Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Comprehensive Review on Journey of Pyrrole Scaffold Against Multiple Therapeutic Targets

Author(s): Reyaz Hassan Mir, Prince Ahad Mir, Roohi Mohi-ud-din*, Saba Sabreen, Mudasir Maqbool, Abdul Jalil Shah, Kitika Shenmar, Syed Naeim Raza and Faheem Hyder Pottoo*

Volume 22, Issue 19, 2022

Published on: 23 August, 2022

Page: [3291 - 3303] Pages: 13

DOI: 10.2174/1871520622666220613140607

Price: $65

Abstract

Heterocyclic compounds are that type of substances that are deeply intertwined with biological processes. Heterocycles are found in about 90% of commercially available medicines. In medicinal chemistry, finding new synthetic molecules with drug-like characteristics is a regular problem, which triggered the development of pharmacological molecules, the majority of which are based on N-heterocyclic motifs. Among the heterocycles, the pyrrole scaffold is the most commonly found heterocycle in both natural and synthetic bioactive compounds. Pyrrole has a fivemembered heterocyclic ring with a plethora of pharmacophores, resulting in a library of different lead compounds. Pyrrole derivatives are physiologically active heterocyclic compounds that can be used as scaffolds for antibacterial, antiviral, anticancer, antitubercular, anti-inflammatory, and as enzyme inhibitors. On account of their extensive pharmacological profile, pyrrole and its various synthetic derivatives have drawn much attention from researchers to explore it for the benefit of humankind. This review presents an overview of recent developments in the pyrrole derivatives against multiple therapeutic targets.

Keywords: Pyrrole, drug discovery, therapeutic targets, pharmacophore, pharmacological activities, heterocyclic compounds.

[1]
Prandi, C.; Occhiato, E.G. From synthetic control to natural products: A focus on N-heterocycles. Pest Manag. Sci., 2019, 75(9), 2385-2402.
[http://dx.doi.org/10.1002/ps.5322] [PMID: 30624033]
[2]
Loudon, M.G. Chemistry of naphthalene and the aromatic heterocycles. Organic Chemistry., 2002, 4, 1135-1136.
[3]
Hassan, R.; Mohi-Ud-Din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M.; Pottoo, F.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565.
[http://dx.doi.org/10.2174/1871520621666210901112954] [PMID: 34488596]
[4]
Mir, R.H. Mohi-ud-din, R.; Wani, T.U.; Dar, M.O.; Shah, A.J.; Lone, B.; Pooja, C.; Masoodi, M.H. Indole: A privileged heterocyclic moiety in the management of cancer. Curr. Org. Chem., 2021, 25(6), 724-736.
[http://dx.doi.org/10.2174/1385272825666210208142108]
[5]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S.; Bhagat, A.; Madishetti, S.; Ahmed, Z.; Jachak, S.M.; Choi, S. Oreganum vulgare: In-vitro assessment of cytotoxicity, Molecular docking studies, Antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Med. Chem., 2021, 17(9), 983-993.
[PMID: 32885758]
[6]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[http://dx.doi.org/10.2174/1386207323999201102141206] [PMID: 33143603]
[7]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633.
[http://dx.doi.org/10.2174/1386207324666210804122539] [PMID: 34348611]
[8]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. Anti-inflammatory assessment of 3-acetylmyricadiol in LPS-stimulated raw 264.7 macrophages. Comb. Chem. High Throughput Screen., 2021, 25(1), 204-210.
[http://dx.doi.org/10.2174/1386207324666210319122650]
[9]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Mohi-Ud-Din, I.; Dar, M.A.; Pottoo, F.H. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders. Comb. Chem. High Throughput Screen., 2022, 25(4), 607-615.
[http://dx.doi.org/10.2174/1386207324666210705114058] [PMID: 34225614]
[10]
Sourav, D.E.; Babu, N.M.; Babu, S.T.; Dree, B.R.; Kiran, S.A.; Reddy, S.K. A review article on importance of heterocyclic compounds. Mintage J. Pharma. Med. Sci., 2016, 5, 18-27.
[11]
Mohi-Ud-Din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[12]
Hassan Mir, R.; Godavari, G.; Siddiqui, N.A.; Ahmad, B.; Mothana, R.A.; Ullah, R.; Almarfadi, O.M.; Jachak, S.M.; Masoodi, M.H. Design, synthesis, molecular modelling, and biological evaluation of oleanolic acid-arylidene derivatives as potential anti-inflammatory agents. Drug Des. Devel. Ther., 2021, 15, 385-397.
[http://dx.doi.org/10.2147/DDDT.S291784] [PMID: 33574657]
[13]
Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-Asl, N. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem., 2018, 22(23), 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[14]
Shah, A.J.; Mir, R.H.; Mohi-Ud-Din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021, 19(11), 2020-2037.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[15]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural Anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[16]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[17]
Liu, R.S. Synthesis of oxygen heterocycles via alkynyltungsten compounds. Pure Appl. Chem., 2001, 73(2), 265-269.
[http://dx.doi.org/10.1351/pac200173020265]
[18]
Jeelan Basha, N.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers., 2022, 1-23.
[http://dx.doi.org/10.1007/s11030-022-10387-8] [PMID: 35079946]
[19]
Hossain, M.; Nanda, A.K. A review on heterocyclic: Synthesis and their application in medicinal chemistry of imidazole moiety. Science, 2018, 6(5), 83-94.
[20]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2013, 1, 12-15.
[21]
Broughton, H.B.; Watson, I.A. Selection of heterocycles for drug design. J. Mol. Graph. Model., 2004, 23(1), 51-58.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016] [PMID: 15331053]
[22]
Zhang, X.; Yao, S.; Chen, P.; Wang, Y.; Lyu, D.; Yu, F.; Qing, M.; Tian, Z.Q.; Shen, P.K. Revealing the dependence of active site configuration of N doped and N, S-co-doped carbon nanospheres on six-membered heterocyclic precursors for oxygen reduction reaction. J. Catal., 2020, 389, 677-689.
[http://dx.doi.org/10.1016/j.jcat.2020.07.003]
[23]
Ghosh, P.; Mukherji, S. Environmental contamination by heterocyclic Polynuclear aromatic hydrocarbons and their microbial degradation. Bioresour. Technol., 2021, 341125860
[http://dx.doi.org/10.1016/j.biortech.2021.125860] [PMID: 34614557]
[24]
Barron, M.G.; Heintz, R.; Rice, S.D. Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar. Environ. Res., 2004, 58(2-5), 95-100.
[http://dx.doi.org/10.1016/j.marenvres.2004.03.001] [PMID: 15178019]
[25]
Eisentraeger, A.; Brinkmann, C.; Hollert, H.; Sagner, A.; Tiehm, A.; Neuwoehner, J. Heterocyclic compounds: Toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account. Environ. Toxicol. Chem., 2008, 27(7), 1590-1596.
[http://dx.doi.org/10.1897/07-201.1] [PMID: 18260688]
[26]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947.
[27]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[28]
Azad, I.; Hassan, F.; Saquib, M.; Ahmad, N.; Khan, A.R.; Al-Sehemi, A.G.; Nasibullah, M.A. A critical review on advances in the multicomponent synthesis of pyrroles. Orient. J. Chem., 2018, 34(4), 1670.
[http://dx.doi.org/10.13005/ojc/340401]
[29]
Domagala, A.; Jarosz, T.; Lapkowski, M. Living on pyrrolic foundations - Advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem., 2015, 100, 176-187.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.009] [PMID: 26087028]
[30]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[31]
Mateev, E.; Georgieva, M.; Zlatkov, A. Pyrrole as an important scaffold of anticancer drugs: Recent advances. J. Pharm. Pharm. Sci., 2022, 25, 24-40.
[http://dx.doi.org/10.18433/jpps32417] [PMID: 34995473]
[32]
Bianco, M.D.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals (Basel), 2021, 14(9), 893.
[http://dx.doi.org/10.3390/ph14090893] [PMID: 34577593]
[33]
McCrindle, B.W.; Ose, L.; Marais, A.D. Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: A multicenter, randomized, placebo-controlled trial. J. Pediatr., 2003, 143(1), 74-80.
[http://dx.doi.org/10.1016/S0022-3476(03)00186-0] [PMID: 12915827]
[34]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208112783
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[35]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[http://dx.doi.org/10.1016/S0140-6736(06)69446-4] [PMID: 17046465]
[36]
Konovalova, I.S.; Kovalenko, S.M.; Kravchenko, D.V.; Chuev, V.P. Crystal structure of the non-steroidal anti-inflammatory drug (NSAID) tolmetin sodium. Acta Crystallogr. E Crystallogr. Commun., 2021, 77(Pt 2), 134-137.
[http://dx.doi.org/10.1107/S2056989021000414] [PMID: 33614141]
[37]
Smith, D.A.; Hammond, T.; Baillie, T.A. Safety assessment of acyl glucuronides-a simplified paradigm. Drug Metab. Dispos., 2018, 46(6), 908-912.
[http://dx.doi.org/10.1124/dmd.118.080515] [PMID: 29559442]
[38]
Or, C.R.; Huang, C.W.; Chang, C.C.; Lai, Y.C.; Chen, Y.J.; Chang, C.C. Obatoclax, a pan-bcl-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/β-catenin signaling. Int. J. Mol. Sci., 2020, 21(5), 1773.
[http://dx.doi.org/10.3390/ijms21051773] [PMID: 32150830]
[39]
Williamson, N.R.; Fineran, P.C.; Leeper, F.J.; Salmond, G.P. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol., 2006, 4(12), 887-899.
[http://dx.doi.org/10.1038/nrmicro1531] [PMID: 17109029]
[40]
Ryabchuk, P.; Leischner, T.; Kreyenschulte, C.; Spannenberg, A.; Junge, K.; Beller, M. Cascade synthesis of pyrroles from nitroarenes with benign reductants using a heterogeneous cobalt catalyst. Angew. Chem. Int. Ed. Engl., 2020, 59(42), 18679-18685.
[http://dx.doi.org/10.1002/anie.202007613] [PMID: 32779271]
[41]
Fischer, F.; Matthisson, M.; Herrling, P. List of drugs in development for neurodegenerative diseases. Neurodegener. Dis., 2004, 1(1), 50-70.
[http://dx.doi.org/10.1159/000077879] [PMID: 16908974]
[42]
Jiang, W.; Wang, D.; Wilson, B.A.P.; Kang, U.; Bokesch, H.R.; Smith, E.A.; Wamiru, A.; Goncharova, E.I.; Voeller, D.; Lipkowitz, S.; O’Keefe, B.R.; Gustafson, K.R. Agelasine Diterpenoids and Cbl-b inhibitory ageliferins from the coralline demosponge astrosclera willeyana. Mar. Drugs, 2021, 19(7), 361.
[http://dx.doi.org/10.3390/md19070361] [PMID: 34202500]
[43]
Kim, S.H.; Yoo, J.C.; Kim, T.S. Nargenicin enhances 1,25-dihydroxyvitamin D(3)- and all-trans retinoic acid-induced leukemia cell differentiation via PKCbetaI/MAPK pathways. Biochem. Pharmacol., 2009, 77(11), 1694-1701.
[http://dx.doi.org/10.1016/j.bcp.2009.03.004] [PMID: 19428323]
[44]
Aarsand, A.K.; Petersen, P.H.; Sandberg, S. Estimation and application of biological variation of urinary δ-aminolevulinic acid and porphobilinogen in healthy individuals and in patients with acute intermittent porphyria. Clin. Chem., 2006, 52(4), 650-656.
[http://dx.doi.org/10.1373/clinchem.2005.060772] [PMID: 16595824]
[45]
Shiojima, Y.; Takahashi, M.; Takahashi, R.; Moriyama, H.; Bagchi, D.; Bagchi, M.; Akanuma, M. Effect of dietary pyrroloquinoline quinone disodium salt on cognitive function in healthy volunteers: A randomized, double-blind, placebo-controlled, parallel-group study. J. Am. Coll. Nutr., 2021, 1-14.
[http://dx.doi.org/10.1080/07315724.2021.1962770] [PMID: 34415830]
[46]
Baptista-Hon, D.T.; Smith, M.; Singleton, S.; Antonides, L.H.; Nic Daeid, N.; McKenzie, C.; Hales, T.G. Activation of μ-opioid receptors by MT-45 (1-cyclohexyl-4-(1,2-diphenylethyl)piperazine) and its fluorinated derivatives. Br. J. Pharmacol., 2020, 177(15), 3436-3448.
[http://dx.doi.org/10.1111/bph.15064] [PMID: 32246840]
[47]
London, C.A.; Malpas, P.B.; Wood-Follis, S.L.; Boucher, J.F.; Rusk, A.W.; Rosenberg, M.P.; Henry, C.J.; Mitchener, K.L.; Klein, M.K.; Hintermeister, J.G.; Bergman, P.J.; Couto, G.C.; Mauldin, G.N.; Michels, G.M. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res., 2009, 15(11), 3856-3865.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1860] [PMID: 19470739]
[48]
Lockhart, A.C.; Cropp, G.F.; Berlin, J.D.; Donnelly, E.; Schumaker, R.D.; Schaaf, L.J.; Hande, K.R.; Fleischer, A.C.; Hannah, A.L.; Rothenberg, M.L. Phase I/pilot study of SU5416 (semaxinib) in combination with irinotecan/bolus 5-FU/LV (IFL) in patients with metastatic colorectal cancer. Am. J. Clin. Oncol., 2006, 29(2), 109-115.
