Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

High Free Volume Polymeric Membranes for CO2 Capture: Stateof- the-art

Author(s): Ruilin Wan, Yulei Ma, Jing Wei, Hongfang Guo, Jianan Fan, Zikang Qin and Zhongde Dai*

Volume 15, Issue 2, 2022

Published on: 15 August, 2022

Page: [86 - 102] Pages: 17

DOI: 10.2174/2405520415666220613122701

Price: $65

Abstract

Carbon Dioxide (CO2) capture has been widely accepted to be a prerequisite strategy to mitigate the increase of CO2 concentration in the atmosphere. Membrane separation has been envisaged to be one of the most promising technologies for CO2 capture due to its small footprint, simple up- and down-scaling, and low impact on the environment. Owing to their extraordinary high CO2 permeability and moderate CO2 selectivity over other gases, high free volume polymeric membrane materials have been intensively studied for CO2 capture. In the past few years, abundant high free volume polymers have been developed and big progress has been made in this field. Therefore, in this review, starting from CO2 emissions and sources, followed by CO2 transport mechanisms in polymeric membranes, this paper emphasizes reviewing recent research progress in high free volume membrane materials, collecting and analyzing CO2 separation data, as well as discussing the challenges of high free volume polymeric membranes. Furthermore, perspectives on future directions of high free volume polymeric membranes were also proposed.

Keywords: CO2 capture, membrane separation, high free volume polymer, physical aging, plasticization, CO2 emission.

Graphical Abstract

[1]
Ritchie H, Roser M. CO2 and greenhouse gas emissions. 2020. Available from ourworldindata.org/co2-and-other-greenhousegas-emissions
[2]
Wang Y, Hu T, Li H, Dong G, Wong W, Chen V. Enhancing membrane permeability for CO2 capture through blending commodity polymers with selected PEO and PEO-PDMS copolymers and composite hollow fibres. Energy Procedia 2014; 63: 202-9.
[http://dx.doi.org/10.1016/j.egypro.2014.11.021]
[3]
Norahim N, Yaisanga P, Faungnawakij K, Charinpanitkul T, Klaysom C. Recent membrane developments for CO2 se-paration and capture. Chem Eng Technol 2018; 41(2): 211-23.
[http://dx.doi.org/10.1002/ceat.201700406]
[4]
Bains P, Psarras P, Wilcox J. CO2 capture from the industry sector. Pror Energy Combust Sci 2017; 63: 146-72.
[http://dx.doi.org/10.1016/j.pecs.2017.07.001]
[5]
Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Membr Sci 2016; 505: 100-7.
[http://dx.doi.org/10.1016/j.memsci.2015.12.053]
[6]
Peters L, Hussain A, Follmann M, Melin T, Hägg M-B. CO2 removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis. Chem Eng J 2011; 172(2-3): 952-60.
[http://dx.doi.org/10.1016/j.cej.2011.07.007]
[7]
Bernhardsen IM, Knuutila HK. A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. Int J Greenh Gas Control 2017; 61: 27-48.
[http://dx.doi.org/10.1016/j.ijggc.2017.03.021]
[8]
Borhani TN, Wang M. Role of solvents in CO2 capture processes: The review of selection and design methods. Renew Sustain Energy Rev 2019; 114: 109299.
[http://dx.doi.org/10.1016/j.rser.2019.109299]
[9]
Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem Eng Res Des 2011; 89(9): 1609-24.
[http://dx.doi.org/10.1016/j.cherd.2010.11.005]
[10]
Ochedi FO, Yu J, Yu H, Liu Y, Hussain A. Carbon dioxide capture using liquid absorption methods: A review. Environ Chem Lett 2021; 19(1): 77-109.
[http://dx.doi.org/10.1007/s10311-020-01093-8]
[11]
Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew Sustain Energy Rev 2018; 96: 502-25.
[http://dx.doi.org/10.1016/j.rser.2018.07.004]
[12]
Creamer AE, Gao B. Carbon-based adsorbents for postcombustion CO2 capture. Crit Rev Environ Sci Technol 2016; 50(14): 7276-89.
[http://dx.doi.org/10.1021/acs.est.6b00627] [PMID: 27257991]
[13]
Ochedi FO, Liu Y, Adewuyi YG. State-of-the-art review on capture of CO2 using adsorbents prepared from waste mate-rials. Process Saf Environ Prot 2020; 139: 1-25.
[http://dx.doi.org/10.1016/j.psep.2020.03.036]
[14]
Song C, Liu Q, Ji N, et al. Alternative pathways for efficient CO2 capture by hybrid processes-A review. Renew Sustain Energy Rev 2018; 82: 215-31.
[http://dx.doi.org/10.1016/j.rser.2017.09.040]
[15]
Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 2004; 18(2): 371-7.
[http://dx.doi.org/10.1021/ef0301452]
[16]
Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Membr Sci 2010; 359(1-2): 115-25.
[http://dx.doi.org/10.1016/j.memsci.2009.11.040]
[17]
Dai Z, Ansaloni L, Deng L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A re-view. Green Ener Environ 2016; 1(2): 102-28.
[http://dx.doi.org/10.1016/j.gee.2016.08.001]
[18]
Han Y, Ho WW. Polymeric membranes for CO2 separation and capture. J Membr Sci 2021; 628: 119244.
[http://dx.doi.org/10.1016/j.memsci.2021.119244]
[19]
Zhao D, Ren J, Wang Y, et al. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J Membr Sci 2017; 521: 104-13.
[http://dx.doi.org/10.1016/j.memsci.2016.08.061]
[20]
Liu Y, Wu H, Wu S, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for en-hanced CO2 separation. J Membr Sci 2021; 618: 118693.
[http://dx.doi.org/10.1016/j.memsci.2020.118693]
[21]
Shen J, Liu G, Huang K, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 2016; 513: 155-65.
[http://dx.doi.org/10.1016/j.memsci.2016.04.045]
[22]
Hou J, Zhang H, Simon GP, Wang H. Polycrystalline advanced microporous framework membranes for efficient sepa-ration of small molecules and ions. Adv Mater 2020; 32(18): e1902009.
[http://dx.doi.org/10.1002/adma.201902009] [PMID: 31273835]
[23]
Zhang Z, Yao Z-Z, Xiang S, Chen B. Perspective of microporous metal–organic frameworks for CO2 capture and sepa-ration. Energy Environ Sci 2014; 7(9): 2868-99.
[http://dx.doi.org/10.1039/C4EE00143E]
[24]
Zou X, Zhu G. Microporous organic materials for membrane‐based gas separation. Adv Mater 2018; 30(3): 1700750.
[http://dx.doi.org/10.1002/adma.201700750] [PMID: 29064126]
[25]
Prasetya N, Himma NF, Sutrisna PD, Wenten IG, Ladewig BP. A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem Eng J 2020; 391: 123575.
[http://dx.doi.org/10.1016/j.cej.2019.123575]
[26]
Cao Y, Khan A, Nakhjiri AT, Albadarin AB, Kurniawan TA, Rezakazemi M. Recent advancements in molecular sepa-ration of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents. J Mol Liq 2021; 337: 116439.
[http://dx.doi.org/10.1016/j.molliq.2021.116439]
[27]
Ghanbari T, Abnisa F, Wan Daud WMA. A review on production of metal organic frameworks (MOF) for CO2 ad-sorption. Sci Total Environ 2020; 707: 135090.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135090] [PMID: 31863992]
[28]
Li X, Zhu Q-L. MOF-based materials for photo-and electrocatalytic CO2 reduction. EnergyChem 2020; 2(3): 100033.
[http://dx.doi.org/10.1016/j.enchem.2020.100033]
[29]
Adatoz E, Avci AK, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Separ Purif Tech 2015; 152: 207-37.
[http://dx.doi.org/10.1016/j.seppur.2015.08.020]
[30]
Wu T, Prasetya N, Li K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J Membr Sci 2020; 615: 118493.
[http://dx.doi.org/10.1016/j.memsci.2020.118493]
[31]
Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH. Graphene-based membranes for CO2 separation. Mater Sci Energy Technol 2019; 2(1): 83-8.
[http://dx.doi.org/10.1016/j.mset.2018.11.002]
[32]
Xu J, Wu H, Wang Z, Qiao Z, Zhao S, Wang J. Recent advances on the membrane processes for CO2 separation. Chin J Chem Eng 2018; 26(11): 2280-91.
[http://dx.doi.org/10.1016/j.cjche.2018.08.020]
[33]
Zhang C, Wu B-H, Ma M-Q, Wang Z, Xu Z-K. Ultrathin metal/covalent-organic framework membranes towards ulti-mate separation. Chem Soc Rev 2019; 48(14): 3811-41.
[http://dx.doi.org/10.1039/C9CS00322C] [PMID: 31179451]
[34]
Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane sepa-ration. Chem Soc Rev 2019; 48(10): 2665-81.
[http://dx.doi.org/10.1039/C8CS00919H] [PMID: 31025660]
[35]
Tomé LC, Marrucho IM. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem Soc Rev 2016; 45(10): 2785-824.
[http://dx.doi.org/10.1039/C5CS00510H] [PMID: 26966735]
[36]
Zeng S, Zhang X, Bai L, et al. Ionic-liquid-based CO2 capture systems: Structure, interaction and process. Chem Rev 2017; 117(14): 9625-73.
[http://dx.doi.org/10.1021/acs.chemrev.7b00072] [PMID: 28686434]
[37]
Cui J, Li Y, Chen D, Zhan TG, Zhang KD. Ionic liquid‐based stimuli‐responsive functional materials. Adv Funct Mater 2020; 30(50): 2005522.
[http://dx.doi.org/10.1002/adfm.202005522]
[38]
Bai C, Colombo P. Processing, properties and applications of highly porous geopolymers: A review. Ceram Int 2018; 44(14): 16103-18.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.219]
[39]
Baker RW. Membrane technology and applications. John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118359686]
[40]
Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 1991; 62(2): 165-85.
[http://dx.doi.org/10.1016/0376-7388(91)80060-J]
[41]
Robeson LM. The upper bound revisited. J Membr Sci 2008; 320(1): 390-400.
[http://dx.doi.org/10.1016/j.memsci.2008.04.030]
[42]
Ismail AF, David LIB. A review on the latest development of carbon membranes for gas separation. J Membr Sci 2001; 193(1): 1-18.
[http://dx.doi.org/10.1016/S0376-7388(01)00510-5]
[43]
Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: A review. J Environ Sci 2008; 20(1): 14-27.
[http://dx.doi.org/10.1016/S1001-0742(08)60002-9] [PMID: 18572517]
[44]
Xu X, Wang J, Dong J, Li H-B, Zhang Q, Zhao X. Ionic polyimide membranes containing Tröger’s base: Synthesis, mi-crostructure and potential application in CO2 separation. J Membr Sci 2020; 602: 117967.
[http://dx.doi.org/10.1016/j.memsci.2020.117967]
[45]
Wang T, Cheng C, Wu LG, et al. Fabrication of polyimide membrane incorporated with functional graphene oxide for CO2 separation: The effects of GO surface modification on membrane performance. Environ Sci Technol 2017; 51(11): 6202-10.
[http://dx.doi.org/10.1021/acs.est.7b01563] [PMID: 28488850]
[46]
Hossain I, Al Munsur AZ, Choi O, Kim T-H. Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide mem-branes for CO2 separation. Separ Purif Tech 2019; 224: 180-8.
[http://dx.doi.org/10.1016/j.seppur.2019.05.014]
[47]
Budd PM, McKeown NB, Fritsch D. Free volume and intrinsic microporosity in polymers. J Mater Chem 2005; 15(20): 1977-86.
[http://dx.doi.org/10.1039/b417402j]
[48]
Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci 2015; 43: 1-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.10.005]
[49]
Han W, Zhang C, Zhao M, Yang F, Yang Y, Weng Y. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J Membr Sci 2021; 636: 119544.
[http://dx.doi.org/10.1016/j.memsci.2021.119544]
[50]
Hossain I, Nam SY, Rizzuto C, Barbieri G, Tocci E, Kim T-H. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. J Membr Sci 2019; 574: 270-81.
[http://dx.doi.org/10.1016/j.memsci.2018.12.084]
[51]
Yu G, Zou X, Sun L, et al. Constructing connected paths between UiO‐66 and PIM‐1 to improve membrane CO2 sepa-ration with crystal‐like gas selectivity. Adv Mater 2019; 31(15): e1806853.
[http://dx.doi.org/10.1002/adma.201806853] [PMID: 30803076]
[52]
Qiu S, Xue M, Zhu G. Metal-organic framework membranes: From synthesis to separation application. Chem Soc Rev 2014; 43(16): 6116-40.
[http://dx.doi.org/10.1039/C4CS00159A] [PMID: 24967810]
[53]
Comesaña-Gándara B, Chen J, Bezzu CG, et al. Redefining the robeson upper bounds for CO2/CH4 and CO2/N2 separa-tions using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ Sci 2019; 12(9): 2733-40.
[http://dx.doi.org/10.1039/C9EE01384A]
[54]
Rose I, Bezzu CG, Carta M, et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat Mater 2017; 16(9): 932-7.
[http://dx.doi.org/10.1038/nmat4939] [PMID: 28759030]
[55]
Stanovsky P, Karaszova M, Petrusova Z, et al. Upgrading of raw biogas using membranes based on the ultrapermeable polymer of intrinsic microporosity PIM-TMN-Trip. J Membr Sci 2021; 618: 118694.
[http://dx.doi.org/10.1016/j.memsci.2020.118694]
[56]
Zhang C, Fu L, Tian Z, Cao B, Li P. Post-crosslinking of triptycene-based Tröger’s base polymers with enhanced natural gas separation performance. J Membr Sci 2018; 556: 277-84.
[http://dx.doi.org/10.1016/j.memsci.2018.04.013]
[57]
Zhao S, Liao J, Li D, Wang X, Li N. Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger’s Base polymer for gas separation membranes. J Membr Sci 2018; 566: 77-86.
[http://dx.doi.org/10.1016/j.memsci.2018.08.010]
[58]
Wang Z, Wang D, Zhang F, Jin J. Tröger’s base-based microporous polyimide membranes for high-performance gas separation. ACS Macro Lett 2014; 3(7): 597-601.
[http://dx.doi.org/10.1021/mz500184z]
[59]
Abdulhamid MA, Ma X, Miao X, Pinnau I. Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Tröger’s base diamine: Effect of bicyclic bridge on gas transport properties. Polymer (Guildf) 2017; 130: 182-90.
[http://dx.doi.org/10.1016/j.polymer.2017.10.017]
[60]
Ghanem B, Alaslai N, Miao X, Pinnau I. Novel 6FDA-based polyimides derived from sterically hindered Tröger’s base diamines: Synthesis and gas permeation properties. Polymer (Guildf) 2016; 96: 13-9.
[http://dx.doi.org/10.1016/j.polymer.2016.04.068]
[61]
Hu X, He Y, Wang Z, Yan J. Intrinsically microporous co-polyimides derived from ortho-substituted Tröger’s base dia-mine with a pendant tert-butyl-phenyl group and their gas separation performance. Polymer (Guildf) 2018; 153: 173-82.
[http://dx.doi.org/10.1016/j.polymer.2018.08.013]
[62]
Zhuang Y, Seong JG, Do YS, et al. Soluble, microporous, Tröger’s base copolyimides with tunable membrane perfor-mance for gas separation. Chem Commun (Camb) 2016; 52(19): 3817-20.
[http://dx.doi.org/10.1039/C5CC09783E] [PMID: 26866577]
[63]
Hu X, Lee WH, Bae JY, et al. Highly permeable polyimides incorporating Tröger’s base (TB) units for gas separation membranes. J Membr Sci 2020; 615: 118533.
[http://dx.doi.org/10.1016/j.memsci.2020.118533]
[64]
Jahan Z, Niazi MBK, Hagg M-B, Gregersen ØW, Hussain A. Phosphorylated nanocellulose fibrils/PVA nanocomposite membranes for biogas upgrading at higher pressure. Sep Sci Technol 2020; 55(8): 1524-34.
[http://dx.doi.org/10.1080/01496395.2019.1592192]
[65]
Smith SJD, Hou R, Konstas K, Akram A, Lau CH, Hill MR. Control of physical aging in super-glassy polymer mixed matrix membranes. Acc Chem Res 2020; 53(7): 1381-8.
[http://dx.doi.org/10.1021/acs.accounts.0c00256] [PMID: 32627529]
[66]
Brunetti A, Cersosimo M, Kim JS, et al. Thermally rearranged mixed matrix membranes for CO2 separation: An aging study. Int J Greenh Gas Control 2017; 61: 16-26.
[http://dx.doi.org/10.1016/j.ijggc.2017.03.024]
[67]
Menendez I, Fuertes AB. Aging of carbon membranes under different environments. Carbon 2001; 39(5): 733-40.
[http://dx.doi.org/10.1016/S0008-6223(00)00188-3]
[68]
Huang Y, Paul DR. Physical aging of thin glassy polymer films monitored by gas permeability. Polymer (Guildf) 2004; 45(25): 8377-93.
[http://dx.doi.org/10.1016/j.polymer.2004.10.019]
[69]
Lau CH, Nguyen PT, Hill MR, et al. Ending aging in super glassy polymer membranes. Angew Chem Int Ed Engl 2014; 53(21): 5322-6.
[70]
Wu Y, Guo Z, Wu H, et al. Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture. J Membr Sci 2020; 609: 118215.
[http://dx.doi.org/10.1016/j.memsci.2020.118215]
[71]
Corrado TJ, Huang Z, Huang D, Wamble N, Luo T, Guo R. Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance 2021; 118(37): e2022204118.
[http://dx.doi.org/10.1073/pnas.2022204118]
[72]
Zhuang G-L, Wey M-Y, Tseng H-H. Effect of copolymer microphase-separated structures on the gas separation per-formance and aging properties of SBC-derived membranes. J Membr Sci 2017; 529: 63-71.
[http://dx.doi.org/10.1016/j.memsci.2017.01.060]
[73]
Qiu W, Vaughn J, Liu G, et al. Hyperaging tuning of a carbon molecular-sieve hollow fiber membrane with extraordi-nary gas-separation performance and stability. Angew Chem Int Ed Engl 2019; 58(34): 11700-3.
[74]
Brunetti A, Cersosimo M, Dong G, et al. in situ restoring of aged thermally rearranged gas separation membranes. J Membr Sci 2016; 520: 671-8.
[http://dx.doi.org/10.1016/j.memsci.2016.07.030]
[75]
Wessling M, Schoeman S, van der Boomgaard T, Smolders CA. Plasticization of gas separation membranes. Gas Sep Purification 1991; 5(4): 222-8.
[http://dx.doi.org/10.1016/0950-4214(91)80028-4]
[76]
Bos A, Pünt IGM, Wessling M, Strathmann H. Plasticization-resistant glassy polyimide membranes for CO2/CO4 separa-tions. Separ Purif Tech 1998; 14(1): 27-39.
[http://dx.doi.org/10.1016/S1383-5866(98)00057-4]
[77]
Suleman MS, Lau KK, Yeong YF. Plasticization and swelling in polymeric membranes in CO2 removal from natural gas. Chem Eng Technol 2016; 39(9): 1604-16.
[78]
Wessling M, Lidon Lopez M, Strathmann H. Accelerated plasticization of thin-film composite membranes used in gas separation. Separ Purif Tech 2001; 24(1): 223-33.
[http://dx.doi.org/10.1016/S1383-5866(01)00127-7]
[79]
Zhang M, Deng L, Xiang D, Cao B, Hosseini SS, Li P. Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications. Processes 2019; 7(1): 51.
[http://dx.doi.org/10.3390/pr7010051]
[80]
Kadirkhan F, Goh PS, Ismail AF, et al. Recent advances of polymeric membranes in tackling plasticization and aging for practical industrial CO2/CH4 applications-a review. Membranes (Basel) 2022; 12(1): 71.
[http://dx.doi.org/10.3390/membranes12010071] [PMID: 35054597]
[81]
Qiu W, Chen C-C, Xu L, Cui L, Paul DR, Koros WJ. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 2011; 44(15): 6046-56.
[http://dx.doi.org/10.1021/ma201033j]
[82]
Wind JD, Staudt-Bickel C, Paul DR, Koros WJ. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes. Ind Eng Chem Res 2002; 41(24): 6139-48.
[http://dx.doi.org/10.1021/ie0204639]
[83]
Kapantaidakis GC, Koops GH, Wessling M, Kaldis SP, Sakellaropoulos GP. Sakellaropoulos, CO2 plasticization of polyethersulfone/polyimide gas-separation membranes 2003; 49(7): 1702-1.
[84]
Bos A, Pünt I, Strathmann H, Wessling M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE J 2001; 47(5): 1088-93.
[http://dx.doi.org/10.1002/aic.690470515]
[85]
Zhao J, Xie K, Liu L, Liu M, Qiu W, Webley PA. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. J Membr Sci 2019; 583: 23-30.
[http://dx.doi.org/10.1016/j.memsci.2019.03.073]
[86]
Jiang X, Li S, He S, Bai Y, Shao L. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J Mater Chem A Mater Energy Sustain 2018; 6(31): 15064-73.
[http://dx.doi.org/10.1039/C8TA03872D]
[87]
Ying Y, Cheng Y, Peh SB, et al. Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed ma-trix membranes containing flexible metal-organic framework fillers. J Membr Sci 2019; 582: 103-10.
[http://dx.doi.org/10.1016/j.memsci.2019.03.088]
[88]
Houben M, Borneman Z, Nijmeijer K. Plasticization behavior of crown-ether containing polyimide membranes for the separation of CO2. Separ Purif Tech 2021; 255: 117307.
[http://dx.doi.org/10.1016/j.seppur.2020.117307]
[89]
Abdulhamid MA, Genduso G, Wang Y, Ma X, Pinnau I. Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM–PI) for membrane-based gas separation. Ind Eng Chem Res 2020; 59(12): 5247-56.
[http://dx.doi.org/10.1021/acs.iecr.9b04994]
[90]
Isfahani PA, Sadeghi M, Wakimoto K, et al. Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes. ACS Appl Mater Interfaces 2018; 10(20): 17366-74.
[http://dx.doi.org/10.1021/acsami.7b18475] [PMID: 29708720]
[91]
Scholes CA, Kentish SE, Stevens GW. Effects of minor components in carbon dioxide capture using polymeric gas sepa-ration membranes. Separ Purif Rev 2009; 38(1): 1-44.
[http://dx.doi.org/10.1080/15422110802411442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy