[1]
Milgrom, L. The colors of life: An introduction to the chemistry of porphyrin and related compounds; Oxford University Press: New York, 1997.
[2]
Senge, M.O.; Sergeeva, N.N.; Hale, K.J. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem. Soc. Rev., 2021, 50(7), 4730-4789.
[http://dx.doi.org/10.1039/c7cs00719a.]
[http://dx.doi.org/10.1039/c7cs00719a.]
[3]
Vicente, M.G.; Smith, K. Porphyrins and derivatives synthetic strategies and reactivity profiles. Curr. Org. Chem., 2000, 4(2), 139-174.
[http://dx.doi.org/10.2174/1385272003376346.]
[http://dx.doi.org/10.2174/1385272003376346.]
[4]
Fischer, H.; Zeile, K. Synthese des hämatoporphyrins, protoporphyrins und hämins. Justus Liebigs Ann. Chem., 1929, 468(1), 98-116.
[http://dx.doi.org/10.1002/jlac.19294680104.]
[http://dx.doi.org/10.1002/jlac.19294680104.]
[5]
Woodward, R.B.; Ayer, W.A.; Beaton, J.M.; Bickelhaupt, F.; Bonnett, R.; Buchschacher, P.; Closs, G.L.; Dutler, H.; Hannah, J.; Hauck, F.P. ; et al. The total synthesis of chlorophyll. J. Am. Chem. Soc., 1960, 82(14), 3800-3802.
[http://dx.doi.org/10.1021/ja01499a093.]
[http://dx.doi.org/10.1021/ja01499a093.]
[6]
Eschenmoser, A. Corrin syntheses. Part I. Helv. Chim. Acta, 2015, 98(11-12), 1483-1600.
[http://dx.doi.org/10.1002/hlca.201400277.]
[http://dx.doi.org/10.1002/hlca.201400277.]
[7]
Lindsey, J.S.; Wagner, R.W. Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J. Org. Chem., 1989, 54(4), 828-836.
[http://dx.doi.org/10.1021/jo00265a021.]
[http://dx.doi.org/10.1021/jo00265a021.]
[8]
Lindsey, J.S.; Woodford, J.N. A simple method for preparing magnesium porphyrins. Inorg. Chem., 1995, 34(5), 1063-1069.
[http://dx.doi.org/10.1021/ic00109a011.]
[http://dx.doi.org/10.1021/ic00109a011.]
[9]
Taniguchi, M.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Comprehensive Review of photophysical parameters (ε, Φf, Τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) - critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol. Chem., 2021, 46, 100401.
[http://dx.doi.org/10.1016/j.jphotochemrev.2020.100401.]
[http://dx.doi.org/10.1016/j.jphotochemrev.2020.100401.]
[10]
Park, J.M.; Lee, J.H.; Jang, W-D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev., 2020, 407, 213157.
[http://dx.doi.org/10.1016/j.ccr.2019.213157.]
[http://dx.doi.org/10.1016/j.ccr.2019.213157.]
[11]
Lu, Y.; Cheng, Y.; Li, C.; Luo, J.; Tang, W.; Zhao, S.; Liu, Q.; Xie, Y. Efficient solar cells based on cosensitizing porphyrin dyes containing a wrapped donor, a wrapped π-framework and a substituted benzothiadiazole unit. Sci. China Chem., 2019, 62(8), 994-1000.
[http://dx.doi.org/10.1007/s11426-019-9471-y.]
[http://dx.doi.org/10.1007/s11426-019-9471-y.]
[12]
Guo, X.; Liu, F.; Yue, W.; Xie, Z.; Geng, Y.; Wang, L. Efficient tandem polymer photovoltaic cells with two subcells in parallel connection. Org. Electron., 2009, 10(6), 1174-1177.
[http://dx.doi.org/10.1016/j.orgel.2009.06.010.]
[http://dx.doi.org/10.1016/j.orgel.2009.06.010.]
[13]
Zeng, K.; Tang, W.; Li, C.; Chen, Y.; Zhao, S.; Liu, Q.; Xie, Y. Systematic optimization of the substituents on the phenothiazine donor of doubly strapped porphyrin sensitizers: an efficiency over 11% unassisted by any cosensitizer or coadsorbent. J. Mater. Chem. A, 2019, 7(36), 20854-20860.
[http://dx.doi.org/10.1039/c9ta06911a.]
[http://dx.doi.org/10.1039/c9ta06911a.]
[14]
Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Natale, C.D. Porphyrinoids for chemical sensor applications. Chem. Rev., 2017, 117(4), 2517-2583.
[http://dx.doi.org/10.1021/acs.chemrev.6b00361.]
[http://dx.doi.org/10.1021/acs.chemrev.6b00361.]
[15]
Ding, Y.; Zhu, W-H.; Xie, Y. Development of ion chemosensors based on porphyrin analogues. Chem. Rev., 2017, 117(4), 2203-2256.
[http://dx.doi.org/10.1021/acs.chemrev.6b00021.]
[http://dx.doi.org/10.1021/acs.chemrev.6b00021.]
[16]
Norvaiša, K.; Kielmann, M.; Senge, M.O. Porphyrins as colorimetric and photometric biosensors in modern bioanalytical systems. ChemBioChem, 2020, 21(13), 1793-1807.
[http://dx.doi.org/10.1002/cbic.202000067.]
[http://dx.doi.org/10.1002/cbic.202000067.]
[17]
Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics, 2012, 2(9), 916-966.
[http://dx.doi.org/10.7150/thno.4571.]
[http://dx.doi.org/10.7150/thno.4571.]
[18]
Khurana, B.; Gierlich, P.; Meindl, A.; Gomes-da-Silva, L.C.; Senge, M.O. Hydrogels: soft matters in photomedicine. Photochem. Photobio. S., 2019, 18(11), 2613-2656.
[http://dx.doi.org/10.1039/c9pp00221a.]
[http://dx.doi.org/10.1039/c9pp00221a.]
[19]
Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials, 2013, 6(3), 817-840.
[http://dx.doi.org/10.3390/ma6030817.]
[http://dx.doi.org/10.3390/ma6030817.]
[20]
Rajora, M.A.; Lou, J.W.H.; Zheng, G. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem. Soc. Rev., 2017, 46(21), 6433-6469.
[http://dx.doi.org/10.1039/c7cs00525c.]
[http://dx.doi.org/10.1039/c7cs00525c.]