Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

MurF Ligase Inhibitors: An Overview of Antibacterial Activity

Author(s): Anjali Singh and Mohammed Afzal Azam*

Volume 20, Issue 11, 2023

Published on: 29 August, 2022

Page: [1675 - 1687] Pages: 13

DOI: 10.2174/1570180819666220615092036

Price: $65

Abstract

ATP dependent MurC-F ligases are essential for the biosynthesis of peptidoglycan, an essential bacterial cell wall component that is required for bacterial cell survival. Last, in the series, MurF catalyzes the ATP-dependent addition of D-Ala-D-Ala dipeptide to UDP-N-acetylmuramyl-tripeptide to form the UDP-N-acetylmuramy-pentapeptide monomeric precursor of peptidoglycan. Owing to its critical essentiality in peptidoglycan biosynthesis and absence in eukaryotic counterparts, MurF is considered a promising target for the design and development of potent antibacterial agents. Several MurF inhibitors have been designed and evaluated for their MurF inhibitory and antibacterial activity. These include aminoalkylphosphinates, sulfonamides, diarylquinolones, hydroxylamines, phosphorylated hydroxylamines, thiazolylaminopyrimidines, 2,4,6-trisubstituted 1,3,5-triazines, etc. However, most of the inhibitors developed till date lack potent antibacterial activity against both Gram-positive and Gram-negative bacteria. In the present review, an updated status of MurF ligase inhibitors is presented that may provide a useful source for the design of novel MurF inhibitors with potent and broad-spectrum antibacterial activity.

Keywords: MurF enzyme, antibacterial activity, MIC, IC50, aminoalkylphosphinates, phosphorylated hydroxylamines, azastilbene derivatives.

Next »
Graphical Abstract

[1]
Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res., 2005, 36(6), 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[2]
Nathan, C.; Cars, O. Antibiotic resistance--problems, progress, and prospects. N. Engl. J. Med., 2014, 371(19), 1761-1763.
[http://dx.doi.org/10.1056/NEJMp1408040] [PMID: 25271470]
[3]
French, G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 3), S3-S7.
[http://dx.doi.org/10.1016/S0924-8579(10)70003-0] [PMID: 21129629]
[4]
Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health, 2014, 2014(1), 147.
[http://dx.doi.org/10.1093/emph/eou024] [PMID: 25355275]
[5]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[6]
Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A.; Tenover, F.C. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother., 1997, 41(3), 647-653.
[http://dx.doi.org/10.1128/AAC.41.3.647] [PMID: 9056008]
[7]
Deplano, A.; Zekhnini, A.; Allali, N.; Couturier, M.; Struelens, M.J. Association of mutations in grlA and gyrA topoisomerase genes with resistance to ciprofloxacin in epidemic and sporadic isolates of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1997, 41(9), 2023-2025.
[http://dx.doi.org/10.1128/AAC.41.9.2023] [PMID: 9303407]
[8]
Riesenfeld, C.; Everett, M.; Piddock, L.J.; Hall, B.G. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob. Agents Chemother., 1997, 41(9), 2059-2060.
[http://dx.doi.org/10.1128/AAC.41.9.2059] [PMID: 9303418]
[9]
Courvalin, P. The garrod lecture. Evasion of antibiotic action by bacteria. J. Antimicrob. Chemother., 1996, 37(5), 855-869.
[http://dx.doi.org/10.1093/jac/37.5.855] [PMID: 8737136]
[10]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[11]
An, Y.J.; Jeong, C.S.; Yu, J.H.; Chung, K.M.; Cha, S.S. Purification, crystallization and preliminary X-ray crystallographic analysis of the UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) from Acinetobacter baumannii. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(Pt 7), 976-978.
[http://dx.doi.org/10.1107/S2053230X14009984] [PMID: 25005102]
[12]
Eniyan, K.; Kumar, A.; Rayasam, G.V.; Perdih, A.; Bajpai, U. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci. Rep., 2016, 6(1), 35134.
[http://dx.doi.org/10.1038/srep35134] [PMID: 27734910]
[13]
Khedkar, S.A.; Malde, A.K.; Coutinho, E.C. Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de Novo design. J. Chem. Inf. Model., 2007, 47(5), 1839-1846.
[http://dx.doi.org/10.1021/ci600568u] [PMID: 17663541]
[14]
Du, W.; Brown, J.R.; Sylvester, D.R.; Huang, J.; Chalker, A.F.; So, C.Y.; Holmes, D.J.; Payne, D.J.; Wallis, N.G. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J. Bacteriol., 2000, 182(15), 4146-4152.
[http://dx.doi.org/10.1128/JB.182.15.4146-4152.2000] [PMID: 10894720]
[15]
Smith, C.A. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol., 2006, 362(4), 640-655.
[http://dx.doi.org/10.1016/j.jmb.2006.07.066] [PMID: 16934839]
[16]
Munshi, T.; Gupta, A.; Evangelopoulos, D.; Guzman, J.D.; Gibbons, S.; Keep, N.H.; Bhakta, S. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis. PLoS One, 2013, 8(3), e60143.
[http://dx.doi.org/10.1371/journal.pone.0060143] [PMID: 23555903]
[17]
Paradis-Bleau, C.; Lloyd, A.; Sanschagrin, F.; Clarke, T.; Blewett, A.; Bugg, T.D.H.; Levesque, R.C.P. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC Biochem., 2008, 9(1), 33.
[http://dx.doi.org/10.1186/1471-2091-9-33] [PMID: 19099588]
[18]
Duncan, K.; van Heijenoort, J.; Walsh, C.T. Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli. Biochemistry, 1990, 29(9), 2379-2386.
[http://dx.doi.org/10.1021/bi00461a023] [PMID: 2186811]
[19]
Bugg, T.D.; Walsh, C.T. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep., 1992, 9(3), 199-215.
[http://dx.doi.org/10.1039/np9920900199] [PMID: 1436736]
[20]
Dementin, S.; Bouhss, A.; Auger, G.; Parquet, C.; Mengin-Lecreulx, D.; Dideberg, O.; van Heijenoort, J.; Blanot, D. Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments. Eur. J. Biochem., 2001, 268(22), 5800-5807.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02524.x] [PMID: 11722566]
[21]
Ikeda, M.; Wachi, M.; Jung, H.K.; Ishino, F.; Matsuhashi, M. Homology among MurC, MurD, MurE and MurF proteins in Escherichia coli and that between E. coli MurG and a possible MurG protein in Bacillus subtilis. J. Gen. Appl. Microbiol., 1990, 36(3), 179-187.
[http://dx.doi.org/10.2323/jgam.36.179]
[22]
Anderson, M.S.; Eveland, S.S.; Onishi, H.R.; Pompliano, D.L. Kinetic mechanism of the Escherichia coli UDPMurNAc-tripeptide D-alanyl-D-alanine-adding enzyme: Use of a glutathione S-transferase fusion. Biochemistry, 1996, 35(50), 16264-16269.
[http://dx.doi.org/10.1021/bi961872+] [PMID: 8973200]
[23]
Falk, P.J.; Ervin, K.M.; Volk, K.S.; Ho, H.T. Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate:L-alanine ligase-catalyzed reaction. Biochemistry, 1996, 35(5), 1417-1422.
[http://dx.doi.org/10.1021/bi952078b] [PMID: 8634271]
[24]
Tanner, M.E.; Vaganay, S.; van Heijenoort, J.; Blanot, D. Microb. Drug Resist., 1996, 2, 51-54.
[http://dx.doi.org/10.1089/mdr.1996.2.51] [PMID: 9158722]
[25]
Sobral, R.G.; Ludovice, A.M.; de Lencastre, H.; Tomasz, A. Role of murF in cell wall biosynthesis: Isolation and characterization of a murF conditional mutant of Staphylococcus aureus. J. Bacteriol., 2006, 188(7), 2543-2553.
[http://dx.doi.org/10.1128/JB.188.7.2543-2553.2006] [PMID: 16547042]
[26]
Burghout, P.; Quintero, B.; Linda, B.K.; Veening, J.W.; de Jonge, M.I. van der, L.M.; van der Ende, A.; Hermans, P.W.M. A single amino acid substitution in the MurF UDP-MurNAc-pentapeptidesynthetase renders Streptococcus pneumoniae dependent on CO2 and temperature. Mol. Microbiol., 2013, 89, 494-506.
[http://dx.doi.org/10.1111/mmi.12292] [PMID: 23750975]
[27]
Yan, Y.; Munshi, S.; Leiting, B.; Anderson, M.S.; Chrzas, J.; Chen, Z. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J. Mol. Biol., 2000, 304(3), 435-445.
[http://dx.doi.org/10.1006/jmbi.2000.4215] [PMID: 11090285]
[28]
Cha, S.S.; An, Y.J.; Jeong, C.S.; Yu, J.H.; Chung, K.M. ATP-binding mode including a carbamoylated lysine and two Mg(2+) ions, and substrate-binding mode in Acinetobacter baumannii MurF. Biochem. Biophys. Res. Commun., 2014, 450(2), 1045-1050.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.108] [PMID: 24978312]
[29]
Hrast, M.; Turk, S.; Sosič, I.; Knez, D.; Randall, C.P.; Barreteau, H.; Contreras-Martel, C.; Dessen, A.; O’Neill, A.J.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur. J. Med. Chem., 2013, 66(66), 32-45.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.013] [PMID: 23786712]
[30]
Favini-Stabile, S.; Contreras-Martel, C.; Thielens, N.; Dessen, A. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ. Microbiol., 2013, 15(12), 3218-3228.
[http://dx.doi.org/10.1111/1462-2920.12171] [PMID: 23826965]
[31]
Longenecker, K.L.; Stamper, G.F.; Hajduk, P.J.; Fry, E.H.; Jakob, C.G.; Harlan, J.E.; Edalji, R.; Bartley, D.M.; Walter, K.A.; Solomon, L.R.; Holzman, T.F.; Gu, Y.G.; Lerner, C.G.; Beutel, B.A.; Stoll, V.S. Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci., 2005, 14(12), 3039-3047.
[http://dx.doi.org/10.1110/ps.051604805] [PMID: 16322581]
[32]
Bertrand, J.A.; Auger, G.; Fanchon, E.; Martin, L.; Blanot, D.; van Heijenoort, J.; Dideberg, O. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J., 1997, 16(12), 3416-3425.
[http://dx.doi.org/10.1093/emboj/16.12.3416] [PMID: 9218784]
[33]
Bertrand, J.A.; Auger, G.; Martin, L.; Fanchon, E.; Blanot, D.; Le Beller, D.; van Heijenoort, J.; Dideberg, O. Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J. Mol. Biol., 1999, 289(3), 579-590.
[http://dx.doi.org/10.1006/jmbi.1999.2800] [PMID: 10356330]
[34]
Bertrand, J.A.; Fanchon, E.; Martin, L.; Chantalat, L.; Auger, G.; Blanot, D.; van Heijenoort, J.; Dideberg, O. “Open” structures of MurD: Domain movements and structural similarities with folylpolyglutamate synthetase. J. Mol. Biol., 2000, 301(5), 1257-1266.
[http://dx.doi.org/10.1006/jmbi.2000.3994] [PMID: 10966819]
[35]
Bouhss, A.; Mengin-Lecreulx, D.; Blanot, D.; van Heijenoort, J.; Parquet, C. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry, 1997, 36(39), 11556-11563.
[http://dx.doi.org/10.1021/bi970797f] [PMID: 9305945]
[36]
Emanuele, J.J., Jr; Jin, H.; Yanchunas, J., Jr; Villafranca, J.J. Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate:L-alanine ligase. Biochemistry, 1997, 36(23), 7264-7271.
[http://dx.doi.org/10.1021/bi970266r] [PMID: 9188728]
[37]
Kotnik, M.; Anderluh, P.S.; Prezelj, A. Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr. Pharm. Des., 2007, 13(22), 2283-2309.
[http://dx.doi.org/10.2174/138161207781368828] [PMID: 17692001]
[38]
Kouidmi, I.; Levesque, R.C.; Paradis-Bleau, C. The biology of Mur ligases as an antibacterial target. Mol. Microbiol., 2014, 94(2), 242-253.
[http://dx.doi.org/10.1111/mmi.12758] [PMID: 25130693]
[39]
Sangshetti, J.N.; Joshi, S.S.; Patil, R.H.; Moloney, M.G.; Shinde, D.B. Mur ligase inhibitors as anti-bacterials: A comprehensive review. Curr. Pharm. Des., 2017, 23(21), 3164-3196.
[http://dx.doi.org/10.2174/1381612823666170214115048] [PMID: 28201974]
[40]
El Zoeiby, A.; Sanschagrin, F.; Levesque, R.C. Structure and function of the Mur enzymes: Development of novel inhibitors. Mol. Microbiol., 2003, 47(1), 1-12.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03289.x] [PMID: 12492849]
[41]
Jukič, M.; Gobec, S.; Sova, M. Reaching toward underexplored targets in antibacterial drug design. Drug Dev. Res., 2019, 80(1), 6-10.
[http://dx.doi.org/10.1002/ddr.21465] [PMID: 30312991]
[42]
Miller, D.J.; Hammond, S.M.; Anderluzzi, D.; Bugg, T.D.H. Aminoalkylphosphinate inhibitors of D-Ala-D-Ala adding enzyme. J. Chem. Soc. 1, 1998, 1(1), 131-142.
[http://dx.doi.org/10.1039/a704097k]
[43]
Turk, S.; Hrast, M.; Sosic, I.; Barreteau, H.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. Biochemical characterization of MurF from Streptococcus pneumoniae and the identification of a new MurF inhibitor through ligand-based virtual screening. Acta Chim. Slov., 2013, 60(2), 294-299.
[PMID: 23878932]
[44]
Gu, Y.G.; Florjancic, A.S.; Clark, R.F.; Zhang, T.; Cooper, C.S.; Anderson, D.D.; Lerner, C.G.; McCall, J.O.; Cai, Y.; Black-Schaefer, C.L.; Stamper, G.F.; Hajduk, P.J.; Beutel, B.A. Structure-activity relationships of novel potent MurF inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(1), 267-270.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.073] [PMID: 14684340]
[45]
Stamper, G.F.; Longenecker, K.L.; Fry, E.H.; Jakob, C.G.; Florjancic, A.S.; Gu, Y.G.; Anderson, D.D.; Cooper, C.S.; Zhang, T.; Clark, R.F.; Cia, Y.; Black-Schaefer, C.L.; Owen McCall, J.; Lerner, C.G.; Hajduk, P.J.; Beutel, B.A.; Stoll, V.S. Structure-based optimization of MurF inhibitors. Chem. Biol. Drug Des., 2006, 67(1), 58-65.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00317.x] [PMID: 16492149]
[46]
Hrast, M.; Anderluh, M.; Knez, D.; Randall, C.P.; Barreteau, H.; O’Neill, A.J.; Blanot, D.; Gobec, S. Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold. Eur. J. Med. Chem., 2014, 73, 83-96.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.031] [PMID: 24384549]
[47]
Baum, E.Z.; Crespo-Carbone, S.M.; Abbanat, D.; Foleno, B.; Maden, A.; Goldschmidt, R.; Bush, K. Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob. Agents Chemother., 2006, 50(1), 230-236.
[http://dx.doi.org/10.1128/AAC.50.1.230-236.2006] [PMID: 16377691]
[48]
Baum, E.Z.; Crespo-Carbone, S.M.; Klinger, A.; Foleno, B.D.; Turchi, I.; Macielag, M.; Bush, K. A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother., 2007, 51(12), 4420-4426.
[http://dx.doi.org/10.1128/AAC.00845-07] [PMID: 17908943]
[49]
Baum, E.Z.; Crespo-Carbone, S.M.; Foleno, B.D.; Simon, L.D.; Guillemont, J.; Macielag, M.; Bush, K. MurF inhibitors with antibacterial activity: Effect on muropeptide levels. Antimicrob. Agents Chemother., 2009, 53(8), 3240-3247.
[http://dx.doi.org/10.1128/AAC.00166-09] [PMID: 19470511]
[50]
Turk, S.; Kovac, A.; Boniface, A.; Bostock, J.M.; Chopra, I.; Blanot, D.; Gobec, S. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg. Med. Chem., 2009, 17(5), 1884-1889.
[http://dx.doi.org/10.1016/j.bmc.2009.01.052] [PMID: 19223185]
[51]
Sosic, I.; Stefane, B.; Kovac, A.; Turk, S.; Blanot, D.; Gobec, S. The synthesis of novel 2,4,6-trisubstituted 1,3,5-triazines: A search for potential MurF enzyme inhibitors. Heterocycles, 2010, 81(1), 91-115.
[http://dx.doi.org/10.3987/COM-09-11839]
[52]
Sova, M.; Kovac, A.; Turk, S.; Hrast, M.; Blanot, D.; Gobec, S. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg. Chem., 2009, 37(6), 217-222.
[http://dx.doi.org/10.1016/j.bioorg.2009.09.001] [PMID: 19804894]
[53]
Perdih, A.; Kovac, A.; Wolber, G.; Blanot, D.; Gobec, S.; Solmajer, T. Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg. Med. Chem. Lett., 2009, 19(10), 2668-2673.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.141] [PMID: 19369074]
[54]
Kotnik, M.; Humljan, J.; Contreras-Martel, C.; Oblak, M.; Kristan, K.; Hervé, M.; Blanot, D.; Urleb, U.; Gobec, S.; Dessen, A.; Solmajer, T. Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J. Mol. Biol., 2007, 370(1), 107-115.
[http://dx.doi.org/10.1016/j.jmb.2007.04.048] [PMID: 17507028]
[55]
Humljan, J.; Kotnik, M.; Contreras-Martel, C.; Blanot, D.; Urleb, U.; Dessen, A.; Solmajer, T.; Gobec, S. Novel naphthalene-N-sulfonyl-D-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J. Med. Chem., 2008, 51(23), 7486-7494.
[http://dx.doi.org/10.1021/jm800762u] [PMID: 19007109]
[56]
Perdih, A.; Hrast, M.; Pureber, K.; Barreteau, H.; Grdadolnik, S.G.; Kocjan, D.; Gobec, S.; Solmajer, T.; Wolber, G. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): Experimental and computational characterization. J. Comput. Aided Mol. Des., 2015, 29(6), 541-560.
[http://dx.doi.org/10.1007/s10822-015-9843-6] [PMID: 25851408]
[57]
Perdih, A.; Hrast, M.; Barreteau, H.; Gobec, S.; Wolber, G.; Solmajer, T. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg. Med. Chem., 2014, 22(15), 4124-4134.
[http://dx.doi.org/10.1016/j.bmc.2014.05.058] [PMID: 24953950]
[58]
Comess, K.M.; Schurdak, M.E.; Voorbach, M.J.; Coen, M.; Trumbull, J.D.; Yang, H.; Gao, L.; Tang, H.; Cheng, X.; Lerner, C.G.; McCall, J.O.; Burns, D.J.; Beutel, B.A. An ultraefficient affinity-based high-throughout screening process: Application to bacterial cell wall biosynthesis enzyme MurF. J. Biomol. Screen., 2006, 11(7), 743-754.
[http://dx.doi.org/10.1177/1087057106289971] [PMID: 16973923]
[59]
Waterson, A.G.; Stevens, K.L.; Reno, M.J.; Zhang, Y.M.; Boros, E.E.; Bouvier, F.; Rastagar, A.; Uehling, D.E.; Dickerson, S.H.; Reep, B.; McDonald, O.B.; Wood, E.R.; Rusnak, D.W.; Alligood, K.J.; Rudolph, S.K. Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(9), 2419-2422.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.111] [PMID: 16483772]
[60]
Stevens, K.L.; Reno, M.J.; Alberti, J.B.; Price, D.J.; Kane-Carson, L.S.; Knick, V.B.; Shewchuk, L.M.; Hassell, A.M.; Veal, J.M.; Davis, S.T.; Griffin, R.J.; Peel, M.R. Synthesis and evaluation of pyrazolo[1,5-b]pyridazines as selective cyclin dependent kinase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(21), 5758-5762.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.069] [PMID: 18835709]
[61]
Boehm, J.C.; Bower, M.J.; Gallagher, T.F.; Kassis, S.; Johnson, S.R.; Adams, J.L. Phenoxypyrimidine inhibitors of p38alpha kinase: Synthesis and statistical evaluation of the p38 inhibitory potencies of a series of 1-(piperidin-4-yl)-4-(4-fluorophenyl)-5-(2-phenoxypyrimidin-4-yl) imidazoles. Bioorg. Med. Chem. Lett., 2001, 11(9), 1123-1126.
[http://dx.doi.org/10.1016/S0960-894X(01)00163-9] [PMID: 11354358]
[62]
Hrast, M.; Rozman, K.; Ogris, I.; Skedelj, V.; Patin, D.; Sova, M.; Barreteau, H.; Gobec, S.; Grdadolnik, S.G.; Zega, A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1010-1017.
[http://dx.doi.org/10.1080/14756366.2019.1608981] [PMID: 31072165]
[63]
Taha, M.O.; Atallah, N.; Al-Bakri, A.G.; Paradis-Bleau, C.; Zalloum, H.; Younis, K.S.; Levesque, R.C. Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in-silico screening. Bioorg. Med. Chem., 2008, 16(3), 1218-1235.
[http://dx.doi.org/10.1016/j.bmc.2007.10.076] [PMID: 17988876]
[64]
Hrast, M.; Frlan, R.; Knez, D.; Zdovc, I.; Barreteau, H.; Gobec, S. Mur ligases inhibitors with azastilbene scaffold: Expanding the structure-activity relationship. Bioorg. Med. Chem. Lett., 2021, 40, 127966.
[http://dx.doi.org/10.1016/j.bmcl.2021.127966] [PMID: 33744441]
[65]
Kong, D.X.; Zhu, W.L.; Wu, D.L.; Shen, X.; Jiang, H.L. Comparison of three 3D-QSAR methods using a novel class of MURF inhibitors. J. Theor. Comput. Chem., 2007, 6(1), 63-80.
[http://dx.doi.org/10.1142/S0219633607002812]
[66]
Moraes, G.L.; Gomes, G.C.; Monteiro de Sousa, P.R.; Alves, C.N.; Govender, T.; Kruger, H.G.; Maguire, G.E.M.; Lamichhane, G.; Lameira, J. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinb.), 2015, 95(2), 95-111.
[http://dx.doi.org/10.1016/j.tube.2015.01.006] [PMID: 25701501]
[67]
Ahmad, S.; Raza, S.; Uddin, R.; Azam, S.S. Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. J. Mol. Graph. Model., 2017, 77, 72-85.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.024] [PMID: 28843462]
[68]
Azam, M.A.; Jupudi, S. Insight into the structural requirements of thiophene-3-carbonitriles-based MurF inhibitors by 3D-QSAR, molecular docking and molecular dynamics study. J. Recept. Signal Transduct. Res., 2017, 37(5), 522-534.
[http://dx.doi.org/10.1080/10799893.2017.1360354] [PMID: 28768454]
[69]
Azam, M.A.; Manoj, V.C. An explorative study on diarylquinoline-based inhibitor targeting Enterococcus faecium MurF. Struct. Chem., 2021, 32(1), 115-125.
[http://dx.doi.org/10.1007/s11224-020-01622-9]
[70]
Poopandi, S.; Sundaraj, R.; Rajmichael, R.; Thangaraj, S.; Dhamodharan, P.; Biswal, J.; Malaisamy, V.; Jeyaraj Pandian, C.; Jeyaraman, J. Computational screening of potential inhibitors targeting MurF of Brugia malayi Wolbachia through multi-scale molecular docking, molecular dynamics and MM-GBSA analysis. Mol. Biochem. Parasitol., 2021, 246, 111427.
[http://dx.doi.org/10.1016/j.molbiopara.2021.111427] [PMID: 34666103]
[71]
Chakkyarath, V.; Natarajan, J. Identification of Ideal Multi-targeting bioactive compounds against Mur ligases of Enterobacter aerogenes and its binding mechanism in comparison with chemical inhibitors. Interdiscip. Sci., 2019, 11(1), 135-144.
[http://dx.doi.org/10.1007/s12539-017-0261-4] [PMID: 29086207]
[72]
Sivaramakrishnan, V.; Thiyagarajan, C.; Kalaivanan, S.; Selvakumar, R.; Anusuyadevi, M.; Jayachandran, K.S. Homology modeling, molecular docking and electrostatic potential analysis of MurF ligase from Klebsiella pneumonia. Bioinformation, 2012, 8(10), 466-473.
[http://dx.doi.org/10.6026/97320630008466] [PMID: 22715301]
[73]
Shanmugam, A.; Anbazhagan, V.; Natarajan, J. Virtual screening of phenylsulfonamido-3-morpholinopropan-2-yl dihydrogen phosphate derivatives as novel inhibitors of MurC-MurF ligases from Mycobacterium leprae. Med. Chem. Res., 2012, 21(12), 4341-4351.
[http://dx.doi.org/10.1007/s00044-011-9958-9]
[74]
Page, M.G.P. The Role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin. Infect. Dis., 2019, 69(Suppl. 7), S529-S537.
[http://dx.doi.org/10.1093/cid/ciz825] [PMID: 31724044]
[75]
Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-antibiotic conjugate design: New drugs for bad bugs? Molecules, 2019, 24(18), 3314.
[http://dx.doi.org/10.3390/molecules24183314] [PMID: 31514464]
[76]
Drexelius, M.; Reinhardt, A.; Grabeck, J.; Cronenberg, T.; Nitsche, F.; Huesgen, P.F.; Maier, B.; Neundorf, I. Multistep optimization of a cell-penetrating peptide towards its antimicrobial activity. Biochem. J., 2021, 478(1), 63-78.
[http://dx.doi.org/10.1042/BCJ20200698] [PMID: 33313751]
[77]
Tonziello, G.; Caraffa, E.; Pinchera, B.; Granata, G.; Petrosillo, N. Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases. Infect. Dis. Rep., 2019, 18(11), 8208.
[http://dx.doi.org/10.4081/idr.2019.8208]

© 2024 Bentham Science Publishers | Privacy Policy