[http://dx.doi.org/10.1097/01.coc.0000199882.53545.ac] [PMID: 16601426]
[49]
Fürstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew. Chem. Int. Ed., 2003, 42(31), 3582-3603.
[http://dx.doi.org/10.1002/anie.200300582] [PMID: 12916029]
[50]
Chatwal, G.R.; Arora, M. Pharmaceutical Organic Chemistry, 2; Himalaya Publishing House, 2010.
[51]
Thach, O.; Mielczarek, M.; Ma, C.; Kutty, S.K.; Yang, X.; Black, D.S.; Griffith, R.; Lewis, P.J.; Kumar, N. From indole to pyrrole, furan, thiophene and pyridine: Search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorg. Med. Chem., 2016, 24(6), 1171-1182.
[http://dx.doi.org/10.1016/j.bmc.2016.01.040] [PMID: 26860928]
[52]
Varshney, H.; Ahmad, A.; Rauf, A.; Husain, F.M.; Ahmad, I. Synthesis and antimicrobial evaluation of fatty chain substituted 2, 5-dimethyl pyrrole and 1, 3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc., 2017, 21, S394-S402.
[http://dx.doi.org/10.1016/j.jscs.2014.04.008]
[53]
Arumugam, N.; Raghunathan, R.; Almansour, A.I.; Karama, U. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(3), 1375-1379.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.061] [PMID: 22230048]
[54]
Raimondi, M.V.; Cascioferro, S.; Schillaci, D.; Petruso, S. Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem., 2006, 41(12), 1439-1445.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.009] [PMID: 17000033]
[55]
Wang, M.Z.; Xu, H.; Liu, T.W.; Feng, Q.; Yu, S.J.; Wang, S.H.; Li, Z.M. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem., 2011, 46(5), 1463-1472.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.031] [PMID: 21356570]
[56]
Oxlade, O.; Schwartzman, K.; Behr, M.A.; Benedetti, A.; Pai, M.; Heymann, J.; Menzies, D. Global tuberculosis trends: A reflection of changes in tuberculosis control or in population health? Int. J. Tuberc. Lung Dis., 2009, 13(10), 1238-1246.
[PMID: 19793428]
[57]
Fitzgerald, D.W.; Morse, M.M.; Pape, J.W.; Johnson, W.D., Jr Active tuberculosis in individuals infected with human immunodeficiency virus after isoniazid prophylaxis. Clin. Infect. Dis., 2000, 31(6), 1495-1497.
[http://dx.doi.org/10.1086/317485] [PMID: 11096020]
[58]
Surineni, G.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2015, 25(3), 485-491.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.040] [PMID: 25559743]
[59]
Pagadala, L.R.; Mukkara, L.D.; Singireddi, S.; Singh, A.; Thummaluru, V.R.; Jagarlamudi, P.S.; Guttala, R.S.; Perumal, Y.; Dharmarajan, S.; Upadhyayula, S.M.; Ummanni, R.; Basireddy, V.S.; Ravirala, N. Design, synthesis and anti-mycobacterial activity of 1,2,3,5-tetrasubstituted pyrrolyl-N-acetic acid derivatives. Eur. J. Med. Chem., 2014, 84, 118-126.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.075] [PMID: 25016370]
[60]
Joshi, S.D.; Vagdevi, H.M.; Vaidya, V.P.; Gadaginamath, G.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents. Eur. J. Med. Chem., 2008, 43(9), 1989-1996.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.016] [PMID: 18207286]
[61]
Joshi, S.D.; More, U.A.; Pansuriya, K.; Aminabhavi, T.M.; Gadad, A.K. Synthesis and molecular modeling studies of novel pyrrole analogs as antimycobacterial agents. J. Saudi Chem. Soc., 2017, 21(1), 42-57.
[http://dx.doi.org/10.1016/j.jscs.2013.09.002]
[62]
Biava, M.; Porretta, G.C.; Deidda, D.; Pompei, R.; Tafi, A.; Manetti, F. Antimycobacterial compounds. New pyrrole derivatives of BM212. Bioorg. Med. Chem., 2004, 12(6), 1453-1458.
[http://dx.doi.org/10.1016/j.bmc.2003.12.037] [PMID: 15018918]
[63]
Biava, M.; Porretta, G.C.; Poce, G.; Deidda, D.; Pompei, R.; Tafi, A.; Manetti, F. Antimycobacterial compounds. Optimization of the BM 212 structure, the lead compound for a new pyrrole derivative class. Bioorg. Med. Chem., 2005, 13(4), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2004.11.018] [PMID: 15670931]
[64]
Biava, M.; Porretta, G.C.; Poce, G.; Battilocchio, C.; Alfonso, S.; De Logu, A.; Serra, N.; Manetti, F.; Botta, M. Identification of a novel pyrrole derivative endowed with antimycobacterial activity and protection index comparable to that of the current antitubercular drugs streptomycin and rifampin. Bioorg. Med. Chem., 2010, 18(22), 8076-8084.
[http://dx.doi.org/10.1016/j.bmc.2010.09.006] [PMID: 20934344]
[65]
Diana-Rivero, R.; Halsvik, B.; García Tellado, F.; Tejedor, D. Short and modular synthesis of substituted 2-aminopyrroles. Org. Lett., 2021, 23(10), 4078-4082.
[http://dx.doi.org/10.1021/acs.orglett.1c01345] [PMID: 33929868]
[66]
Corona, A.; Onnis, V.; Deplano, A.; Bianco, G.; Demurtas, M.; Distinto, S.; Cheng, Y.C.; Alcaro, S.; Esposito, F.; Tramontano, E. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions. Pathog. Dis., 2017, 75(6)
[http://dx.doi.org/10.1093/femspd/ftx078] [PMID: 28859311]
[67]
Mohamed, M.S.; Sayed, A.I.; Khedr, M.A.; Soror, S.H. Design, synthesis, assessment, and molecular docking of novel pyrrolopyrimidine (7-deazapurine) derivatives as non-nucleoside hepatitis C virus NS5B polymerase inhibitors. Bioorg. Med. Chem., 2016, 24(9), 2146-2157.
[http://dx.doi.org/10.1016/j.bmc.2016.03.046] [PMID: 27052365]
[68]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[69]
Raychaudhuri, S. A minimal model of signaling network elucidates cell-to-cell stochastic variability in apoptosis. PLoS One, 2010, 5(8)e11930
[http://dx.doi.org/10.1371/journal.pone.0011930] [PMID: 20711445]
[70]
Kilic-Kurt, Z.; Bakar-Ates, F.; Aka, Y.; Kutuk, O. Design, synthesis and in vitro apoptotic mechanism of novel pyrrolopyrimidine derivatives. Bioorg. Chem., 2019, 83, 511-519.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.060] [PMID: 30458413]
[71]
Bortolozzi, R.; Carta, D.; Prà, M.D.; Antoniazzi, G.; Mattiuzzo, E.; Sturlese, M.; Di Paolo, V.; Calderan, L.; Moro, S.; Hamel, E.; Quintieri, L.; Ronca, R.; Viola, G.; Ferlin, M.G. Evaluating the effects of fluorine on biological properties and metabolic stability of some antitubulin 3-substituted 7-phenyl-pyrroloquinolinones. Eur. J. Med. Chem., 2019, 178, 297-314.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.092] [PMID: 31195171]
[72]
Brindisi, M.; Ulivieri, C.; Alfano, G.; Gemma, S.; de Asís Balaguer, F.; Khan, T.; Grillo, A.; Chemi, G.; Menchon, G.; Prota, A.E.; Olieric, N.; Lucena-Agell, D.; Barasoain, I.; Diaz, J.F.; Nebbioso, A.; Conte, M.; Lopresti, L.; Magnano, S.; Amet, R.; Kinsella, P.; Zisterer, D.M.; Ibrahim, O.; O’Sullivan, J.; Morbidelli, L.; Spaccapelo, R.; Baldari, C.; Butini, S.; Novellino, E.; Campiani, G.; Altucci, L.; Steinmetz, M.O.; Brogi, S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur. J. Med. Chem., 2019, 162, 290-320.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.004] [PMID: 30448418]
[73]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res., 2020, 152104609
[http://dx.doi.org/10.1016/j.phrs.2019.104609] [PMID: 31862477]
[74]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[75]
Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of N4-phenylsubstituted-7H-pyrrolo[2,3-d]pyrimidin-4-amines as dual inhibitors of aurora kinase A and epidermal growth factor receptor kinase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 74-84.
[http://dx.doi.org/10.1080/14756366.2017.1376666] [PMID: 29115879]
[76]
El-Gamal, M.I.; Oh, C.H. Pyrrolo[3,2-c]pyridine derivatives with potential inhibitory effect against FMS kinase: In vitro biological studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1160-1166.
[http://dx.doi.org/10.1080/14756366.2018.1491563] [PMID: 30070930]
[77]
Williams, I.S.; Joshi, P.; Gatchie, L.; Sharma, M.; Satti, N.K.; Vishwakarma, R.A.; Chaudhuri, B.; Bharate, S.B. Synthesis and biological evaluation of pyrrole-based chalcones as CYP1 enzyme inhibitors, for possible prevention of cancer and overcoming cisplatin resistance. Bioorg. Med. Chem. Lett., 2017, 27(16), 3683-3687.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.010] [PMID: 28711350]
[78]
Patel, P.N.; Pathak, R. Rimonabant: A novel selective cannabinoid-1 receptor antagonist for treatment of obesity. Am. J. Health Syst. Pharm., 2007, 64(5), 481-489.
[http://dx.doi.org/10.2146/060258] [PMID: 17322160]
[79]
Thomas, A.; Baillie, G.L.; Phillips, A.M.; Razdan, R.K.; Ross, R.A.; Pertwee, R.G. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol., 2007, 150(5), 613-623.
[http://dx.doi.org/10.1038/sj.bjp.0707133] [PMID: 17245363]
[80]
Osman, N.A.; Ligresti, A.; Klein, C.D.; Allarà, M.; Rabbito, A.; Di Marzo, V.; Abouzid, K.A.; Abadi, A.H. Discovery of novel tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality. Eur. J. Med. Chem., 2016, 122, 619-634.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.012] [PMID: 27448919]
[81]
Ragusa, G.; Gómez-Cañas, M.; Morales, P.; Hurst, D.P.; Deligia, F.; Pazos, R.; Pinna, G.A.; Fernández-Ruiz, J.; Goya, P.; Reggio, P.H.; Jagerovic, N.; García-Arencibia, M.; Murineddu, G. Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB2 receptor antagonists. Eur. J. Med. Chem., 2015, 101, 651-667.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.057] [PMID: 26209834]
[82]
Isomaa, B. A major health hazard: The metabolic syndrome. Life Sci., 2003, 73(19), 2395-2411.
[http://dx.doi.org/10.1016/S0024-3205(03)00646-5] [PMID: 12954449]
[83]
Ross, S.A.; Gulve, E.A.; Wang, M. Chemistry and biochemistry of type 2 diabetes. Chem. Rev., 2004, 104(3), 1255-1282.
[http://dx.doi.org/10.1021/cr0204653] [PMID: 15008623]
[84]
Witters, L.A. The blooming of the French lilac. J. Clin. Invest., 2001, 108(8), 1105-1107.
[http://dx.doi.org/10.1172/JCI14178] [PMID: 11602616]
[85]
Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem., 2004, 47(17), 4135-4141.
[http://dx.doi.org/10.1021/jm030628v] [PMID: 15293982]
[86]
Ji, X.; Su, M.; Wang, J.; Deng, G.; Deng, S.; Li, Z.; Tang, C.; Li, J.; Li, J.; Zhao, L.; Jiang, H.; Liu, H. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur. J. Med. Chem., 2014, 75, 111-122.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.021] [PMID: 24531224]
[87]
Fukushima, H.; Hiratate, A.; Takahashi, M.; Mikami, A.; Saito-Hori, M.; Munetomo, E.; Kitano, K.; Chonan, S.; Saito, H.; Suzuki, A.; Takaoka, Y.; Yamamoto, K. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem., 2008, 16(7), 4093-4106.
[http://dx.doi.org/10.1016/j.bmc.2008.01.016] [PMID: 18243000]
[88]
Patrignani, P.; Tacconelli, S.; Bruno, A.; Sostres, C.; Lanas, A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Expert Rev. Clin. Pharmacol., 2011, 4(5), 605-621.
[http://dx.doi.org/10.1586/ecp.11.36] [PMID: 22114888]
[89]
Xu, X.T.; Mou, X.Q.; Xi, Q.M.; Liu, W.T.; Liu, W.F.; Sheng, Z.J.; Zheng, X.; Zhang, K.; Du, Z.Y.; Zhao, S.Q.; Wang, S.H. Anti-inflammatory activity effect of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on TPA-induced skin inflammation in mice. Bioorg. Med. Chem. Lett., 2016, 26(21), 5334-5339.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.034] [PMID: 27680589]
[90]
Kim, K.J.; Choi, M.J.; Shin, J.S.; Kim, M.; Choi, H.E.; Kang, S.M.; Jin, J.H.; Lee, K.T.; Lee, J.Y. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(8), 1958-1962.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.074] [PMID: 24656662]
[91]
Battilocchio, C.; Poce, G.; Alfonso, S.; Porretta, G.C.; Consalvi, S.; Sautebin, L.; Pace, S.; Rossi, A.; Ghelardini, C.; Di Cesare Mannelli, L.; Schenone, S.; Giordani, A.; Di Francesco, L.; Patrignani, P.; Biava, M. A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg. Med. Chem., 2013, 21(13), 3695-3701.
[http://dx.doi.org/10.1016/j.bmc.2013.04.031] [PMID: 23680444]
[92]
Maddila, S.; Gorle, S.; Sampath, C.; Lavanya, P. Synthesis and anti-inflammatory activity of some new 1, 3, 4-thiadiazoles containing pyrazole and pyrrole nucleus. J. Saudi Chem. Soc., 2016, 20, S306-S312.
[http://dx.doi.org/10.1016/j.jscs.2012.11.007]
[93]
Moon, J.T.; Jeon, J.Y.; Park, H.A.; Noh, Y.S.; Lee, K.T.; Kim, J.; Choo, D.J.; Lee, J.Y. Synthesis and PGE(2) production inhibition of 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives. Bioorg. Med. Chem. Lett., 2010, 20(2), 734-737.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.067] [PMID: 20004572]
[94]
Hall, A.; Atkinson, S.; Brown, S.H.; Chessell, I.P.; Chowdhury, A.; Clayton, N.M.; Coleman, T.; Giblin, G.M.; Gleave, R.J.; Hammond, B.; Healy, M.P.; Johnson, M.R.; Michel, A.D.; Naylor, A.; Novelli, R.; Spalding, D.J.; Tang, S.P. Structure-activity relationships of 1,5-biaryl pyrroles as EP1 receptor antagonists. Bioorg. Med. Chem. Lett., 2006, 16(14), 3657-3662.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.073] [PMID: 16697196]
[95]
Kumar, P.R.; Raju, S.; Goud, P.S.; Sailaja, M.; Sarma, M.R.; Reddy, G.O.; Kumar, M.P.; Reddy, V.V.; Suresh, T.; Hegde, P. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem., 2004, 12(5), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2003.11.003] [PMID: 14980634]
[96]
Anzini, M.; Di Capua, A.; Valenti, S.; Brogi, S.; Rovini, M.; Giuliani, G.; Cappelli, A.; Vomero, S.; Chiasserini, L.; Sega, A.; Poce, G.; Giorgi, G.; Calderone, V.; Martelli, A.; Testai, L.; Sautebin, L.; Rossi, A.; Pace, S.; Ghelardini, C.; Di Cesare Mannelli, L.; Benetti, V.; Giordani, A.; Anzellotti, P.; Dovizio, M.; Patrignani, P.; Biava, M. Novel analgesic/anti-inflammatory agents: 1,5-diarylpyrrole nitrooxyalkyl ethers and related compounds as cyclooxygenase-2 inhibiting nitric oxide donors. J. Med. Chem., 2013, 56(8), 3191-3206.
[http://dx.doi.org/10.1021/jm301370e] [PMID: 23534442]
[97]
Anzini, M.; Rovini, M.; Cappelli, A.; Vomero, S.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Norcini, M.; Giordani, A.; Makovec, F.; Anzellotti, P.; Patrignani, P.; Biava, M. Synthesis, biological evaluation, and enzyme docking simulations of 1,5-diarylpyrrole-3-alkoxyethyl ethers as selective cyclooxygenase-2 inhibitors endowed with anti-inflammatory and antinociceptive activity. J. Med. Chem., 2008, 51(15), 4476-4481.
[http://dx.doi.org/10.1021/jm800084s] [PMID: 18598017]
[98]
Biava, M.; Porretta, G.C.; Poce, G.; Supino, S.; Forli, S.; Rovini, M.; Cappelli, A.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Vivoli, E.; Makovec, F.; Anzellotti, P.; Patrignani, P.; Anzini, M. Cyclooxygenase-2 inhibitors. 1,5-diarylpyrrol-3-acetic esters with enhanced inhibitory activity toward cyclooxygenase-2 and improved cyclooxygenase-2/cyclooxygenase-1 selectivity. J. Med. Chem., 2007, 50(22), 5403-5411.
[http://dx.doi.org/10.1021/jm0707525] [PMID: 17915854]
[99]
Biava, M.; Porretta, G.C.; Poce, G.; Battilocchio, C.; Manetti, F.; Botta, M.; Forli, S.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Galeotti, N.; Makovec, F.; Giordani, A.; Anzellotti, P.; Patrignani, P.; Anzini, M. Novel ester and acid derivatives of the 1,5-diarylpyrrole scaffold as anti-inflammatory and analgesic agents. Synthesis and in vitro and in vivo biological evaluation. J. Med. Chem., 2010, 53(2), 723-733.
[http://dx.doi.org/10.1021/jm901269y] [PMID: 19957931]
[100]
Harrak, Y.; Rosell, G.; Daidone, G.; Plescia, S.; Schillaci, D.; Pujol, M.D. Synthesis and biological activity of new anti-inflammatory compounds containing the 1,4-benzodioxine and/or pyrrole system. Bioorg. Med. Chem., 2007, 15(14), 4876-4890.
[http://dx.doi.org/10.1016/j.bmc.2007.04.050] [PMID: 17517512]
[101]
Biava, M.; Porretta, G.C.; Poce, G.; Battilocchio, C.; Alfonso, S.; Rovini, M.; Valenti, S.; Giorgi, G.; Calderone, V.; Martelli, A.; Testai, L.; Sautebin, L.; Rossi, A.; Papa, G.; Ghelardini, C.; Di Cesare Mannelli, L.; Giordani, A.; Anzellotti, P.; Bruno, A.; Patrignani, P.; Anzini, M. Novel analgesic/anti-inflammatory agents: Diarylpyrrole acetic esters endowed with nitric oxide releasing properties. J. Med. Chem., 2011, 54(22), 7759-7771.
[http://dx.doi.org/10.1021/jm200715n] [PMID: 21992176]
[102]
Di Capua, A.; Sticozzi, C.; Brogi, S.; Brindisi, M.; Cappelli, A.; Sautebin, L.; Rossi, A.; Pace, S.; Ghelardini, C.; Di Cesare Mannelli, L.; Valacchi, G.; Giorgi, G.; Giordani, A.; Poce, G.; Biava, M.; Anzini, M. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2016, 109, 99-106.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.044] [PMID: 26774035]
[103]
LaRosa, J.C.; Grundy, S.M.; Waters, D.D.; Shear, C.; Barter, P.; Fruchart, J.C.; Gotto, A.M.; Greten, H.; Kastelein, J.J.; Shepherd, J.; Wenger, N.K. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med., 2005, 352(14), 1425-1435.
[http://dx.doi.org/10.1056/NEJMoa050461] [PMID: 15755765]
[104]
McKenney, J.M. Pharmacologic characteristics of statins. Clin. Cardiol., 2003, 26(4)(Suppl. 3), III32-III38.
[http://dx.doi.org/10.1002/clc.4960261507] [PMID: 12708637]
[105]
Schram, B. Stroke epidemiology and prevention. Stroke Rehab., 2018, 12, 1.
[106]
Yuan, X.; Lu, P.; Xue, X.; Qin, H.; Fan, C.; Wang, Y.; Zhang, Q. Discovery of 2-azetidinone and 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain as potential cholesterol absorption inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 849-853.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.077] [PMID: 26783178]
[107]
Park, W.K.; Kennedy, R.M.; Larsen, S.D.; Miller, S.; Roth, B.D.; Song, Y.; Steinbaugh, B.A.; Sun, K.; Tait, B.D.; Kowala, M.C.; Trivedi, B.K.; Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; Lu, G.H.; Robertson, A.; Sekerke, C. Hepatoselectivity of statins: Design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 1151-1156.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.124] [PMID: 18155906]
[108]
Pfefferkorn, J.A.; Song, Y.; Sun, K.L.; Miller, S.R.; Trivedi, B.K.; Choi, C.; Sorenson, R.J.; Bratton, L.D.; Unangst, P.C.; Larsen, S.D.; Poel, T.J.; Cheng, X.M.; Lee, C.; Erasga, N.; Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; Lu, G.; Robertson, A.; Olsen, K.; Mertz, T.; Sekerke, C.; Pavlovsky, A.; Harris, M.S.; Bainbridge, G.; Caspers, N.; Chen, H.; Eberstadt, M. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4538-4544.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.096] [PMID: 17574412]
[109]
Pfefferkorn, J.A.; Bowles, D.M.; Kissel, W.; Boyles, D.C.; Choi, C.; Larsen, S.D.; Song, Y.; Sun, K.L.; Miller, S.R.; Trivedi, B.K. Development of a practical synthesis of novel, pyrrole-based HMG-CoA reductase inhibitors. Tetrahedron, 2007, 63(34), 8124-8134.
[http://dx.doi.org/10.1016/j.tet.2007.06.005]
[110]
Bratton, L.D.; Auerbach, B.; Choi, C.; Dillon, L.; Hanselman, J.C.; Larsen, S.D.; Lu, G.; Olsen, K.; Pfefferkorn, J.A.; Robertson, A.; Sekerke, C.; Trivedi, B.K.; Unangst, P.C. Discovery of pyrrole-based hepatoselective ligands as potent inhibitors of HMG-CoA reductase. Bioorg. Med. Chem., 2007, 15(16), 5576-5589.
[http://dx.doi.org/10.1016/j.bmc.2007.05.031] [PMID: 17560788]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy