Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

P2Y6R: A Promising New Target in Inflammatory Diseases and Advances in its Antagonists

Author(s): Yuanhui Wang, Yuanyuan Pei, Yongfang Yao, Weyland Cheng, Yinchao Li* and Yongtao Duan*

Volume 30, Issue 19, 2023

Published on: 23 September, 2022

Page: [2209 - 2224] Pages: 16

DOI: 10.2174/0929867329666220614100218

Price: $65

Abstract

P2Y receptors (P2YRs) are G protein-coupled receptors that are activated by extracellular nucleotides. The P2Y6 receptor (P2Y6R) is specifically activated by UDP, causing PKC activation and intracellular calcium ion release through the PLC pathway. Based on receptor tissue distribution and related pathways, several studies have reported that P2Y6R plays a physiological role in mediating inflammation, which suggests that P2Y6R could be a promising molecular target for the treatment of inflammatory diseases. In the past ten years, several P2Y6R antagonists have been discovered as new therapeutic strategies for inflammatory diseases. In this article, we systematically summarize the role of P2Y6R in inflammation and highlight the anti-inflammatory mechanism of a key P2Y6R antagonist, MRS2578. Insight into recent progress on the discovery of P2Y6R antagonists is also discussed.

Keywords: P2Y6R, inflammation, antagonist, mechanism, nucleotides, therapeutic strategies.

« Previous
[1]
Cekic, C.; Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol., 2016, 16(3), 177-192.
[http://dx.doi.org/10.1038/nri.2016.4] [PMID: 26922909]
[2]
Burnstock, G. A basis for distinguishing two types of purinergic receptor. Seman. Scolar., 1978, 1978, 107-118.
[3]
Burnstock, G. Do some nerve cells release more than one transmitter? Neuroscience, 1976, 1(4), 239-248.
[http://dx.doi.org/10.1016/B978-0-08-025501-9.50011-9]
[4]
Abbracchio, M.P.; Burnstock, G. Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol. Ther., 1994, 64(3), 445-475.
[http://dx.doi.org/10.1016/0163-7258(94)00048-4] [PMID: 7724657]
[5]
Burnstock, G. Introduction to the special issue on purinergic receptors. Adv. Exp. Med. Biol., 2017, 1051, 1-6.
[http://dx.doi.org/10.1007/5584_2017_12] [PMID: 28224484]
[6]
Köttgen, M.; Löffler, T.; Jacobi, C.; Nitschke, R.; Pavenstädt, H.; Schreiber, R.; Frische, S.; Nielsen, S.; Leipziger, J. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J. Clin. Invest., 2003, 111(3), 371-379.
[http://dx.doi.org/10.1172/JCI200316711] [PMID: 12569163]
[7]
Seye, C.I.; Yu, N.; Jain, R.; Kong, Q.; Minor, T.; Newton, J.; Erb, L.; González, F.A.; Weisman, G.A. The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J. Biol. Chem., 2003, 278(27), 24960-24965.
[http://dx.doi.org/10.1074/jbc.M301439200] [PMID: 12714597]
[8]
Trautmann, A. Extracellular ATP in the immune system: More than just a “danger signal”. Sci. Signal., 2009, 2(56), pe6.
[http://dx.doi.org/10.1126/scisignal.256pe6] [PMID: 19193605]
[9]
Burnstock, G. Purine and purinergic receptors. Brain Neurosci. Adv., 2018, 2, 2398212818817494.
[http://dx.doi.org/10.1177/2398212818817494] [PMID: 32166165]
[10]
von Kügelgen, I. Pharmacology of P2Y receptors. Brain Res. Bull., 2019, 151, 12-24.
[http://dx.doi.org/10.1016/j.brainresbull.2019.03.010] [PMID: 30922852]
[11]
Costanzi, S.; Mamedova, L.; Gao, Z.G.; Jacobson, K.A. Architecture of P2Y nucleotide receptors: Structural comparison based on se-quence analysis, mutagenesis, and homology modeling. J. Med. Chem., 2004, 47(22), 5393-5404.
[http://dx.doi.org/10.1021/jm049914c] [PMID: 15481977]
[12]
Harden, T.K.; Sesma, J.I.; Fricks, I.P.; Lazarowski, E.R. Signalling and pharmacological properties of the P2Y receptor. Acta Physiol. (Oxf.), 2010, 199(2), 149-160.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02116.x] [PMID: 20345417]
[13]
Burnstock, G.; Knight, G.E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol., 2004, 240, 31-304.
[http://dx.doi.org/10.1016/S0074-7696(04)40002-3] [PMID: 15548415]
[14]
Jacobson, K.A.; Delicado, E.G.; Gachet, C.; Kennedy, C.; von Kügelgen, I.; Li, B.; Miras-Portugal, M.T.; Novak, I.; Schöneberg, T.; Perez-Sen, R.; Thor, D.; Wu, B.; Yang, Z.; Müller, C.E. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br. J. Pharmacol., 2020, 177(11), 2413-2433.
[http://dx.doi.org/10.1111/bph.15005] [PMID: 32037507]
[15]
Zindel, J.; Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol., 2020, 15(1), 493-518.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032847] [PMID: 31675482]
[16]
Alarcón-Vila, C.; Pizzuto, M.; Pelegrín, P. Purinergic receptors and the inflammatory response mediated by lipids. Curr. Opin. Pharmacol., 2019, 47, 90-96.
[http://dx.doi.org/10.1016/j.coph.2019.02.004] [PMID: 30952060]
[17]
Merz, J.; Nettesheim, A.; von Garlen, S.; Albrecht, P.; Saller, B.S.; Engelmann, J.; Hertle, L.; Schäfer, I.; Dimanski, D.; König, S.; Karnbrock, L.; Bulatova, K.; Peikert, A.; Hoppe, N.; Hilgendorf, I.; von Zur Mühlen, C.; Wolf, D.; Groß, O.; Bode, C.; Zirlik, A.; Stachon, P. Pro- and anti-inflammatory macrophages express a sub-type specific purinergic receptor profile. Purinergic Signal., 2021, 17(3), 481-492.
[http://dx.doi.org/10.1007/s11302-021-09798-3] [PMID: 34282551]
[18]
Akter, S.; Sharma, R.K.; Sharma, S.; Rastogi, S.; Fiebich, B.L.; Akundi, R.S. Exogenous ATP modulates PGE2 release in macrophages through sustained phosphorylation of CDK9 and p38 MAPK. J. Leukoc. Biol., 2021, 110(4), 663-677.
[http://dx.doi.org/10.1002/JLB.3A1219-697RR] [PMID: 33438260]
[19]
Wang, H.; Wu, H.; Fang, K.; Chang, X. Uridine diphosphate promotes rheumatoid arthritis through P2Y6 activation. Front. Pharmacol., 2021, 12, 658511.
[http://dx.doi.org/10.3389/fphar.2021.658511] [PMID: 33953685]
[20]
Zipfel, C. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol., 2009, 12(4), 414-420.
[http://dx.doi.org/10.1016/j.pbi.2009.06.003] [PMID: 19608450]
[21]
Zhang, Z.; Wang, Z.; Ren, H.; Yue, M.; Huang, K.; Gu, H.; Liu, M.; Du, B.; Qian, M. P2Y(6) agonist uridine 5'-diphosphate promotes host defense against bacterial infection via monocyte chemoattractant protein-1-mediated monocytes/macrophages recruitment. J. Immunol., 2011, 186(9), 5376-5387.
[http://dx.doi.org/10.4049/jimmunol.1002946] [PMID: 21444765]
[22]
Ben Yebdri, F.; Kukulski, F.; Tremblay, A.; Sévigny, J. Concomitant activation of P2Y(2) and P2Y(6) receptors on monocytes is re-quired for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur. J. Immunol., 2009, 39(10), 2885-2894.
[http://dx.doi.org/10.1002/eji.200939347] [PMID: 19735076]
[23]
Nagaoka, I.; Suzuki, K.; Murakami, T.; Niyonsaba, F.; Tamura, H.; Hirata, M. Evaluation of the effect of α-defensin human neutrophil peptides on neutrophil apoptosis. Int. J. Mol. Med., 2010, 26(6), 925-934.
[http://dx.doi.org/10.3892/ijmm_00000544] [PMID: 21042789]
[24]
Takayama, F.; Hayashi, Y.; Wu, Z.; Liu, Y.; Nakanishi, H. Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci. Rep., 2016, 6(1), 30006.
[http://dx.doi.org/10.1038/srep30006] [PMID: 27445174]
[25]
Hansen, A.; Alston, L.; Tulk, S.E.; Schenck, L.P.; Grassie, M.E.; Alhassan, B.F.; Veermalla, A.T.; Al-Bashir, S.; Gendron, F.P.; Altier, C.; MacDonald, J.A.; Beck, P.L.; Hirota, S.A. The P2Y6 receptor mediates Clostridium difficile toxin-induced CXCL8/IL-8 production and intestinal epithelial barrier dysfunction. PLoS One, 2013, 8(11), e81491.
[http://dx.doi.org/10.1371/journal.pone.0081491] [PMID: 24278446]
[26]
Li, R.; Tan, B.; Yan, Y.; Ma, X.; Zhang, N.; Zhang, Z.; Liu, M.; Qian, M.; Du, B. Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production. J. Immunol., 2014, 193(9), 4515-4526.
[http://dx.doi.org/10.4049/jimmunol.1301930] [PMID: 25261483]
[27]
Alvarado-Esquivel, C. Toxocara infection in psychiatric inpatients: A case control seroprevalence study. PLoS One, 2013, 8(4), e62606.
[http://dx.doi.org/10.1371/journal.pone.0062606] [PMID: 23626838]
[28]
Foell, D.; Wittkowski, H.; Roth, J. Mechanisms of disease: A ‘DAMP’ view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol., 2007, 3(7), 382-390.
[http://dx.doi.org/10.1038/ncprheum0531] [PMID: 17599072]
[29]
Herz, J.; Filiano, A.J.; Smith, A.; Yogev, N.; Kipnis, J. Myeloid cells in the central nervous system. Immunity, 2017, 46(6), 943-956.
[http://dx.doi.org/10.1016/j.immuni.2017.06.007] [PMID: 28636961]
[30]
Anwar, S.; Pons, V.; Rivest, S. Microglia purinoceptor P2Y6: An emerging therapeutic target in CNS diseases. Cells, 2020, 9(7), 1595.
[http://dx.doi.org/10.3390/cells9071595] [PMID: 32630251]
[31]
Koizumi, S.; Shigemoto-Mogami, Y.; Nasu-Tada, K.; Shinozaki, Y.; Ohsawa, K.; Tsuda, M.; Joshi, B.V.; Jacobson, K.A.; Kohsaka, S.; Inoue, K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 2007, 446(7139), 1091-1095.
[http://dx.doi.org/10.1038/nature05704] [PMID: 17410128]
[32]
Neher, J.J.; Neniskyte, U.; Hornik, T.; Brown, G.C. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neu-rons by activated microglia in vitro and in vivo. Glia, 2014, 62(9), 1463-1475.
[http://dx.doi.org/10.1002/glia.22693] [PMID: 24838858]
[33]
Milde, S.; van Tartwijk, F.W.; Vilalta, A.; Hornik, T.C.; Dundee, J.M.; Puigdellívol, M.; Brown, G.C. Inflammatory neuronal loss in the substantia nigra induced by systemic lipopolysaccharide is prevented by knockout of the P2Y6 receptor in mice. J. Neuroinflammation, 2021, 18(1), 225.
[http://dx.doi.org/10.1186/s12974-021-02280-2] [PMID: 34635136]
[34]
Puigdellívol, M.; Milde, S.; Vilalta, A.; Cockram, T.O.J.; Allendorf, D.H.; Lee, J.Y.; Dundee, J.M. Pampuščenko, K.; Borutaite, V.; Nuthall, H.N.; Brelstaff, J.H.; Spillantini, M.G.; Brown, G.C. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration. Cell Rep., 2021, 37(13), 110148.
[http://dx.doi.org/10.1016/j.celrep.2021.110148] [PMID: 34965424]
[35]
Uratsuji, H.; Tada, Y.; Kawashima, T.; Kamata, M.; Hau, C.S.; Asano, Y.; Sugaya, M.; Kadono, T.; Asahina, A.; Sato, S.; Tamaki, K. P2Y6 receptor signaling pathway mediates inflammatory responses induced by monosodium urate crystals. J. Immunol., 2012, 188(1), 436-444.
[http://dx.doi.org/10.4049/jimmunol.1003746] [PMID: 22102722]
[36]
Scott, S.A.; Xiang, Y.; Mathews, T.P.; Cho, H.P.; Myers, D.S.; Armstrong, M.D.; Tallman, K.A.; O’Reilly, M.C.; Lindsley, C.W.; Brown, H.A. Regulation of phospholipase D activity and phosphatidic acid production after purinergic (P2Y6) receptor stimulation. J. Biol. Chem., 2013, 288(28), 20477-20487.
[http://dx.doi.org/10.1074/jbc.M113.451708] [PMID: 23723068]
[37]
Langfelder, A.; Okonji, E.; Deca, D.; Wei, W.C.; Glitsch, M.D. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia. Cell Calcium, 2015, 57(4), 247-256.
[http://dx.doi.org/10.1016/j.ceca.2015.01.004] [PMID: 25623949]
[38]
Zhu, J.; Wang, Z.; Zhang, N.; Ma, J.; Xu, S.L.; Wang, Y.; Shen, Y.; Li, Y.H. Protein interacting C-kinase 1 modulates surface expres-sion of P2Y6 purinoreceptor, actin polymerization and phagocytosis in microglia. Neurochem. Res., 2016, 41(4), 795-803.
[http://dx.doi.org/10.1007/s11064-015-1754-3] [PMID: 26566795]
[39]
Wen, R.X.; Shen, H.; Huang, S.X.; Wang, L.P.; Li, Z.W.; Peng, P.; Mamtilahun, M.; Tang, Y.H.; Shen, F.X.; Tian, H.L.; Yang, G.Y.; Zhang, Z.J. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. CNS Neurosci. Ther., 2020, 26(4), 416-429.
[http://dx.doi.org/10.1111/cns.13296] [PMID: 32154670]
[40]
Neniskyte, U.; Vilalta, A.; Brown, G.C. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett., 2014, 588(17), 2952-2956.
[http://dx.doi.org/10.1016/j.febslet.2014.05.046] [PMID: 24911209]
[41]
Qian, Y.; Xu, S.; Yang, X.; Xiao, Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J. Neurosci. Res., 2018, 96(2), 253-264.
[http://dx.doi.org/10.1002/jnr.24119] [PMID: 28752899]
[42]
Yang, X.; Lou, Y.; Liu, G.; Wang, X.; Qian, Y.; Ding, J.; Chen, S.; Xiao, Q. Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. J. Neuroinflammation, 2017, 14(1), 38.
[http://dx.doi.org/10.1186/s12974-017-0795-8] [PMID: 28219441]
[43]
Huang, D.; Yang, J.; Liu, X.; He, L.; Luo, X.; Tian, H.; Xu, T.; Zeng, J. P2Y6 receptor activation is involved in the development of neu-ropathic pain induced by chronic constriction injury of the sciatic nerve in rats. J. Clin. Neurosci., 2018, 56, 156-162.
[http://dx.doi.org/10.1016/j.jocn.2018.07.013] [PMID: 30045810]
[44]
Tsukimoto, M.; Homma, T.; Ohshima, Y.; Kojima, S. Involvement of purinergic signaling in cellular response to gamma radiation. Radiat. Res., 2010, 173(3), 298-309.
[http://dx.doi.org/10.1667/RR1732.1] [PMID: 20199215]
[45]
Takai, E.; Tsukimoto, M.; Harada, H.; Kojima, S. Involvement of P2Y6 receptor in p38 MAPK-mediated COX-2 expression in re-sponse to UVB irradiation of human keratinocytes. Radiat. Res., 2011, 175(3), 358-366.
[http://dx.doi.org/10.1667/RR2375.1] [PMID: 21388279]
[46]
Tamaishi, N.; Tsukimoto, M.; Kitami, A.; Kojima, S. P2Y6 receptors and ADAM17 mediate low-dose gamma-ray-induced focus for-mation (activation) of EGF receptor. Radiat. Res., 2011, 175(2), 193-200.
[http://dx.doi.org/10.1667/RR2191.1] [PMID: 21268712]
[47]
Tsukimoto, M. Purinergic signaling is a novel mechanism of the cellular response to ionizing radiation. Biol. Pharm. Bull., 2015, 38(7), 951-959.
[http://dx.doi.org/10.1248/bpb.b15-00062] [PMID: 26133701]
[48]
Xu, Y.; Hu, W.; Liu, Y.; Xu, P.; Li, Z.; Wu, R.; Shi, X.; Tang, Y. P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Mol. Neurobiol., 2016, 53(6), 3552-3564.
[http://dx.doi.org/10.1007/s12035-015-9282-3] [PMID: 26099306]
[49]
Warny, M.; Aboudola, S.; Robson, S.C.; Sévigny, J.; Communi, D.; Soltoff, S.P.; Kelly, C.P. P2Y(6) nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J. Biol. Chem., 2001, 276(28), 26051-26056.
[http://dx.doi.org/10.1074/jbc.M102568200] [PMID: 11349132]
[50]
Obba, S.; Hizir, Z.; Boyer, L.; Selimoglu-Buet, D.; Pfeifer, A.; Michel, G.; Hamouda, M.A.; Gonçalvès, D.; Cerezo, M.; Marchetti, S.; Rocchi, S.; Droin, N.; Cluzeau, T.; Robert, G.; Luciano, F.; Robaye, B.; Foretz, M.; Viollet, B.; Legros, L.; Solary, E.; Auberger, P.; Jacquel, A. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a poten-tial target in CMML. Autophagy, 2015, 11(7), 1114-1129.
[http://dx.doi.org/10.1080/15548627.2015.1034406] [PMID: 26029847]
[51]
Riegel, A.K.; Faigle, M.; Zug, S.; Rosenberger, P.; Robaye, B.; Boeynaems, J.M.; Idzko, M.; Eltzschig, H.K. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood, 2011, 117(8), 2548-2555.
[http://dx.doi.org/10.1182/blood-2010-10-313957] [PMID: 21173118]
[52]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[53]
Guns, P.J.; Hendrickx, J.; Van Assche, T.; Fransen, P.; Bult, H. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice. Br. J. Pharmacol., 2010, 159(2), 326-336.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00497.x] [PMID: 20050854]
[54]
Stachon, P.; Peikert, A.; Michel, N.A.; Hergeth, S.; Marchini, T.; Wolf, D.; Dufner, B.; Hoppe, N.; Ayata, C.K.; Grimm, M.; Cicko, S.; Schulte, L.; Reinöhl, J.; von zur Muhlen, C.; Bode, C.; Idzko, M.; Zirlik, A. P2Y6 deficiency limits vascular inflammation and athero-sclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(10), 2237-2245.
[http://dx.doi.org/10.1161/ATVBAHA.114.303585] [PMID: 25104800]
[55]
Garcia, R.A.; Yan, M.; Search, D.; Zhang, R.; Carson, N.L.; Ryan, C.S.; Smith-Monroy, C.; Zheng, J.; Chen, J.; Kong, Y.; Tang, H.; Hellings, S.E.; Wardwell-Swanson, J.; Dinchuk, J.E.; Psaltis, G.C.; Gordon, D.A.; Glunz, P.W.; Gargalovic, P.S. P2Y6 receptor poten-tiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development. PLoS One, 2014, 9(10), e111385.
[http://dx.doi.org/10.1371/journal.pone.0111385] [PMID: 25360548]
[56]
Somers, G.R.; Hammet, F.M.; Trute, L.; Southey, M.C.; Venter, D.J. Expression of the P2Y6 purinergic receptor in human T cells infil-trating inflammatory bowel disease. Lab. Invest., 1998, 78(11), 1375-1383.
[PMID: 9840612]
[57]
Grbic, D.M.; Degagné, E.; Langlois, C.; Dupuis, A.A.; Gendron, F.P. Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J. Immunol., 2008, 180(4), 2659-2668.
[http://dx.doi.org/10.4049/jimmunol.180.4.2659] [PMID: 18250478]
[58]
Grbic, D.M.; Degagné, É.; Larrivée, J.F.; Bilodeau, M.S.; Vinette, V.; Arguin, G.; Stankova, J.; Gendron, F.P. P2Y6 receptor contrib-utes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm. Bowel Dis., 2012, 18(8), 1456-1469.
[http://dx.doi.org/10.1002/ibd.21931] [PMID: 22095787]
[59]
Salem, M.; Tremblay, A.; Pelletier, J.; Robaye, B.; Sévigny, J. P2Y6 receptors regulate CXCL10 expression and secretion in mouse intestinal epithelial cells. Front. Pharmacol., 2018, 9, 149.
[http://dx.doi.org/10.3389/fphar.2018.00149] [PMID: 29541027]
[60]
Placet, M.; Molle, C.M.; Arguin, G.; Geha, S.; Gendron, F.P. The expression of P2Y6 receptor promotes the quality of mucus in colitic mice. FEBS J., 2021, 288(18), 5459-5473.
[http://dx.doi.org/10.1111/febs.15819] [PMID: 33713543]
[61]
Soehnlein, O.; Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol., 2010, 10(6), 427-439.
[http://dx.doi.org/10.1038/nri2779] [PMID: 20498669]
[62]
Fournier, B.M.; Parkos, C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol., 2012, 5(4), 354-366.
[http://dx.doi.org/10.1038/mi.2012.24] [PMID: 22491176]
[63]
Moss, A.K.; Hamarneh, S.R.; Mohamed, M.M.; Ramasamy, S.; Yammine, H.; Patel, P.; Kaliannan, K.; Alam, S.N.; Muhammad, N.; Moaven, O.; Teshager, A.; Malo, N.S.; Narisawa, S.; Millán, J.L.; Warren, H.S.; Hohmann, E.; Malo, M.S.; Hodin, R.A. Intestinal al-kaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(6), G597-G604.
[http://dx.doi.org/10.1152/ajpgi.00455.2012] [PMID: 23306083]
[64]
Salem, M.; Lecka, J.; Pelletier, J.; Gomes Marconato, D.; Dumas, A.; Vallières, L.; Brochu, G.; Robaye, B.; Jobin, C.; Sévigny, J. NTPDase8 protects mice from intestinal inflammation by limiting P2Y6 receptor activation: Identification of a new pathway of inflamma-tion for the potential treatment of IBD. Gut, 2022, 71(1), 43-54.
[http://dx.doi.org/10.1136/gutjnl-2020-320937] [PMID: 33452178]
[65]
Nakamura, T.; Murata, T.; Hori, M.; Ozaki, H. UDP induces intestinal epithelial migration via the P2Y6 receptor. Br. J. Pharmacol., 2013, 170(4), 883-892.
[http://dx.doi.org/10.1111/bph.12334] [PMID: 23941325]
[66]
Salem, M.; El Azreq, M-A.; Pelletier, J.; Robaye, B.; Aoudjit, F.; Sévigny, J. Exacerbated intestinal inflammation in P2Y6 deficient mice is associated with Th17 activation. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(10), 2595-2605.
[http://dx.doi.org/10.1016/j.bbadis.2019.06.019] [PMID: 31271845]
[67]
Lau, W.K.; Chow, A.W.; Au, S.C.; Ko, W.H. Differential inhibitory effects of CysLT(1) receptor antagonists on P2Y(6) receptor-mediated signaling and ion transport in human bronchial epithelia. PLoS One, 2011, 6(7), e22363.
[http://dx.doi.org/10.1371/journal.pone.0022363] [PMID: 21799837]
[68]
Chávez, J.; Vargas, M.H.; Rebollar-Ayala, D.C.; Díaz-Hernández, V.; Cruz-Valderrama, J.E.; Flores-Soto, E.; Flores-García, M.; Jimé-nez-Vargas, N.N.; Barajas-López, C.; Montaño, L.M. Inhibition of extracellular nucleotides hydrolysis intensifies the allergic bron-chospasm. A novel protective role of ectonucleotidases. Allergy, 2013, 68(4), 462-471.
[http://dx.doi.org/10.1111/all.12113] [PMID: 23414231]
[69]
Hao, Y.; Liang, J.F.; Chow, A.W.; Cheung, W.T.; Ko, W.H. P2Y6 receptor-mediated proinflammatory signaling in human bronchial epithelia. PLoS One, 2014, 9(9), e106235.
[http://dx.doi.org/10.1371/journal.pone.0106235] [PMID: 25243587]
[70]
Müller, T.; Fay, S.; Vieira, R.P.; Karmouty-Quintana, H.; Cicko, S.; Ayata, C.K.; Zissel, G.; Goldmann, T.; Lungarella, G.; Ferrari, D.; Di Virgilio, F.; Robaye, B.; Boeynaems, J.M.; Lazarowski, E.R.; Blackburn, M.R.; Idzko, M. P2Y6 receptor activation promotes in-flammation and tissue remodeling in pulmonary fibrosis. Front. Immunol., 2017, 8, 1028.
[http://dx.doi.org/10.3389/fimmu.2017.01028] [PMID: 28878780]
[71]
Giannattasio, G.; Ohta, S.; Boyce, J.R.; Xing, W.; Balestrieri, B.; Boyce, J.A. The purinergic G protein-coupled receptor 6 inhibits effec-tor T cell activation in allergic pulmonary inflammation. J. Immunol., 2011, 187(3), 1486-1495.
[http://dx.doi.org/10.4049/jimmunol.1003669] [PMID: 21724990]
[72]
Fanning, L.B.; Garofalo, D.; Boyce, J.A. The absence of purinergic G protein-coupled receptor 6 on dendritic cells amplifies antigen-induced pulmonary inflammation. J. Allergy Clin. Immunol., 2015, 135(2), AB63.
[http://dx.doi.org/10.1016/j.jaci.2014.12.1138]
[73]
Nagai, J.; Balestrieri, B.; Fanning, L.B.; Kyin, T.; Cirka, H.; Lin, J.; Brennan, P.J.; Boyce, J.A. P2Y 6 signaling controls an innate alveo-lar macrophage-NK cell axis that dampens type 2 lung immunopathology. J. Allergy Clin. Immunol., 2019, 143(2), AB293.
[http://dx.doi.org/10.1016/j.jaci.2018.12.897]
[74]
Nagai, J.; Balestrieri, B.; Fanning, L.B.; Kyin, T.; Cirka, H.; Lin, J.; Idzko, M.; Zech, A.; Kim, E.Y.; Brennan, P.J.; Boyce, J.A. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J. Clin. Invest., 2019, 129(12), 5169-5186.
[http://dx.doi.org/10.1172/JCI129761] [PMID: 31638598]
[75]
von Kugelgen, I.; Jacobson, K. In Blockade of P2Y6-receptors by diisothiocyanatostilbene-disulfonic acid (DIDS) and analogues. In: Naunyn-Schmiedebergs Archives of Pharmacology; Springer-Verlag: New York, USA, 2001, pp. R34-R34.
[76]
Mamedova, L.K.; Joshi, B.V.; Gao, Z.G.; von Kügelgen, I.; Jacobson, K.A. Diisothiocyanate derivatives as potent, insurmountable an-tagonists of P2Y6 nucleotide receptors. Biochem. Pharmacol., 2004, 67(9), 1763-1770.
[http://dx.doi.org/10.1016/j.bcp.2004.01.011] [PMID: 15081875]
[77]
Ito, M.; Egashira, S.I.; Yoshida, K.; Mineno, T.; Kumagai, K.; Kojima, H.; Okabe, T.; Nagano, T.; Ui, M.; Matsuoka, I. Identification of novel selective P2Y6 receptor antagonists by high-throughput screening assay. Life Sci., 2017, 180, 137-142.
[http://dx.doi.org/10.1016/j.lfs.2017.05.017] [PMID: 28527783]
[78]
Jung, Y.H.; Jain, S.; Gopinatth, V.; Phung, N.B.; Gao, Z.G.; Jacobson, K.A. Structure activity relationship of 3-nitro-2-(trifluoromethyl)-2H-chromene derivatives as P2Y6 receptor antagonists. Bioorg. Med. Chem. Lett., 2021, 41, 128008.
[http://dx.doi.org/10.1016/j.bmcl.2021.128008] [PMID: 33831560]
[79]
Meltzer, D.; Ethan, O.; Arguin, G.; Nadel, Y.; Danino, O.; Lecka, J.; Sévigny, J.; Gendron, F.P.; Fischer, B. Synthesis and structure-activity relationship of uracil nucleotide derivatives towards the identification of human P2Y6 receptor antagonists. Bioorg. Med. Chem., 2015, 23(17), 5764-5773.
[http://dx.doi.org/10.1016/j.bmc.2015.07.004] [PMID: 26233801]
[80]
Bano, S.; Shabir, G.; Saeed, A.; Ul-Hamid, A.; Alharthy, R.D.; Iqbal, J. Synthesis, characterization and biological evaluation of indo-methacin derived thioureas as purinergic (P2Y1, P2Y2, P2Y4, and P2Y6) receptor antagonists. Bioorg. Chem., 2021, 116, 105378.
[http://dx.doi.org/10.1016/j.bioorg.2021.105378] [PMID: 34601296]
[81]
Kim, S.G.; Soltysiak, K.A.; Gao, Z.G.; Chang, T.S.; Chung, E.; Jacobson, K.A. Tumor necrosis factor alpha-induced apoptosis in astro-cytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem. Pharmacol., 2003, 65(6), 923-931.
[http://dx.doi.org/10.1016/S0006-2952(02)01614-3] [PMID: 12623123]
[82]
Kim, S.G.; Gao, Z.G.; Soltysiak, K.A.; Chang, T.S.; Brodie, C.; Jacobson, K.A. P2Y6 nucleotide receptor activates PKC to protect 1321N1 astrocytoma cells against tumor necrosis factor-induced apoptosis. Cell. Mol. Neurobiol., 2003, 23(3), 401-418.
[http://dx.doi.org/10.1023/A:1023696806609] [PMID: 12825835]
[83]
Vauquelin, G.; Van Liefde, I.; Vanderheyden, P. Models and methods for studying insurmountable antagonism. Trends Pharmacol. Sci., 2002, 23(11), 514-518.
[http://dx.doi.org/10.1016/S0165-6147(02)02081-3] [PMID: 12413806]
[84]
Syhr, K.M.; Kallenborn-Gerhardt, W.; Lu, R.; Olbrich, K.; Schmitz, K.; Männich, J.; Ferreiros-Bouzas, N.; Geisslinger, G.; Nieder-berger, E.; Schmidtko, A. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol. Biochem. Behav., 2014, 124, 389-395.
[http://dx.doi.org/10.1016/j.pbb.2014.07.009] [PMID: 25042778]
[85]
Zheng, J.; Huang, Y.; Islam, D.; Wen, X.Y.; Wu, S.; Streutker, C.; Luo, A.; Li, M.; Khang, J.; Han, B.; Zhong, N.; Li, Y.; Yu, K.; Zhang, H. Dual effects of human neutrophil peptides in a mouse model of pneumonia and ventilator-induced lung injury. Respir. Res., 2018, 19(1), 190.
[http://dx.doi.org/10.1186/s12931-018-0869-x] [PMID: 30268129]
[86]
Sil, P.; Hayes, C.P.; Reaves, B.J.; Breen, P.; Quinn, S.; Sokolove, J.; Rada, B. P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. J. Immunol., 2017, 198(1), 428-442.
[http://dx.doi.org/10.4049/jimmunol.1600766] [PMID: 27903742]
[87]
Ito, M.; Matsuoka, I. Regulation of purinergic signaling by prostaglandin E2 in murine macrophages. J. Pharmacol. Sci., 2008, 107(4), 443-450.
[http://dx.doi.org/10.1254/jphs.08087FP] [PMID: 18678987]
[88]
Schilling, U.; Dingemanse, J.; Ufer, M. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor an-tagonists. Clin. Pharmacokinet., 2020, 59(5), 545-566.
[http://dx.doi.org/10.1007/s40262-020-00864-4] [PMID: 32056160]
[89]
von Kügelgen, I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol. Ther., 2006, 110(3), 415-432.
[http://dx.doi.org/10.1016/j.pharmthera.2005.08.014] [PMID: 16257449]
[90]
Lambrecht, G. Design and pharmacology of selective P2-purinoceptor antagonists. J. Auton. Pharmacol., 1996, 16(6), 341-344.
[http://dx.doi.org/10.1111/j.1474-8673.1996.tb00049.x] [PMID: 9131412]
[91]
Sauer, R.; El-Tayeb, A.; Kaulich, M.; Müller, C.E. Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y(2) receptor antagonists. Bioorg. Med. Chem., 2009, 17(14), 5071-5079.
[http://dx.doi.org/10.1016/j.bmc.2009.05.062] [PMID: 19523835]
[92]
Jacobson, K.A.; Costanzi, S.; Ivanov, A.A.; Tchilibon, S.; Besada, P.; Gao, Z.G.; Maddileti, S.; Harden, T.K. Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem. Pharmacol., 2006, 71(4), 540-549.
[http://dx.doi.org/10.1016/j.bcp.2005.11.010] [PMID: 16359641]
[93]
Cosyn, L.; Van Calenbergh, S.; Joshi, B.V.; Ko, H.; Carter, R.L.; Kendall Harden, T.; Jacobson, K.A. Synthesis and P2Y receptor activ-ity of nucleoside 5'-phosphonate derivatives. Bioorg. Med. Chem. Lett., 2009, 19(11), 3002-3005.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.027] [PMID: 19419868]
[94]
El-Tayeb, A.; Qi, A.; Nicholas, R.A.; Müller, C.E. Structural modifications of UMP, UDP, and UTP leading to subtype-selective ago-nists for P2Y2, P2Y4, and P2Y6 receptors. J. Med. Chem., 2011, 54(8), 2878-2890.
[http://dx.doi.org/10.1021/jm1016297] [PMID: 21417463]
[95]
Boldron, C.; Besse, A.; Bordes, M.F.; Tissandié, S.; Yvon, X.; Gau, B.; Badorc, A.; Rousseaux, T.; Barré, G.; Meneyrol, J.; Zech, G.; Nazare, M.; Fossey, V.; Pflieger, A.M.; Bonnet-Lignon, S.; Millet, L.; Briot, C.; Dol, F.; Hérault, J.P.; Savi, P.; Lassalle, G.; Delesque, N.; Herbert, J.M.; Bono, F.N. -[6-(4-butanoyl-5-methyl-1H-pyrazol-1-yl) pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H-indole-3-carboxamide (SAR216471), a novel intravenous and oral, reversible, and directly acting P2Y12 antagonist. J. Med. Chem., 2014, 57(17), 7293-7316.
[http://dx.doi.org/10.1021/jm500588w] [PMID: 25075638]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy