Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Association of SARS-CoV-2 Infection and Triple Negative Breast Cancer (TNBC) A Computational Illustrative Study

Author(s): A. M. Hima Vyshnavi and P. K. Krishnan Namboori*

Volume 20, Issue 8, 2023

Published on: 06 October, 2022

Page: [1107 - 1116] Pages: 10

DOI: 10.2174/1570180819666220620101333

Price: $65

Abstract

Background: Anticipating the correlation between SARS-CoV-2 infection and ‘triplenegative breast cancer (TNBC)’ remains challenging. It has been reported that people currently diagnosed with cancer have a higher risk of severe complications if they are affected by the viral infection. Cancer treatments, including chemotherapy, targeted therapies, and immunotherapy, may weaken the immune system and possibly cause critical lung damage and breathing problems. Special attention must be paid to the ‘comorbidity condition’ while estimating the risk of severe SARSCoV- 2 infection in TNBC patients. Hence the work aims to study the correlation between triplenegative breast cancer (TNBC) and SARS-CoV-2 using biomolecular networking.

Methods: The genes associated with SARS CoV-2 have been collected from curated data in Bio- GRID. TNBC-related genes have been collected from expression profiles. Molecular networking has generated a Protein-Protein Interaction (PPI) network and a Protein-Drug Interaction (PDI) network. The network results were further evaluated through molecular docking studies followed by molecular dynamic simulation.

Results: The genetic correlation of TNBC and SARS-Cov-2 has been observed from the combined PPI of their proteins. The drugs interacting with the disease's closely associated genes have been identified. The docking and simulation study showed that anti-TNBC and anti-viral drugs interact with these associated targets, suggesting their influence in inhibiting both the disease mutations.

Conclusion: The study suggests a slight influence of SARS-CoV-2 viral infection on Triple Negative Breast Cancer. Few anticancer drugs such as Lapatinib, Docetaxel and Paclitaxel are found to inhibit both TNBC and viral mutations. The computational studies suggest these molecules are also useful for TNBC patients to control SARS-CoV-2 infection.

Keywords: Covid 19, SARS-CoV-2, BRCA, TNBC, Biomolecular Networking

Graphical Abstract

[1]
Francescangeli, F.; De Angelis, M.L.; Zeuner, A. COVID-19: A potential driver of immune-mediated breast cancer recurrence? Breast Cancer Res., 2020, 22(1), 117.
[http://dx.doi.org/10.1186/s13058-020-01360-0] [PMID: 33126915]
[2]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[3]
Magno, S.; Linardos, M.; Carnevale, S.; Dilucca, M.; Di Leone, A.; Terribile, D.A.; Franceschini, G.; Masetti, R. The impact of the COVID-19 pandemic on breast cancer patients awaiting surgery: Observational survey in an Italian University hospital. Breast J., 2020, 26(8), 1597-1602.
[http://dx.doi.org/10.1111/tbj.13889] [PMID: 32677117]
[4]
Liu, C.; Zhao, Y.; Okwan-Duodu, D.; Basho, R.; Cui, X. COVID-19 in cancer patients: Risk, clinical features, and management. Cancer Biol. Med., 2020, 17(3), 519-527.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0289] [PMID: 32944387]
[5]
Belsky, J.A.; Tullius, B.P.; Lamb, M.G.; Sayegh, R.; Stanek, J.R.; Auletta, J.J. COVID-19 in immunocompromised patients: A systematic review of cancer, hematopoietic cell and solid organ transplant patients. J. Infect., 2021, 82(3), 329-338.
[http://dx.doi.org/10.1016/j.jinf.2021.01.022] [PMID: 33549624]
[6]
Mehta, V.; Goel, S.; Kabarriti, R.; Cole, D.; Goldfinger, M.; Acuna-Villaorduna, A.; Pradhan, K.; Thota, R.; Reissman, S.; Sparano, J.A.; Gartrell, B.A.; Smith, R.V.; Ohri, N.; Garg, M.; Racine, A.D.; Kalnicki, S.; Perez-Soler, R.; Halmos, B.; Verma, A. Case fatality rate of cancer patients with COVID-19 in a new york hospital system. Cancer Discov., 2020, 10(7), 935-941.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0516] [PMID: 32357994]
[7]
Juanjuan, L.; Santa-Maria, C.A.; Hongfang, F.; Lingcheng, W.; Pengcheng, Z.; Yuanbing, X.; Yuyan, T.; Zhongchun, L.; Bo, D.; Meng, L.; Qingfeng, Y.; Feng, Y.; Yi, T.; Shengrong, S.; Xingrui, L.; Chuang, C. Patient-reported outcomes of patients with breast cancer during the COVID-19 outbreak in the epicenter of china: A cross-sectional survey study. Clin. Breast Cancer, 2020, 20(5), e651-e662.
[http://dx.doi.org/10.1016/j.clbc.2020.06.003] [PMID: 32709505]
[8]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[9]
Brown, J.M.; Wasson, M.D.; Marcato, P. Triple-negative breast cancer and the COVID-19 pandemic: Clinical management perspectives and potential consequences of infection. Cancers (Basel), 2021, 13(2), 296.
[http://dx.doi.org/10.3390/cancers13020296] [PMID: 33467411]
[10]
Chen, J.; Xu, H.; Aronow, B.J.; Jegga, A.G. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics, 2007, 8(1), 392.
[http://dx.doi.org/10.1186/1471-2105-8-392] [PMID: 17939863]
[11]
Brown, S.D.M.; Holmes, C.C.; Mallon, A.M.; Meehan, T.F.; Smedley, D.; Wells, S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat. Rev. Genet., 2018, 19(6), 357-370.
[http://dx.doi.org/10.1038/s41576-018-0005-2] [PMID: 29626206]
[12]
Chen, J; Bardes, EE; Aronow, BJ; Jegga, AG ToppGene suite for gene list enrichment analysis and candidate gene prioritization Nucleic Acids, 2009, 37((Web Server issue)), 305-311.
[http://dx.doi.org/10.1093/nar/gkp427]
[13]
Janwa, H.; Massey, S.E.; Velev, J.; Mishra, B. On the origin of biomolecular networks. Front. Genet., 2019, 10, 240.
[http://dx.doi.org/10.3389/fgene.2019.00240] [PMID: 31024611]
[14]
von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 2005, 33(Database issue), D433-D437.
[http://dx.doi.org/10.1093/nar/gki005] [PMID: 15608232]
[15]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res., 2008, 36(Database issue), D684-D688.
[PMID: 18084021]
[16]
Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res., 2006, 34(Database issue), D535-D539.
[http://dx.doi.org/10.1093/nar/gkj109] [PMID: 16381927]
[17]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. Genecards version 3: The human gene integrator. Database (Oxford), 2010, 2010(0), baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[18]
Chen, J.; Aronow, B.J.; Jegga, A.G. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics, 2009, 10(1), 73.
[http://dx.doi.org/10.1186/1471-2105-10-73] [PMID: 19245720]
[19]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape stringapp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[20]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4)(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[21]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue)(Suppl. 1), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[22]
Gan, Y.; Zheng, S.; Baak, J.P.; Zhao, S.; Zheng, Y.; Luo, N.; Liao, W.; Fu, C. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis. Acta Pharm. Sin. B, 2015, 5(6), 590-595.
[http://dx.doi.org/10.1016/j.apsb.2015.09.005] [PMID: 26713275]
[23]
Hima Vyshnavi, A.M.P. K Krishnan Namboori. Design and development of a pharmacogenomic model for breast cancer to study the variation in drug action and side effects. International Journal of Applied Pharmaceutics, 2022, 14(3)
[24]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[25]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[27]
Sangeetha, M.; Saranya, T.S.; Sathianarayanan, S.; Hima Vyshnavi, A.M.; Krishnan Namboori, P.K. Design and development of potential flavonoid moiety for pbp2a inhibition for mrsa therapy-a computational technique. Biomed. Pharmacol. J., 2020, 13(2), 687-692.
[http://dx.doi.org/10.13005/bpj/1933]
[28]
Siniprasad, P.N.; Nair, B.; Balasubramaniam, V.; Sadanandan, P.; Namboori, P.K.; Nath, L.R. Evaluation of kaempferol as akt dependent mtor regulator via targeting fkbp-12 in hepatocellular carcinoma: An in silico approach. Lett. Drug Des. Discov., 2020, 17(11), 1404-1408.
[http://dx.doi.org/10.2174/1570180817999200623115703]
[29]
Pereira, N.L.; Aksoy, P.; Moon, I.; Peng, Y.; Redfield, M.M.; Burnett, J.C., Jr; Wieben, E.D.; Yee, V.C.; Weinshilboum, R.M. Natriuretic peptide pharmacogenetics: Membrane metallo-endopeptidase (MME): Common gene sequence variation, functional characterization and degradation. J. Mol. Cell. Cardiol., 2010, 49(5), 864-874.
[http://dx.doi.org/10.1016/j.yjmcc.2010.07.020] [PMID: 20692264]
[30]
Gunalan, S.; Somarathinam, K.; Bhattacharya, J.; Srinivasan, S.; Jaimohan, S.M.; Manoharan, R.; Ramachandran, S.; Kanagaraj, S.; Kothandan, G. Understanding the dual mechanism of bioactive peptides targeting the enzymes involved in renin angiotensin system (RAS): An in-silico approach. J. Biomol. Struct. Dyn., 2020, 38(17), 5044-5061.
[http://dx.doi.org/10.1080/07391102.2019.1695668] [PMID: 31755358]
[31]
Kirby, M.; Yu, D.; O’Connor, S.; Gorrell, M. Inhibitor selectivity in clinical application of DPP-4 inhibition. Clin. Sci. (Lond.), 2010, 1979(118), 31-41.
[http://dx.doi.org/10.1042/CS20090047]
[32]
Yan, Y.; Zhou, A.; Carrell, R.W.; Read, R.J. Structural basis for the specificity of renin-mediated angiotensinogen cleavage. J. Biol. Chem., 2019, 294(7), 2353-2364.
[http://dx.doi.org/10.1074/jbc.RA118.006608] [PMID: 30563843]
[33]
Rama, M.; Bonavida, B. Identification of regulatory crosstalks between RKIP and BRCA1 tumor suppressors in healthy tissues and cancer (breast and ovarian). In: Therapeutic implications; Prognostic and Therapeutic Applications of RKIP in Cancer, 2020; pp. 75-209.
[34]
Aertgeerts, K.; Skene, R.; Yano, J.; Sang, B.C.; Zou, H.; Snell, G.; Jennings, A.; Iwamoto, K.; Habuka, N.; Hirokawa, A.; Ishikawa, T.; Tanaka, T.; Miki, H.; Ohta, Y.; Sogabe, S. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem., 2011, 286(21), 18756-18765.
[http://dx.doi.org/10.1074/jbc.M110.206193] [PMID: 21454582]
[35]
Hulo, N.; Bairoch, A.; Bulliard, V.; Cerutti, L.; Cuche, B.A.; de Castro, E.; Lachaize, C.; Langendijk-Genevaux, P.S.; Sigrist, C.J.A. The 20 years of prosite. Nucleic Acids Res., 2008, 36(Database issue), D245-D249.
[PMID: 18003654]

© 2024 Bentham Science Publishers | Privacy Policy