Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Modeling the Influence of Extraction Parameters on the Recovery of Antioxidant Compounds of Microwave Extracted Citrus (Citrus reticulata) Peel by Response Surface Methodology

Author(s): Erryana Martati*, Dwiyani P. Utari and Siti N. Wulan

Volume 18, Issue 8, 2022

Published on: 10 August, 2022

Page: [914 - 925] Pages: 12

DOI: 10.2174/1573411018666220616111017

Price: $65

Abstract

Background: Microwave-assisted extraction (MAE) is a green extraction technology that saves both in energy and time and that bioactive compounds can be extracted without loss as much as in traditional extraction methods.

Objectives: This study aims to optimize the MAE process for maximizing the recovery of antioxidant compounds of flavonoids and the activity of radical scavenging of DPPH (2,2-diphenyl-1-picrylhydrazyl) from citrus peels (CP).

Methods: The modeling used Box-Behnken Design (BBD) experimental design for optimizing three extraction parameters of time (5, 15, and 25 min), ethanol concentration (50%, 70%, and 90%), and extraction temperature (55, 65, and 75°C). UHPLC-MS analysis was performed to identify the qualitative flavonoid content in the extract.

Results: Our results showed that the optimum MAE conditions that maximize the total flavonoid content and antioxidant activity of the CP extract were extraction time of 16.87 min, 50% ethanol, and temperature at 75°C. The obtained CP extract had a TFC of 14.10 mg QE/g and antioxidant activity of 51.52%, which was in line with the predicted values. Flavonoids of neohesperidin, naringin, hesperidin, narirutin, and nobiletin were identified in the extract of CP.

Conclusion: The ethanolic extract of CP was confirmed to have high flavonoids content with potent antioxidant activity.

Keywords: Citrus peel, microwave-assisted extraction, flavonoid, antioxidant, response surface method, respiratory syncytial virus.

Graphical Abstract

[1]
Li, S.; Wang, H.; Guo, L.; Zhao, H.; Ho, C-T. Chemistry, and bioactivity of nobiletin and its metabolites. J. Funct. Foods, 2014, 6, 2-10.
[http://dx.doi.org/10.1016/j.jff.2013.12.011]
[2]
Manthey, J.A.; Grohmann, K.; Guthrie, N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem., 2001, 8(2), 135-153.
[http://dx.doi.org/10.2174/0929867013373723] [PMID: 11172671]
[3]
Wang, Y-C.; Chuang, Y-C.; Hsu, H-W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem., 2008, 106(1), 277-284.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.086]
[4]
Rawson, N.E.; Ho, C-T.; Li, S. Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci. Hum. Wellness, 2014, 3(3), 104-109.
[http://dx.doi.org/10.1016/j.fshw.2014.11.001]
[5]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: A review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[6]
Assini, J.M.; Mulvihill, E.E.; Huff, M.W. Citrus flavonoids and lipid metabolism. Curr. Opin. Lipidol., 2013, 24(1), 34-40.
[http://dx.doi.org/10.1097/MOL.0b013e32835c07fd] [PMID: 23254473]
[7]
Ling, Y.; Shi, Z.; Yang, X.; Cai, Z.; Wang, L.; Wu, X.; Ye, A.; Jiang, J. Hypolipidemic effect of pure total flavonoids from peel of Citrus (PTFC) on hamsters of hyperlipidemia and its potential mechanism. Exp. Gerontol., 2020, 130, 110786.
[http://dx.doi.org/10.1016/j.exger.2019.110786] [PMID: 31760082]
[8]
Saito, T.; Abe, D.; Nogata, Y. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B. Biochem. Biophys. Res. Commun., 2015, 456(3), 799-803.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.027] [PMID: 25511703]
[9]
Xu, J-J.; Wu, X.; Li, M-M.; Li, G-Q.; Yang, Y-T.; Luo, H-J.; Huang, W-H.; Chung, H.Y.; Ye, W-C.; Wang, G-C.; Li, Y-L. Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of citrus reticulata ‘Chachi’. J. Agric. Food Chem., 2014, 62(10), 2182-2189.
[http://dx.doi.org/10.1021/jf404310y] [PMID: 24377463]
[10]
Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal., 2017, 25(3), 488-500.
[http://dx.doi.org/10.1016/j.jfda.2016.07.010] [PMID: 28911634]
[11]
M’hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M. Extraction methods of citrus peel phenolic compounds. Food Rev. Int., 2014, 30(4), 265-290.
[http://dx.doi.org/10.1080/87559129.2014.924139]
[12]
M’Hiri, N.; Irina, I.; Cédric, P.; Ghoul, M.; Boudhrioua, N. Antioxidants of Maltease orange peel: Comparative investigation of the efficiency of four extraction methods. J. Appl. Pharm. Sci., 2017, 7(11), 126-135.
[13]
Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process., 2019, 137, 1-11.
[http://dx.doi.org/10.1016/j.cep.2019.01.006]
[14]
Inoue, T.; Tsubaki, S.; Ogawa, K.; Onishi, K.; Azuma, J. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chem., 2010, 123(2), 542-547.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.051]
[15]
Terigar, B.G.; Balasubramanian, S.; Boldor, D.; Xu, Z.; Lima, M.; Sabliov, C.M. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation. Bioresour. Technol., 2010, 101(7), 2466-2471.
[http://dx.doi.org/10.1016/j.biortech.2009.11.039] [PMID: 20018507]
[16]
Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from Citrus mandarin peels and evaluation of antioxidant activity in vitro. Separ. Purif. Tech., 2009, 70(1), 63-70.
[http://dx.doi.org/10.1016/j.seppur.2009.08.012]
[17]
Ahmad, J.; Langrish, T.A.G. Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J. Food Eng., 2012, 109(1), 162-174.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.017]
[18]
Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng., 2005, 71(2), 214-222.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.10.036]
[19]
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front Chem., 2020, 8, 507887-507887.
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[20]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[21]
Gabriel, C.; Gabriel, S.H.; Grant, E.H.; Grant, E.S.J.; Halstead, B.; Michael, P.; Mingos, D. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27(3), 213-224.
[http://dx.doi.org/10.1039/a827213z]
[22]
Jin, C.; Wei, X.; Yang, S.; Yao, L.; Gong, G. Microwave-assisted extraction and antioxidant activity of flavonoids from Sedum aizoon leaves. Food Sci. Technol. Res., 2017, 23(1), 111-118.
[http://dx.doi.org/10.3136/fstr.23.111]
[23]
Alias, N.; Abbas, Z. Microwave-assisted extraction of phenolic compound from pineapple skins: The optimum operating condition and comparison with soxhlet extraction. Malays. J. Anal. Sci., 2017, 21(3), 690-699.
[24]
Mendes, M.; Carvalho, A.P.; Magalhães, J.M.C.S.; Moreira, M.; Guido, L.; Gomes, A.M.; Delerue-Matos, C. Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innov. Food Sci. Emerg. Technol., 2016, 33, 319-326.
[http://dx.doi.org/10.1016/j.ifset.2015.12.025]
[25]
Breig, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today Proc., 2021, 42, 2277-2284.
[http://dx.doi.org/10.1016/j.matpr.2020.12.316]
[26]
Martati, E.; Ciptadi, P.P. Extraction of baby java citrus (Citrus sinensis (L) Osbeck) peel by microwave-assisted extraction. IOP Conf. Ser. Earth Environ. Sci., 2020, 443(1), 012020.
[http://dx.doi.org/10.1088/1755-1315/443/1/012020]
[27]
Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A-S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem., 2010, 119(2), 851-858.
[http://dx.doi.org/10.1016/j.foodchem.2009.08.046]
[28]
Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci., 2018, 17(4), 351-358.
[http://dx.doi.org/10.1016/j.jssas.2016.07.006]
[29]
Xiao, W.; Han, L.; Shi, B. Optimization of microwave-assisted extraction of flavonoid from Radix astragali using response surface meth-odology. Sep. Sci. Technol., 2008, 43(3), 671-681.
[http://dx.doi.org/10.1080/01496390701812509]
[30]
Wang, C.; Li, Z.; Li, F.; Chen, M.; Wang, Y.; Li, Y.; He, D. Optimization of microwave-assisted extraction conditions for total flavonoids in Toona sinensis leaves using response surface methodology. Int. J. Food Eng., 2012, 8(4)
[http://dx.doi.org/10.1515/1556-3758.1933]
[31]
Zhang, H-F.; Zhang, X.; Yang, X-H.; Qiu, N-X.; Wang, Y.; Wang, Z-Z. Microwave-assisted extraction of flavonoids from cultivated Epimedium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Ind. Crops Prod., 2013, 50, 857-865.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.017]
[32]
Xie, J-H.; Dong, C.J.; Nie, S-P.; Li, F.; Wang, Z-J.; Shen, M-Y.; Xie, M-Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem., 2015, 186, 97-105.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.106] [PMID: 25976797]
[33]
Almusallam, I.A.; Mohamed Ahmed, I.A.; Babiker, E.E.; Al Juhaimi, F.Y.; Fadimu, G.J.; Osman, M.A.; Al Maiman, S.A.; Ghafoor, K.; Alqah, H.A.S. Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. Lebensm. Wiss. Technol., 2021, 140, 110816.
[http://dx.doi.org/10.1016/j.lwt.2020.110816]
[34]
Zhang, B.; Yang, R.; Liu, C-Z. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Separ. Purif. Tech., 2008, 62(2), 480-483.
[http://dx.doi.org/10.1016/j.seppur.2008.02.013]
[35]
Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 2007, 81(1), 200-208.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021]
[36]
Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A, 2007, 1140(1-2), 29-34.
[http://dx.doi.org/10.1016/j.chroma.2006.11.040] [PMID: 17141250]
[37]
Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem., 2017, 218, 15-21.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.016] [PMID: 27719891]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy