase enzymes is also present.

Keywords: β-lactam antibiotics, β-lactamase enzymes, mutation, loops, inhibitors, kinetics

[1]
Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother., 2018, 62(10), 62.
[http://dx.doi.org/10.1128/AAC.01076-18] [PMID: 30061284]
[2]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[3]
Galdadas, I.; Qu, S.; Oliveira, A.S.F.; Olehnovics, E.; Mack, A.R.; Mojica, M.F.; Agarwal, P.K.; Tooke, C.L.; Gervasio, F.L.; Spencer, J.; Bonomo, R.A.; Mulholland, A.J.; Haider, S. Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics. eLife, 2021, 10, e66567.
[http://dx.doi.org/10.7554/eLife.66567] [PMID: 33755013]
[4]
Interagency Coordination Group on Antimicrobial Resistance. No time to wait: Securing the future from drug-resistant infections: World health organization; , 2019. Available from:https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/
[5]
Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol., 2019, 431(18), 3472-3500.
[http://dx.doi.org/10.1016/j.jmb.2019.04.002] [PMID: 30959050]
[6]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277, 91-104.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[7]
Bonomo, R.A. β-lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1), a025239.
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[8]
Öztürk, H.; Ozkirimli, E.; Özgür, A. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One, 2015, 10(2), e0117874.
[http://dx.doi.org/10.1371/journal.pone.0117874] [PMID: 25689853]
[9]
Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care, 2020, 8, 13.
[10]
Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[11]
Palzkill, T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front. Mol. Biosci., 2018, 5, 16.
[http://dx.doi.org/10.3389/fmolb.2018.00016] [PMID: 29527530]
[12]
Bajpai, T.; Pandey, M.; Varma, M.; Bhatambare, G.S. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J. Med., 2017, 7(1), 12-16.
[http://dx.doi.org/10.4103/2231-0770.197508] [PMID: 28182026]
[13]
ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Res. Int., 2018, 2018, 1-14.
[14]
Pemberton, O.A.; Noor, R.E.; Kumar, M.V.V.; Sanishvili, R.; Kemp, M.T.; Kearns, F.L.; Woodcock, H.L.; Gelis, I.; Chen, Y. Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 5818-5825.
[http://dx.doi.org/10.1073/pnas.1922203117] [PMID: 32123084]
[15]
Agarwal, V.; Yadav, T.C.; Tiwari, A.; Varadwaj, P. Detailed investigation of catalytically important residues of class A β-lactamase. J. Biomol. Struct. Dyn., 2022, 1-28.
[http://dx.doi.org/10.1080/07391102.2021.2023645] [PMID: 34986744]
[16]
Pan, X.; He, Y.; Lei, J.; Huang, X.; Zhao, Y. Crystallographic snapshots of class A β-lactamase catalysis reveal structural changes that facilitate β-lactam hydrolysis. J. Biol. Chem., 2017, 292(10), 4022-4033.
[http://dx.doi.org/10.1074/jbc.M116.764340] [PMID: 28100776]
[17]
Kar, D.; Pandey, S.D.; Mallick, S.; Dutta, M.; Ghosh, A.S. Substitution of alanine at position 184 with glutamic acid in Escherichia coli PBP5 Ω-like loop introduces a moderate cephalosporinase activity. Protein J., 2018, 37(2), 122-131.
[http://dx.doi.org/10.1007/s10930-018-9765-y] [PMID: 29549627]
[18]
Lobkovsky, E.; Moews, P.C.; Liu, H.; Zhao, H.; Frere, J.M.; Knox, J.R. Evolution of an enzyme activity: Crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA, 1993, 90(23), 11257-11261.
[http://dx.doi.org/10.1073/pnas.90.23.11257] [PMID: 8248237]
[19]
Egorov, A.; Rubtsova, M.; Grigorenko, V.; Uporov, I.; Veselovsky, A. The role of the Ω-loop in regulation of the catalytic activity of TEM-type β-lactamases. Biomolecules, 2019, 9(12), 854.
[http://dx.doi.org/10.3390/biom9120854] [PMID: 31835662]
[20]
Chaïbi, E.B.; Sirot, D.; Paul, G.; Labia, R. Inhibitor-resistant TEM β-lactamases: Phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother., 1999, 43(4), 447-458.
[http://dx.doi.org/10.1093/jac/43.4.447] [PMID: 10350372]
[21]
Sampson, J.M.; Ke, W.; Bethel, C.R.; Pagadala, S.R.R.; Nottingham, M.D.; Bonomo, R.A.; Buynak, J.D.; van den Akker, F. Ligand-dependent disorder of the Ω loop observed in extended-spectrum SHV-type β-lactamase. Antimicrob. Agents Chemother., 2011, 55(5), 2303-2309.
[http://dx.doi.org/10.1128/AAC.01360-10] [PMID: 21357298]
[22]
Sideraki, V.; Huang, W.; Palzkill, T.; Gilbert, H.F. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc. Natl. Acad. Sci. USA, 2001, 98(1), 283-288.
[http://dx.doi.org/10.1073/pnas.011454198] [PMID: 11114163]
[23]
Dellus-Gur, E.; Elias, M.; Caselli, E.; Prati, F.; Salverda, M.L.M.; de Visser, J.A.G.M.; Fraser, J.S.; Tawfik, D.S. Negative epistasis and evolvability in TEM-1 β-lactamase-the thin line between an enzyme’s conformational freedom and disorder. J. Mol. Biol., 2015, 427(14), 2396-2409.
[http://dx.doi.org/10.1016/j.jmb.2015.05.011] [PMID: 26004540]
[24]
Stojanoski, V.; Chow, D-C.; Hu, L.; Sankaran, B.; Gilbert, H.F.; Prasad, B.V.V.; Palzkill, T. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J. Biol. Chem., 2015, 290(16), 10382-10394.
[http://dx.doi.org/10.1074/jbc.M114.633438] [PMID: 25713062]
[25]
Levitt, P.S.; Papp-Wallace, K.M.; Taracila, M.A.; Hujer, A.M.; Winkler, M.L.; Smith, K.M.; Xu, Y.; Harris, M.E.; Bonomo, R.A. Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: A mechanism for ceftazidime hydrolysis. J. Biol. Chem., 2012, 287(38), 31783-31793.
[http://dx.doi.org/10.1074/jbc.M112.348540] [PMID: 22843686]
[26]
Saves, I.; Burlet-Schiltz, O.; Maveyraud, L.; Samama, J-P.; Promé, J-C.; Masson, J-M. Mass spectral kinetic study of acylation and deacylation during the hydrolysis of penicillins and cefotaxime by beta-lactamase TEM-1 and the G238S mutant. Biochemistry, 1995, 34(37), 11660-11667.
[http://dx.doi.org/10.1021/bi00037a003] [PMID: 7547898]
[27]
Venkatachalam, K.V.; Huang, W.; LaRocco, M.; Palzkill, T. Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime. J. Biol. Chem., 1994, 269(38), 23444-23450.
[http://dx.doi.org/10.1016/S0021-9258(17)31536-3] [PMID: 8089110]
[28]
Jacob, F.; Joris, B.; Lepage, S.; Dusart, J.; Frère, J.M. Role of the conserved amino acids of the ‘SDN’ loop (Ser130, Asp131 and Asn132) in a class A β-lactamase studied by site-directed mutagenesis. Biochem. J., 1990, 271(2), 399-406.
[http://dx.doi.org/10.1042/bj2710399] [PMID: 2173561]
[29]
Kumar, G.; Biswal, S.; Nathan, S.; Ghosh, A.S. Glutamate residues at positions 162 and 164 influence the beta-lactamase activity of SHV-14 obtained from Klebsiella pneumoniae. FEMS Microbiol. Lett., 2018, 365(2), 365.
[http://dx.doi.org/10.1093/femsle/fnx259] [PMID: 29228168]
[30]
Hwang, J.; Cho, K-H.; Song, H.; Yi, H.; Kim, H.S. Deletion mutations conferring substrate spectrum extension in the class A β-lactamase. Antimicrob. Agents Chemother., 2014, 58(10), 6265-6269.
[http://dx.doi.org/10.1128/AAC.02648-14] [PMID: 25049254]
[31]
Baig, M.H.; Sudhakar, D.R.; Kalaiarasan, P.; Subbarao, N.; Wadhawa, G.; Lohani, M.; Khan, M.K.A.; Khan, A.U. Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS One, 2014, 9(12), e112456.
[http://dx.doi.org/10.1371/journal.pone.0112456] [PMID: 25479359]
[32]
Lahiri, S.D.; Johnstone, M.R.; Ross, P.L.; McLaughlin, R.E.; Olivier, N.B.; Alm, R.A. Avibactam and class C β-lactamases: Mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob. Agents Chemother., 2014, 58(10), 5704-5713.
[http://dx.doi.org/10.1128/AAC.03057-14] [PMID: 25022578]
[33]
Khan, A.U.; Ali, A. Danishuddin; Srivastava, G.; Sharma, A. Potential inhibitors designed against NDM-1 type metallo-β-lactamases: An attempt to enhance efficacies of antibiotics against multi-drug-resistant bacteria. Sci. Rep., 2017, 7(1), 9207.
[http://dx.doi.org/10.1038/s41598-017-09588-1] [PMID: 28835636]
[34]
Somboro, A.M.; Osei Sekyere, J.; Amoako, D.G.; Essack, S.Y.; Bester, L.A. Diversity and proliferation of metallo-β-lactamases: A clarion call for clinically effective metallo-β-lactamase inhibitors. Appl. Environ. Microbiol., 2018, 84(18), 84.
[http://dx.doi.org/10.1128/AEM.00698-18] [PMID: 30006399]
[35]
Garau, G.; García-Sáez, I.; Bebrone, C.; Anne, C.; Mercuri, P.; Galleni, M.; Frère, J-M.; Dideberg, O. Update of the standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother., 2004, 48(7), 2347-2349.
[http://dx.doi.org/10.1128/AAC.48.7.2347-2349.2004] [PMID: 15215079]
[36]
Hou, C.D.; Liu, J.W.; Collyer, C.; Mitić, N.; Pedroso, M.M.; Schenk, G.; Ollis, D.L. Insights into an evolutionary strategy leading to antibiotic resistance. Sci. Rep., 2017, 7, 40357.
[http://dx.doi.org/10.1038/srep40357] [PMID: 28074907]
[37]
Chen, J.; Chen, H.; Shi, Y.; Hu, F.; Lao, X.; Gao, X.; Zheng, H.; Yao, W. Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations. PLoS One, 2013, 8(12), e82080.
[http://dx.doi.org/10.1371/journal.pone.0082080] [PMID: 24339993]
[38]
Hawk, M.J.; Breece, R.M.; Hajdin, C.E.; Bender, K.M.; Hu, Z.; Costello, A.L.; Bennett, B.; Tierney, D.L.; Crowder, M.W. Differential binding of Co(II) and Zn(II) to metallo-β-lactamase Bla2 from Bacillus anthracis. J. Am. Chem. Soc., 2009, 131(30), 10753-10762.
[http://dx.doi.org/10.1021/ja900296u] [PMID: 19588962]
[39]
Wang, Z.; Fast, W.; Valentine, A.M.; Benkovic, S.J. Metallo-β-lactamase: Structure and mechanism. Curr. Opin. Chem. Biol., 1999, 3(5), 614-622.
[http://dx.doi.org/10.1016/S1367-5931(99)00017-4] [PMID: 10508665]
[40]
Garrity, J.D.; Bennett, B.; Crowder, M.W. Direct evidence that the reaction intermediate of metallo-β-lactamase L1 is metal bound. Biochemistry, 2005, 44(3), 1078-1087.
[http://dx.doi.org/10.1021/bi048385b] [PMID: 15654764]
[41]
Zhang, H.; Hao, Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J., 2011, 25(8), 2574-2582.
[http://dx.doi.org/10.1096/fj.11-184036] [PMID: 21507902]
[42]
King, D.T.; Worrall, L.J.; Gruninger, R.; Strynadka, N.C.J. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc., 2012, 134(28), 11362-11365.
[http://dx.doi.org/10.1021/ja303579d] [PMID: 22713171]
[43]
Yuan, Q.; He, L.; Ke, H. A potential substrate binding conformation of β-lactams and insight into the broad spectrum of NDM-1 activity. Antimicrob. Agents Chemother., 2012, 56(10), 5157-5163.
[http://dx.doi.org/10.1128/AAC.05896-11] [PMID: 22825119]
[44]
Wommer, S.; Rival, S.; Heinz, U.; Galleni, M.; Frère, J-M.; Franceschini, N.; Amicosante, G.; Rasmussen, B.; Bauer, R.; Adolph, H-W. Substrate-activated zinc binding of metallo-β -lactamases: Physiological importance of mononuclear enzymes. J. Biol. Chem., 2002, 277(27), 24142-24147.
[http://dx.doi.org/10.1074/jbc.M202467200] [PMID: 11967267]
[45]
Fonseca, F.; Bromley, E.H.C.; Saavedra, M.J.; Correia, A.; Spencer, J. Crystal structure of Serratia fonticola Sfh-I: Activation of the nucleophile in mono-zinc metallo-β-lactamases. J. Mol. Biol., 2011, 411(5), 951-959.
[http://dx.doi.org/10.1016/j.jmb.2011.06.043] [PMID: 21762699]
[46]
Bebrone, C.; Delbrück, H.; Kupper, M.B.; Schlömer, P.; Willmann, C.; Frère, J-M.; Fischer, R.; Galleni, M.; Hoffmann, K.M.V. The structure of the dizinc subclass B2 metallo-β-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob. Agents Chemother., 2009, 53(10), 4464-4471.
[http://dx.doi.org/10.1128/AAC.00288-09] [PMID: 19651913]
[47]
Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-metallo-β-lactamases: Where do we stand? CDT, 2016, 17(9), 1029-1050.
[http://dx.doi.org/10.2174/1389450116666151001105622] [PMID: 26424398]
[48]
Malabanan, M.M.; Amyes, T.L.; Richard, J.P. A role for flexible loops in enzyme catalysis. Curr. Opin. Struct. Biol., 2010, 20(6), 702-710.
[http://dx.doi.org/10.1016/j.sbi.2010.09.005] [PMID: 20951028]
[49]
Concha, N.O.; Janson, C.A.; Rowling, P.; Pearson, S.; Cheever, C.A.; Clarke, B.P.; Lewis, C.; Galleni, M.; Frère, J-M.; Payne, D.J.; Bateson, J.H.; Abdel-Meguid, S.S. Crystal structure of the IMP-1 metallo β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: Binding determinants of a potent, broad-spectrum inhibitor. Biochemistry, 2000, 39(15), 4288-4298.
[http://dx.doi.org/10.1021/bi992569m] [PMID: 10757977]
[50]
Scrofani, S.D.B.; Chung, J.; Huntley, J.J.A.; Benkovic, S.J.; Wright, P.E.; Dyson, H.J. NMR characterization of the metallo-β-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: Role of an active-site loop. Biochemistry, 1999, 38(44), 14507-14514.
[http://dx.doi.org/10.1021/bi990986t] [PMID: 10545172]
[51]
Chen, Y.; Minasov, G.; Roth, T.A.; Prati, F.; Shoichet, B.K. The deacylation mechanism of AmpC β-lactamase at ultrahigh resolution. J. Am. Chem. Soc., 2006, 128(9), 2970-2976.
[http://dx.doi.org/10.1021/ja056806m] [PMID: 16506777]
[52]
Kato-Toma, Y.; Iwashita, T.; Masuda, K.; Oyama, Y.; Ishiguro, M. pKa measurements from nuclear magnetic resonance of tyrosine-150 in class C beta-lactamase. Biochem. J., 2003, 371(Pt 1), 175-181.
[http://dx.doi.org/10.1042/bj20021447] [PMID: 12513696]
[53]
Tripathi, R.; Nair, N.N. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics. J. Am. Chem. Soc., 2013, 135(39), 14679-14690.
[http://dx.doi.org/10.1021/ja405319n] [PMID: 24010547]
[54]
Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev., 2009, 22(1), 161-182.
[http://dx.doi.org/10.1128/CMR.00036-08] [PMID: 19136439]
[55]
Crichlow, G.V.; Kuzin, A.P.; Nukaga, M.; Mayama, K.; Sawai, T.; Knox, J.R. Structure of the extended-spectrum class C β-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. Biochemistry, 1999, 38(32), 10256-10261.
[http://dx.doi.org/10.1021/bi9908787] [PMID: 10441119]
[56]
Mallo, S.; Pérez-Llarena, F.J.; Kerff, F.; Soares, N.C.; Galleni, M.; Bou, G. A tripeptide deletion in the R2 loop of the class C beta-lactamase enzyme FOX-4 impairs cefoxitin hydrolysis and slightly increases susceptibility to beta-lactamase inhibitors. J. Antimicrob. Chemother., 2010, 65(6), 1187-1194.
[http://dx.doi.org/10.1093/jac/dkq115] [PMID: 20382725]
[57]
Kim, J.Y.; Jung, H.I.; An, Y.J.; Lee, J.H.; Kim, S.J.; Jeong, S.H.; Lee, K.J.; Suh, P-G.; Lee, H-S.; Lee, S.H.; Cha, S-S. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase. Mol. Microbiol., 2006, 60(4), 907-916.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05146.x] [PMID: 16677302]
[58]
Doi, Y.; Wachino, J.; Ishiguro, M.; Kurokawa, H.; Yamane, K.; Shibata, N.; Shibayama, K.; Yokoyama, K.; Kato, H.; Yagi, T.; Arakawa, Y. Inhibitor-sensitive AmpC β-lactamase variant produced by an Escherichia coli clinical isolate resistant to oxyiminocephalosporins and cephamycins. Antimicrob. Agents Chemother., 2004, 48(7), 2652-2658.
[http://dx.doi.org/10.1128/AAC.48.7.2652-2658.2004] [PMID: 15215122]
[59]
Maveyraud, L.; Golemi, D.; Kotra, L.P.; Tranier, S.; Vakulenko, S.; Mobashery, S.; Samama, J-P. Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure, 2000, 8(12), 1289-1298.
[http://dx.doi.org/10.1016/S0969-2126(00)00534-7] [PMID: 11188693]
[60]
De Luca, F.; Benvenuti, M.; Carboni, F.; Pozzi, C.; Rossolini, G.M.; Mangani, S.; Docquier, J-D. Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase OXA-10 by rational protein design. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18424-18429.
[http://dx.doi.org/10.1073/pnas.1110530108] [PMID: 22042844]
[61]
Leonard, D.A.; Bonomo, R.A.; Powers, R.A. Class D β-lactamases: A reappraisal after five decades. Acc. Chem. Res., 2013, 46(11), 2407-2415.
[http://dx.doi.org/10.1021/ar300327a] [PMID: 23902256]
[62]
Santillana, E.; Beceiro, A.; Bou, G.; Romero, A. Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5354-5359.
[http://dx.doi.org/10.1073/pnas.0607557104] [PMID: 17374723]
[63]
Launay, O.; Joly-Guillou, M.L.; Decré, D.; Crémieux, A.C. Beta-lactamase inhibitors. Presse Med., 1997, 26(10), 485-492.
[PMID: 9137377]
[64]
González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem., 2020, 63(5), 1859-1881.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01279] [PMID: 31663735]
[65]
Bush, K.; Bradford, P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[66]
Carcione, D.; Siracusa, C.; Sulejmani, A.; Leoni, V.; Intra, J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics (Basel), 2021, 10(8), 995.
[http://dx.doi.org/10.3390/antibiotics10080995] [PMID: 34439045]
[67]
van den Akker, F.; Bonomo, R.A. Exploring additional dimensions of complexity in inhibitor design for serine β-lactamases: Mechanistic and intra- and inter-molecular chemistry approaches. Front. Microbiol., 2018, 9, 622.
[http://dx.doi.org/10.3389/fmicb.2018.00622] [PMID: 29675000]
[68]
Thomas, V.L.; Golemi-Kotra, D.; Kim, C.; Vakulenko, S.B.; Mobashery, S.; Shoichet, B.K. Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase. Biochemistry, 2005, 44(26), 9330-9338.
[http://dx.doi.org/10.1021/bi0502700] [PMID: 15981999]
[69]
Bush, K. Beta-lactamase inhibitors from laboratory to clinic. Clin. Microbiol. Rev., 1988, 1(1), 109-123.
[http://dx.doi.org/10.1128/CMR.1.1.109] [PMID: 3060240]
[70]
Buynak, J.D. Understanding the longevity of the β-lactam antibiotics and of antibiotic/β-lactamase inhibitor combinations. Biochem. Pharmacol., 2006, 71(7), 930-940.
[http://dx.doi.org/10.1016/j.bcp.2005.11.012] [PMID: 16359643]
[71]
Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol., 2006, 9(5), 466-475.
[http://dx.doi.org/10.1016/j.mib.2006.08.011] [PMID: 16942899]
[72]
Philippon, A.; Labia, R.; Jacoby, G. Extended-spectrum beta-lactamases. Antimicrob. Agents Chemother., 1989, 33(8), 1131-1136.
[http://dx.doi.org/10.1128/AAC.33.8.1131] [PMID: 2679367]
[73]
Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, M.; Guitton, M.; Lampilas, M. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J. Antimicrob. Chemother., 2004, 54(2), 410-417.
[http://dx.doi.org/10.1093/jac/dkh358] [PMID: 15254025]
[74]
Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R-F.; Hu, J.; Kern, G.; Walkup, G.K.; Fisher, S.L. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11663-11668.
[http://dx.doi.org/10.1073/pnas.1205073109] [PMID: 22753474]
[75]
Yang, Y.; Rasmussen, B.A.; Shlaes, D.M. Class A β-lactamases--enzyme-inhibitor interactions and resistance. Pharmacol. Ther., 1999, 83(2), 141-151.
[http://dx.doi.org/10.1016/S0163-7258(99)00027-3] [PMID: 10511459]
[76]
Yadav, T.C.; Agarwal, V.; Srivastava, A.K.; Raghuwanshi, N.; Varadwaj, P.; Prasad, R.; Pruthi, V. Insight into structure-function relationships of β-lactamase and BLIPs interface plasticity using protein-protein interactions. CPD, 2019, 25(31), 3378-3389.
[http://dx.doi.org/10.2174/1381612825666190911154650] [PMID: 31544712]
[77]
Wang, X.; Minasov, G.; Shoichet, B.K. The structural bases of antibiotic resistance in the clinically derived mutant β-lactamases TEM-30, TEM-32, and TEM-34. J. Biol. Chem., 2002, 277(35), 32149-32156.
[http://dx.doi.org/10.1074/jbc.M204212200] [PMID: 12058046]
[78]
Watkins, R.R.; Papp-Wallace, K.M.; Drawz, S.M.; Bonomo, R.A. Novel β-lactamase inhibitors: A therapeutic hope against the scourge of multidrug resistance. Front. Microbiol., 2013, 4, 392.
[http://dx.doi.org/10.3389/fmicb.2013.00392] [PMID: 24399995]
[79]
Doran, J.L.; Leskiw, B.K.; Aippersbach, S.; Jensen, S.E. Isolation and characterization of a beta-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bacteriol., 1990, 172(9), 4909-4918.
[http://dx.doi.org/10.1128/jb.172.9.4909-4918.1990] [PMID: 2203736]
[80]
Strynadka, N.C.J.; Jensen, S.E.; Johns, K.; Blanchard, H.; Page, M.; Matagne, A.; Frère, J-M.; James, M.N.G. Structural and kinetic characterization of a β-lactamase-inhibitor protein. Nature, 1994, 368(6472), 657-660.
[http://dx.doi.org/10.1038/368657a0] [PMID: 8145854]
[81]
Chow, D-C.; Rice, K.; Huang, W.; Atmar, R.L.; Palzkill, T. Engineering specificity from broad to narrow: Design of a β-Lactamase Inhibitory Protein (BLIP) variant that exclusively binds and detects KPC β-lactamase. ACS Infect. Dis., 2016, 2(12), 969-979.
[http://dx.doi.org/10.1021/acsinfecdis.6b00160] [PMID: 27756125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy