Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Facile Synthesis of Three Types of Mesoporous Silica Microspheres as Drug Delivery Carriers and their Sustained-Release Properties

Author(s): Yameng Zhu, Boyao Wang, Jian Chen, Jun He* and Xilong Qiu*

Volume 20, Issue 9, 2023

Published on: 27 September, 2022

Page: [1337 - 1350] Pages: 14

DOI: 10.2174/1567201819666220616121602

Price: $65

Abstract

Background: Mesoporous silica nanoparticles (MSNs) are one of the most promising carriers for drug delivery. MSNs have been widely used in pharmaceutical research as drug carriers because of their large pore volume, high surface area, excellent biocompatibility, nontoxicity, ease to functionalize, and sustained release effects. MSNs have attracted much attention during drug delivery because of their special structure.

Objective: The present study aimed to synthesize mesoporous silica nanoparticles (MSNs), dendritic mesoporous silica nanoparticles (DMSN), and hollow mesoporous silica nanoparticles (HMSN) through facile methods, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug.

Methods: MSN, DMSN, and HMSN were characterized by SEM, TEM, FT-IR, nitrogen adsorptiondesorption isotherms, XRD, and zeta potential methods. Subsequently, puerarin (PUE) was used as the active ingredient and loaded into the three mesoporous materials, respectively. And, the drug delivery behavior was measured in PBS solution with different pH values. The sustained-release properties of MSN, DMSN, and HMSN loaded with PUE were investigated. Finally, the biocompatibility and stability of MSN, DMSN, and HMSN were studied by MTT assay and hemolysis assay.

Results: Our results showed that MSN, DMSN, and HMSN were successfully synthesized and the three types of mesoporous silica nanoparticles had higher drug loading and encapsulation efficiency. According to the first-order release equation curve and Higuchi equation parameters, the results showed that the PUE-loaded MSN, DMSN, and HMSN exhibited sustained-release properties. Finally, MTT and hemolysis methods displayed that MSN, DMSN, and HMSN had good biocompatibility and stability.

Conclusion: In this study, MSN, DMSN, and HMSN were successfully synthesized, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug, we provided a theoretical and practical basis for the application of PUE.

Keywords: DMSN, HMSN, MSN, PUE, drug delivery, sustained-release.

Graphical Abstract

[1]
Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R.F. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater., 2018, 9(1), E13.
[http://dx.doi.org/10.3390/jfb9010013] [PMID: 29364833]
[2]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[3]
Asgari, M.; Soleymani, M.; Miri, T.; Barati, A. A robust method for fabrication of monodisperse magnetic mesoporous silica nanoparticles with core-shell structure as anticancer drug carriers. J. Mol. Liq., 2019, 292, 111367.
[http://dx.doi.org/10.1016/j.molliq.2019.111367]
[4]
Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L. Functionalized single-walled carbon nanotubes: Cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.017] [PMID: 28300630]
[5]
Luo, W.; Xu, X.; Zhou, B.; He, P.; Li, Y.; Liu, C. Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Mater. Sci. Eng. C, 2019, 100, 855-861.
[http://dx.doi.org/10.1016/j.msec.2019.03.028] [PMID: 30948123]
[6]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
[http://dx.doi.org/10.1021/ja00053a020]
[7]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[8]
Wang, Y.; Ke, J.; Gou, K.; Guo, Y.; Xu, X.; Li, S.; Li, H. Amino functionalized mesoporous silica with twisted rod-like shapes: Synthetic design, in vitro and in vivo evaluation for ibuprofen delivery. Microporous Mesoporous Mater., 2020, 294, 294.
[http://dx.doi.org/10.1016/j.micromeso.2019.109896]
[9]
Bremmell, K.E.; Prestidge, C.A. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: Opportunities and challenges. Drug Dev. Ind. Pharm., 2019, 45(3), 349-358.
[http://dx.doi.org/10.1080/03639045.2018.1542709] [PMID: 30411991]
[10]
Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 2013, 25(23), 3144-3176.
[http://dx.doi.org/10.1002/adma.201205292] [PMID: 23681931]
[11]
Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous silica nanoparticles in medicine recent advances. Adv. Drug Deliv. Rev., 2013, 65(5), 689-702.
[http://dx.doi.org/10.1016/j.addr.2012.07.018] [PMID: 22921598]
[12]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[13]
Valtchev, V.; Tosheva, L. Porous nanosized particles: Preparation, properties, and applications. Chem. Rev., 2013, 113(8), 6734-6760.
[http://dx.doi.org/10.1021/cr300439k] [PMID: 23705950]
[14]
Chen, C.; Zheng, H.; Xu, J.; Shi, X.; Li, F.; Wang, X. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: In vitro characterization and in vivo evaluation. Daru, 2017, 25(1), 20.
[http://dx.doi.org/10.1186/s40199-017-0186-9] [PMID: 28870261]
[15]
Siminzar, P.; Omidi, Y.; Golchin, A.; Aghanejad, A.; Barar, J. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. J. Drug Target., 2020, 28(1), 92-101.
[http://dx.doi.org/10.1080/1061186X.2019.1616745] [PMID: 31062625]
[16]
Hashemzadeh, N.; Aghanejad, A.; Dalir Abdolahinia, E.; Dolatkhah, M.; Barzegar-Jalali, M.; Omidi, Y.; Barar, J.; Adibkia, K. Targeted combined therapy in 2D and 3D cultured MCF-7 cells using metformin and erlotinib-loaded mesoporous silica magnetic nanoparticles. J. Microencapsul., 2021, 38(7-8), 472-485.
[http://dx.doi.org/10.1080/02652048.2021.1979672] [PMID: 34511038]
[17]
Hong, S.; Shen, S.; Tan, D.C.; Ng, W.K.; Liu, X.; Chia, L.S.; Irwan, A.W.; Tan, R.; Nowak, S.A.; Marsh, K.; Gokhale, R. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: A comparison of spray drying versus solvent impregnation methods. Drug Deliv., 2016, 23(1), 316-327.
[http://dx.doi.org/10.3109/10717544.2014.913323] [PMID: 24853963]
[18]
Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomedicine, 2017, 12, 8801-8811.
[http://dx.doi.org/10.2147/IJN.S149717] [PMID: 29263669]
[19]
Wei, Q.; Keck, C.M.; Müller, R.H. Preparation and tableting of long-term stable amorphous rutin using porous silica. Eur. J. Pharm. Biopharm., 2017, 113, 97-107.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.009] [PMID: 27847275]
[20]
Li, X.; Zhang, X.; Zhao, Y.; Sun, L. Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. J. Inorg. Biochem., 2020, 202, 110887.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110887] [PMID: 31670257]
[21]
Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv., 2019, 16(3), 219-237.
[http://dx.doi.org/10.1080/17425247.2019.1575806] [PMID: 30686075]
[22]
Shao, M.; Chang, C.; Liu, Z.; Chen, K.; Zhou, Y.; Zheng, G.; Huang, Z.; Xu, H.; Xu, P.; Lu, B. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf. B Biointerfaces, 2019, 183, 110427.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110427] [PMID: 31408782]
[23]
Tzankov, B.; Tzankova, V.; Aluani, D.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Avramova, K.; Valoti, M.; Yoncheva, K. Development of MCM-41 mesoporous silica nanoparticles as a platform for pramipexole delivery. J. Drug Deliv. Sci. Technol., 2019, 51, 26-35.
[http://dx.doi.org/10.1016/j.jddst.2019.02.008]
[24]
Dening, T.J.; Taylor, L.S. Supersaturation potential of ordered mesoporous silica delivery systems. Part 1: dissolution performance and drug membrane transport rates. Mol. Pharm., 2018, 15(8), 3489-3501.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00488] [PMID: 29985627]
[25]
Saffari, M.; Ebrahimi, A.; Langrish, T. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur. J. Pharm. Sci., 2016, 83, 52-61.
[http://dx.doi.org/10.1016/j.ejps.2015.12.016] [PMID: 26687442]
[26]
Yan, Q.; Guo, X.; Huang, X.; Meng, X.; Liu, F.; Dai, P.; Wang, Z.; Zhao, Y. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Appl. Mater. Interfaces, 2019, 11(27), 24377-24385.
[http://dx.doi.org/10.1021/acsami.9b04142] [PMID: 31195793]
[27]
Huang, C.; Zhang, Z.; Guo, Q.; Zhang, L.; Fan, F.; Qin, Y.; Wang, H.; Zhou, S.; Ou-Yang, W.; Sun, H.; Leng, X.; Pan, X.; Kong, D.; Zhang, L.; Zhu, D. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy. Adv. Healthc. Mater., 2019, 8(19), e1900840.
[http://dx.doi.org/10.1002/adhm.201900840] [PMID: 31512403]
[28]
Gou, K.; Wang, Y.; Guo, X.; Wang, Y.; Bian, Y.; Zhao, H.; Guo, Y.; Pang, Y.; Xie, L.; Li, S.; Li, H. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs. Acta Biomater., 2021, 134, 576-592.
[http://dx.doi.org/10.1016/j.actbio.2021.07.023] [PMID: 34280558]
[29]
Amin, M.U.; Ali, S.; Ali, M.Y.; Tariq, I.; Nasrullah, U.; Pinnapreddy, S.R.; Wölk, C.; Bakowsky, U.; Brüßler, J. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 2021, 165, 31-40.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.020] [PMID: 33962002]
[30]
Zhou, J.; Zhu, F.; Li, J.; Wang, Y. Concealed body mesoporous silica nanoparticles for orally delivering indometacin with chiral recognition function. Mater. Sci. Eng. C, 2018, 90, 314-324.
[http://dx.doi.org/10.1016/j.msec.2018.04.071] [PMID: 29853097]
[31]
Yen, M.C.; Huang, Y.C.; Kan, J.Y.; Kuo, P.L.; Hou, M.F.; Hsu, Y.L. S100B expression in breast cancer as a predictive marker for cancer metastasis. Int. J. Oncol., 2018, 52(2), 433-440.
[PMID: 29345293]
[32]
Yu, F.; Wu, H.; Tang, Y.; Xu, Y.; Qian, X.; Zhu, W. Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system. Int. J. Pharm., 2018, 536(1), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.025] [PMID: 29146540]
[33]
Lainé, A.L.; Price, D.; Davis, J.; Roberts, D.; Hudson, R.; Back, K.; Bungay, P.; Flanagan, N. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int. J. Pharm., 2016, 512(1), 118-125.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.034] [PMID: 27543354]
[34]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[35]
Tarighatnia, A.; Abdkarimi, M.H.; Nader, N.D.; Mehdipour, T.; Fouladi, M.R.; Aghanejad, A.; Ghadiri, H. Mucin-16 targeted mesoporous nano-system for evaluation of cervical cancer via dual-modal computed tomography and ultrasonography. New J. Chem., 2021, 45(40), 18871-18880.
[http://dx.doi.org/10.1039/D1NJ04123A]
[36]
Park, W.; Na, K. Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 494-508.
[http://dx.doi.org/10.1002/wnan.1325] [PMID: 25583540]
[37]
Sábio, R.M.; Meneguin, A.B.; Ribeiro, T.C.; Silva, R.R.; Chorilli, M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int. J. Pharm., 2019, 564, 379-409.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.067] [PMID: 31028801]
[38]
Hashemzadeh, N.; Dolatkhah, M.; Aghanejad, A.; Barzegar-Jalali, M.; Omidi, Y.; Adibkia, K.; Barar, J. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine (Lond.), 2021, 16(24), 2137-2154.
[http://dx.doi.org/10.2217/nnm-2021-0176] [PMID: 34530630]
[39]
Chen, R.; Xue, J.; Xie, M. Puerarin prevents isoprenaline-induced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression. J. Nutr. Biochem., 2012, 23(9), 1080-1085.
[http://dx.doi.org/10.1016/j.jnutbio.2011.05.015] [PMID: 22079205]
[40]
Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res., 2014, 28(7), 961-975.
[http://dx.doi.org/10.1002/ptr.5083] [PMID: 24339367]
[41]
Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol., 2011, 134(3), 584-607.
[http://dx.doi.org/10.1016/j.jep.2011.02.001] [PMID: 21315814]
[42]
Luo, C.F.; Yuan, M.; Chen, M.S.; Liu, S.M.; Huang, B.Y.; Liu, X.W.; Zhu, L. Determination of puerarin in rat plasma by rapid resolution liquid chromatography tandem mass spectrometry in positive ionization mode. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(19), 1497-1501.
[http://dx.doi.org/10.1016/j.jchromb.2011.03.035] [PMID: 21511546]
[43]
Wu, H.; Lu, C.; Zhou, A.; Min, Z.; Zhang, Y. Enhanced oral bioavailability of puerarin using microemulsion vehicle. Drug Dev. Ind. Pharm., 2009, 35(2), 138-144.
[http://dx.doi.org/10.1080/03639040801973495] [PMID: 19040180]
[44]
Li, Q.L.; Sun, Y.; Sun, Y.L.; Wen, J.; Zhou, Y.; Bing, Q.M.; Isaacs, L.D.; Jin, Y.; Gao, H.; Yang, Y.W. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem. Mater., 2014, 26(22), 6418-6431.
[http://dx.doi.org/10.1021/cm503304p] [PMID: 25620848]
[45]
Guo, Z.; Wu, L.; Wang, Y.; Zhu, Y.; Wan, G.; Li, R.; Zhang, Y.; Qian, D.; Wang, Y.; Zhou, X.; Liu, Z.; Yang, X. Design of dendritic large-pore mesoporous silica nanoparticles with controlled structure and formation mechanism in dual-templating strategy. ACS Appl. Mater. Interfaces, 2020, 12(16), 18823-18832.
[http://dx.doi.org/10.1021/acsami.0c00596] [PMID: 32182415]
[46]
Li, T.; Geng, T.; Md, A.; Banerjee, P.; Wang, B. Novel scheme for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) and their application as an efficient delivery carrier for oral bioavailability improvement of poorly water-soluble BCS type II drugs. Colloids Surf. B Biointerfaces, 2019, 176, 185-193.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.004] [PMID: 30616109]
[47]
Slowing, I.I.; Wu, C.W.; Vivero-Escoto, J.L.; Lin, V.S. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small, 2009, 5(1), 57-62.
[http://dx.doi.org/10.1002/smll.200800926] [PMID: 19051185]
[48]
Wang, J.; Zhu, R.; Sun, X.; Zhu, Y.; Liu, H.; Wang, S.L. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int. J. Nanomedicine, 2014, 9, 3987-3998.
[http://dx.doi.org/10.2147/IJN.S64103] [PMID: 25187702]
[49]
Zargar, M.; Hartanto, Y.; Jin, B.; Dai, S. Hollow mesoporous silica nanoparticles: A peculiar structure for thin film nanocomposite membranes. J. Membr. Sci., 2016, 519, 1-10.
[http://dx.doi.org/10.1016/j.memsci.2016.07.052]
[50]
Allahham, A.; Stewart, P.J.; Das, S.C. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder. Int. J. Pharm., 2013, 457(1), 101-109.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.030] [PMID: 24080334]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy