Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Letter Article

Synthesis, Molecular docking, Antioxidant, Anti-TB, and Potent MCF-7 Anticancer Studies of Novel Aryl-carbohydrazide Analogues

Author(s): Bapu R. Thorat, Suraj N. Mali*, Rahul R. Wagh and Ramesh S. Yamgar

Volume 18, Issue 4, 2022

Published on: 16 September, 2022

Page: [247 - 257] Pages: 11

DOI: 10.2174/1573409918666220610162158

Price: $65

Abstract

Background: Hydrazide-hydrazone-based compounds are reported for their wider pharmacological potentials.

Methods: In the present work, we synthesized 10 new Schiff-based-aryl-carbohydrazide (3a-3e) and (4a-4e) analogues and characterized further using standard spectroscopic techniques including NMR, mass and FT-IR. Moreover, all synthesized compounds were subjected to in vitro anti-TB, anti-microbial, antioxidant and anti-MCF-7 cell line studies.

Results: Our results suggested that compounds have strong potencies against studied microbial species (such as 3a, 3b and 3c, (anti-TB activity: MIC value of 1.6 μg/mL; 3c:80.23 % inhibition at 200 μg/mL against MCF-7). Synthesized compounds (3a-3e) and (4a-4e) were also retained with higher docking scores than standards like ciprofloxacin; when studied for their molecular docking analysis against common anti-bacterial (pdb id:1d7u; 3a: -4.909 kcal/mol), common anti-fungal (pdb id:1ai9; 3b: -6.122 kcal/mol) and enoyl acyl reductase enzyme (pdb id:2x22; 3c: docking score: -4.194 kcal/mol)) targets.

Conclusion: Thus, considering promising results for Schiff-based-aryl-carbohydrazides, these compounds may emerge as a new class for developing potent anti-microbial agents in the near future.

Keywords: carbohydrazide, Anti-oxidant activity, Anti-cancer, in-silico analysis, Anti-microbial activity, synthesis.

Next »
[1]
WHO. Tuberculosis Available from: http://www.who.int/topics/tuberculosis/en/
[2]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobac-terial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[3]
Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Foye’s principles of medicinal chemistry, 7th ed; Wolters Kluwer: New Delhi, 2013, p. 1177.
[4]
Bhat, M.A.; Al-Omar, M.A. Synthesis, characterization, and in vitro anti-Mycobacterium tuberculosis activity of terpene Schiff bases. Med. Chem. Res., 2013, 22(9), 4522-4528.
[http://dx.doi.org/10.1007/s00044-012-0458-3]
[5]
Paidi, K.R.; Tatipamula, V.B.; Kolli, M.K.; Pedakotla, V.R. Benzohydrazide incorporated imidazo [1, 2-b] pyridazine: Synthesis, characteri-zation and in vitro anti-tubercular activity. Int. J. Chem. Sci., 2017, 15(3), 172.
[6]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno [1, 2-c] quinoline derivatives as potent dual antituberculosis and anti-Inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[7]
Mali, S.N.; Chaudhari, H.K. Computational studies on imidazo [1,2-a] pyridine-3-carboxamide analogues as antimycobacterial agents: Common pharmacophore generation, atom-based 3DQSAR, molecular dynamics simulation, qikprop, molecular docking and prime MMGBSA approaches. Open Pharm. Sci. J., 2018, 5(1), 12-23.
[http://dx.doi.org/10.2174/1874844901805010012] [http://dx.doi.org/10.2174/1874844901805010012]
[8]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q. Thiosemicarbazones, semi-carbazones, dithiocarbazates and hydrazide/hydrazones: Anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[9]
Nusrath Unissa, A.; Hanna, L.E.; Swaminathan, S. A note on derivatives of isoniazid, Rifampicin, and pyrazinamide showing activity against resistant Mycobacterium tuberculosis. Chem. Biol. Drug Des., 2016, 87(4), 537-550.
[http://dx.doi.org/10.1111/cbdd.12684] [PMID: 26613382]
[10]
Sriram, D.; Yogeeswari, P.; Vyas, D.R.K.; Senthilkumar, P.; Bhat, P.; Srividya, M. 5-Nitro-2-furoic acid hydrazones: Design, synthesis and in vitro antimycobacterial evaluation against log and starved phase cultures. Bioorg. Med. Chem. Lett., 2010, 20(15), 4313-4316.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.096] [PMID: 20615698]
[11]
Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett., 2016, 26(3), 978-985.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.049] [PMID: 26725953]
[12]
Coelho, T.S.; Cantos, J.B.; Bispo, M.L.F.; Gonçalves, R.S.B.; Lima, C.H.S.; da Silva, P.E.A.; Souza, M.V. In vitro anti-mycobacterial activity of (E)-N′-(monosubstituted-benzylidene) isonicotinohydrazide derivatives against isoniazid-resistant strains. Infect. Dis. Rep., 2012, 4(1), e13.
[http://dx.doi.org/10.4081/idr.2012.e13] [PMID: 24470920]
[13]
de Souza, M.V.N. Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia, 2009, 80(8), 453-460.
[http://dx.doi.org/10.1016/j.fitote.2009.07.010] [PMID: 19698768]
[14]
Smieja, M.J.; Marchetti, C.A.; Cook, D.J.; Smaill, F.M. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst. Rev., 2000, (2), CD001363.
[http://dx.doi.org/10.1002/14651858.CD001363] [PMID: 10796642]
[15]
Akolo, C.; Adetifa, I.; Shepperd, S.; Volmink, J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst. Rev., 2010, (1), CD000171.
[http://dx.doi.org/10.1002/14651858.CD000171.pub3] [PMID: 20091503]
[16]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med., 2003, 198(5), 693-704.
[http://dx.doi.org/10.1084/jem.20030846] [PMID: 12953091]
[17]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: A review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[18]
Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 2010, 45(7), 3019-3026.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.031] [PMID: 20403645]
[19]
Rane, R.A.; Telvekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(19), 5681-5685.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.026] [PMID: 20800487]
[20]
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Synthesis and antimicrobial activity of 2-chloro-6- methylquinoline hydrazone derivatives. J. Pharm. Bioallied Sci., 2009, 1(1), 27-31.
[http://dx.doi.org/10.4103/0975-7406.62683]
[21]
Kaplancikli, Z.A.; Altintop, M.D.; Özdemir, A.; Turan-Zitounia, G.; Khan, S.I.; Tabanca, N. Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Lett. Drug Des. Discov., 2012, 9, 310-315.
[http://dx.doi.org/10.2174/157018012799129828] [http://dx.doi.org/10.2174/157018012799129828]
[22]
Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16(8), 2213-2218.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.048] [PMID: 16458509]
[23]
Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592-6599.
[http://dx.doi.org/10.1016/j.bmc.2013.08.026] [PMID: 24071449]
[24]
Vicini, P.; Incerti, M.; La Colla, P.; Loddo, R. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem., 2009, 44(4), 1801-1807.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.030] [PMID: 18614259]
[25]
Rocha, L.T.S.; Costa, K.A.; Oliveira, A.C.P.; Nascimento, E.B., Jr; Bertollo, C.M.; Araújo, F.; Teixeira, L.R.; Andrade, S.P.; Beraldo, H.; Coelho, M.M. Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci., 2006, 79(5), 499-505.
[http://dx.doi.org/10.1016/j.lfs.2006.01.027] [PMID: 16600310]
[26]
Krishnan, K.; Prathiba, K.; Jayaprakash, V.; Basu, A.; Mishra, N.; Zhou, B.; Hu, S.; Yen, Y. Synthesis and ribonucleotide reductase inhibi-tory activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2008, 18(23), 6248-6250.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.097] [PMID: 18976907]
[27]
Thanigaimalai, P.; Lee, K.C.; Sharma, V.K.; Roh, E.; Kim, Y.; Jung, S.H. Ketonethiosemicarbazones: structure-activity relationships for their melanogenesis inhibition. Bioorg. Med. Chem. Lett., 2011, 21(12), 3527-3530.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.146] [PMID: 21601449]
[28]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[29]
Bukowski, L.; Janowiec, M. 1-Methyl-1H-2-imidazo[4,5-b]pyridinecarboxylic acid and some of its derivatives with suspected antitubercu-lotic activity. Pharmazie, 1996, 51(1), 27-30.
[http://dx.doi.org/10.1002/chin.199630179] [PMID: 8999430]
[30]
Küçükgüzel, Ş.G.; Rollas, S.; Küçükgüzel, İ.; Kiraz, M. Synthesis and Antimycobacterial activity of some coupling products from 4-aminobenzoic acid hydrazones. Eur. J. Med. Chem., 1999, 34(12), 1093-1100.
[http://dx.doi.org/10.1016/S0223-5234(99)00129-4]
[31]
Cocco, M.T.; Congiu, C.; Onnis, V.; Pusceddo, M.C.; Schivo, M.L.; De Logu, A. Synthesis and antimycobacterial activity of some isonico-tinoylhydrazones. Eur. J. Med. Chem., 1999, 34(12), 1071-1076.
[http://dx.doi.org/10.1016/S0223-5234(99)00124-5]
[32]
Bukowski, L.; Janowiec, M.; Zwolska-Kwiek, Z.; Andrzejczyk, Z. Synthesis and some reactions of 2-acetylimidazo[4,5-b]pyridine. An-tituberculotic activity of the obtained compounds. Pharmazie, 1999, 54(9), 651-654.
[PMID: 10522269]
[33]
John, S.F.; Aniemeke, E.; Ha, N.P.; Chong, C.R.; Gu, P.; Zhou, J.; Zhang, Y.; Graviss, E.A.; Liu, J.O.; Olaleye, O.A. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2016, 101S, S73-S77.
[http://dx.doi.org/10.1016/j.tube.2016.09.025] [PMID: 27856197]
[34]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[35]
Abate, G.; Mshana, R.N.; Miörner, H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 1998, 2(12), 1011-1016.
[PMID: 9869118] [PMID: 9869118]
[36]
Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Ap-plicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study -. Anal. Sci., 2014, 30(7), 717-721.
[http://dx.doi.org/10.2116/analsci.30.717] [PMID: 25007929]
[37]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Multiple 3D-and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct. Chem., 2022, 33, 679-694.
[http://dx.doi.org/10.1007/s11224-022-01879-2]
[38]
Nagre, D.T.; Thorat, B.R.; Mali, S.N.; Farooqui, M.; Agrawal, B. Experimental and computational insights into bis-indolylmethane deriva-tives as potent antimicrobial agents inhibiting 2, 2-dialkylglycine decarboxylase. Curr. Enzym. Inhib., 2021, 17(3), 204-216.
[http://dx.doi.org/10.2174/1573408017666210914105731]
[39]
(a) Protein Database Bank. Glide; Schrödinger, LLC: NY, 2021. Available from: https://www.rcsb.org/
[40]
Mali, S.N.; Pandey, A. Unveiling naturally occurring green tea polyphenol epigallocatechin-3-gallate (EGCG) targeting mycobacterium DPRE1 for anti-tb drug discovery. Eng. Proc., 2021, 11, 31.
[http://dx.doi.org/10.3390/ASEC2021-11185]
[41]
Ghosh, S.; Mali, S.N.; Bhowmick, D.N.; Pratap, A.P. Neem oil as natural pesticide: Pseudo ternary diagram and computational study. J. Indian Chem. Soc., 2021, 98(7), 100088.
[http://dx.doi.org/10.1016/j.jics.2021.100088]
[42]
Desale, V.J.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S. Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2). Curr. Computeraided Drug Des., 2021, 17(4), 493-503.
[http://dx.doi.org/10.2174/1573409916666200615141047] [PMID: 32538732]
[43]
Kshatriya, R.; Shelke, P.; Mali, S.; Yashwantrao, G.; Pratap, A.; Saha, S. Synthesis and evaluation of anticancer activity of pyrazolone ap-pended triarylmethanes (TRAMs). ChemistrySelect, 2021, 6(24), 6230-6239.
[http://dx.doi.org/10.1002/slct.202101083]
[44]
Mali, S.N.; Pandey, A. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J. Indian Chem. Soc., 2021, 98(6), 100082.
[http://dx.doi.org/10.1016/j.jics.2021.100082]
[45]
Mali, S.N.; Pandey, A. Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molec-ular docking, virtual screening, in silico ADMET and theoretical analysis. J. Comput. Biophys. Chem., 2021, 20(03), 267-282.
[http://dx.doi.org/10.1142/S2737416521500125]
[46]
Chopade, A.R.; Somade, P.M.; Somade, P.P.; Mali, S.N. Identification of anxiolytic potential of niranthin: in-vivo and computational investi-gations. Nat. Prod. Bioprospect., 2021, 11(2), 223-233.
[http://dx.doi.org/10.1007/s13659-020-00284-8] [PMID: 33175328]
[47]
Thorat, B.R.; Mali, S.N.; Rani, D.; Yamgar, R.S. Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents. Curr. Computeraided Drug Des., 2021, 17(2), 294-306.
[http://dx.doi.org/10.2174/1573409916666200302120942] [PMID: 32141422]
[48]
Chopade, A.R.; Pol, R.P.; Patil, P.A.; Dharanguttikar, V.R.; Naikwade, N.S.; Dias, R.J.; Mali, S.N. An insight into the anxiolytic effects of lignans (phyllanthin and hypophyllanthin) and tannin (corilagin) rich extracts of Phyllanthus amarus: An in silico and in-vivo approaches. Comb. Chem. High Throughput Screen., 2021, 24(3), 415-422.
[http://dx.doi.org/10.2174/1386207323666200605150915] [PMID: 32503404]
[49]
Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-review of the importance of hydrazides and their derivatives-Synthesis and biologi-cal activity. Engineering Proceedings, 2021, 11(1), 21.
[50]
Nagre, D.T.; Mali, S.N.; Thorat, B.R.; Thorat, S.A.; Chopade, A.R.; Farooqui, M.; Agrawal, B. Synthesis, in silico potential enzymatic target predictions, pharmacokinetics, toxicity, anti-microbial and anti-inflammatory studies of bis-(2-methylindolyl) methane derivatives. Curr. Enzym. Inhib., 2021, 17(2), 127-143.
[http://dx.doi.org/10.2174/1573408017666210203203735]
[51]
Chopade, A.R.; Pol, R.P.; Patil, P.A.; Dharanguttikar, V.R.; Naikwade, N.S.; Dias, R.J.; Mali, S.N. Pharmacological and in silico investigations of anxiolytic-like effects of phyllanthus fraternus: A probable involvement of GABA-A receptor. Curr. Enzym. Inhib., 2021, 17(1), 42-48.
[http://dx.doi.org/10.2174/1573408016999201026200650]
[52]
Anuse, D.G.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S.; Chaudhari, H.K. Synthesis, SAR, in silico appraisal and anti-microbial study of substi-tuted 2-aminobenzothiazoles derivatives. Curr. Computeraided Drug Des., 2020, 16(6), 802-813.
[http://dx.doi.org/10.2174/1573409915666191210125647] [PMID: 31820704]
[53]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, in silico and biological studies of thia-zolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr. Computeraided Drug Des., 2020, 16(5), 511-522.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[54]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study on halo-substituted 2-aryl oxyacetohydrazones. Curr. Computeraided Drug Des., 2020, 16(5), 618-628.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[55]
Anuse, D.G.; Thorat, B.R.; Sawant, S.; Yamgar, R.S.; Chaudhari, H.K.; Mali, S.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles. Curr. Computeraided Drug Des., 2020, 16(5), 530-540.
[http://dx.doi.org/10.2174/1573409915666190902143648] [PMID: 31475902]
[56]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in vitro and computational analysis of hydrazones as potential antituberculosis agents:(part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[57]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy