Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Calprotectin: The Link Between Acute Lung Injury and Gastrointestinal Injury in Covid-19: Ban or Boon

Author(s): Hayder M. Al-Kuraishy, Ali I. Al-Gareeb, Marwa S. Al-Niemi, Athanasios Alexiou* and Gaber El-Saber Batiha*

Volume 23, Issue 5, 2022

Published on: 21 July, 2022

Page: [310 - 320] Pages: 11

DOI: 10.2174/1389203723666220610124303

Price: $65

Abstract

The pathogenesis of SARS-CoV-2 infection is related to the direct cytopathic effect and associated hyper-inflammation due to exaggerated immune response. Different experimental and clinical studies revealed that many biomarkers could be used to determine the Covid-19 severity, such as Ddimer, procalcitonin, C-reaction protein (CRP), IL-6, and ferritin. Calprotectin (CP) is associated with intestinal inflammation, intestinal injury, and different respiratory diseases such as cystic fibrosis. Thus, CP might be a possible biomarker linking intestinal injury and acute lung injury (ALI) in Covid-19. Therefore, this study aimed to find a potential role of CP regarding GITI and ALI in Covid-19. CP is a complex protein consisting of S100A8 and S100A9, belonging to the Ca+2-binding proteins S100 family abundant in the cytosol of neutrophils and expressed on the monocyte membranes, macrophages, and intestinal epithelial cells. CP is a proinflammatory protein that acts through activation of the receptor for the advanced glycation end product (RAGE) and toll-like receptor 4 (TLR4). CP is a biomarker of neutrophil activation and is released following the turnover of neutrophils. CP could be controversial; it increases airway inflammation or protects lung and airway epithelium from an exaggerated immune response. Therefore, a high level of CP in different respiratory disorders might be protective and compensate against abnormal immune responses. CP level is high in Covid-19 and correlated with Covid-19 severity and oxygen demand due to activation of proinflammatory cytokines and inflammatory signaling pathways. Therefore, CP level is elevated in both ALI and intestinal inflammation so that it could be a potential biomarker that links the respiratory and intestinal injury in Covid-19.

Keywords: SARS-CoV-2, Covid-19, calprotectin, intestinal injury, acute lung injury, respiratory infection

Graphical Abstract

[1]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Al-Buhadily, A.K.; Al-Harchan, N.A.; Lugnier, C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J. Microsc. Ultrastruct., 2020, 8(4), 141-145.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[2]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Renin–Angiotensin system and fibri-nolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J., 2020, 4(5), 33. [BBRJ].
[3]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[4]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E. The looming effects of estrogen in Covid-19: A Rocky Rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[5]
Lugnier, C.; Al-Kuraishy, H.M.; Rousseau, E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem. Pharmacol., 2021, 185, 114431-114438.
[http://dx.doi.org/10.1016/j.bcp.2021.114431] [PMID: 33515531]
[6]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Cruz-Martins, N.; Batiha, G.E. Hyperbilirubinemia in Gilbert syndrome attenuates Covid-19 induced-metabolic disturbances: A case-report study. Front. Cardiovasc. Med., 2021, 8, 71.
[7]
Zhang, H.; Li, H.B.; Lyu, J.R.; Lei, X.M.; Li, W.; Wu, G.; Lyu, J.; Dai, Z.M. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int. J. Infect. Dis., 2020, 96, 19-24.
[http://dx.doi.org/10.1016/j.ijid.2020.04.027] [PMID: 32311451]
[8]
Javitt, J. C Perspective: The potential role of vasoactive intestinal peptide in treating covid-19. Authorea Preprints, 2020.
[9]
Mahler, M.; Meroni, P.L.; Infantino, M.; Buhler, K.A.; Fritzler, M.J. Circulating Calprotectin as a Biomarker of COVID-19 Severity. Expert Rev. Clin. Immunol., 2021, 17(5), 431-443.
[http://dx.doi.org/10.1080/1744666X.2021.1905526] [PMID: 33750254]
[10]
Rendek, Z.; Falk, M.; Grodzinsky, E.; Wahlin, K.; Kechagias, S.; Svernlöv, R.; Hjortswang, H. Effect of oral diclofenac intake on faecal calprotectin. Scand. J. Gastroenterol., 2016, 51(1), 28-32.
[http://dx.doi.org/10.3109/00365521.2015.1066421] [PMID: 26200803]
[11]
Rumman, N.; Sultan, M.; El-Chammas, K.; Goh, V.; Salzman, N.; Quintero, D.; Werlin, S. Calprotectin in cystic fibrosis. BMC Pediatr., 2014, 14(1), 133.
[http://dx.doi.org/10.1186/1471-2431-14-133] [PMID: 24885444]
[12]
Stríz, I.; Trebichavský, I. Calprotectin - a pleiotropic molecule in acute and chronic inflammation. Physiol. Res., 2004, 53(3), 245-253.
[PMID: 15209531]
[13]
Romand, X.; Bernardy, C.; Nguyen, M.V.C.; Courtier, A.; Trocme, C.; Clapasson, M.; Paclet, M.H.; Toussaint, B.; Gaudin, P.; Baillet, A. Systemic calprotectin and chronic inflammatory rheumatic diseases. Joint Bone Spine, 2019, 86(6), 691-698.
[http://dx.doi.org/10.1016/j.jbspin.2019.01.003] [PMID: 30660804]
[14]
Konikoff, M.R.; Denson, L.A. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm. Bowel Dis., 2006, 12(6), 524-534.
[http://dx.doi.org/10.1097/00054725-200606000-00013] [PMID: 16775498]
[15]
Kehl-Fie, T.E.; Chitayat, S.; Hood, M.I.; Damo, S.; Restrepo, N.; Garcia, C.; Munro, K.A.; Chazin, W.J.; Skaar, E.P. Nutrient metal seques-tration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe, 2011, 10(2), 158-164.
[http://dx.doi.org/10.1016/j.chom.2011.07.004] [PMID: 21843872]
[16]
Loser, K.; Vogl, T.; Voskort, M.; Lueken, A.; Kupas, V.; Nacken, W.; Klenner, L.; Kuhn, A.; Foell, D.; Sorokin, L.; Luger, T.A.; Roth, J.; Beissert, S. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med., 2010, 16(6), 713-717.
[http://dx.doi.org/10.1038/nm.2150] [PMID: 20473308]
[17]
Loomans, H.J.; Hahn, B.L.; Li, Q.Q.; Phadnis, S.H.; Sohnle, P.G. Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin. J. Infect. Dis., 1998, 177(3), 812-814.
[http://dx.doi.org/10.1086/517816] [PMID: 9498472]
[18]
Ehrchen, J.M.; Sunderkötter, C.; Foell, D.; Vogl, T.; Roth, J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol., 2009, 86(3), 557-566.
[http://dx.doi.org/10.1189/jlb.1008647] [PMID: 19451397]
[19]
Carmona-Rivera, C.; Kaplan, M.J. Low-density granulocytes: A distinct class of neutrophils in systemic autoimmunity. Semin. Immunopathol., 2013, 35(4), 455-463.
[http://dx.doi.org/10.1007/s00281-013-0375-7]
[20]
Rammes, A.; Roth, J.; Goebeler, M.; Klempt, M.; Hartmann, M.; Sorg, C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J. Biol. Chem., 1997, 272(14), 9496-9502.
[http://dx.doi.org/10.1074/jbc.272.14.9496] [PMID: 9083090]
[21]
Dale, I. Plasma levels of the calcium-binding L1 leukocyte protein: Standardization of blood collection and evaluation of reference inter-vals in healthy controls. Scand. J. Clin. Lab. Invest., 1990, 50(8), 837-841.
[http://dx.doi.org/10.3109/00365519009104950] [PMID: 2128131]
[22]
Niemelä, M.; Niemelä, O.; Bloigu, R.; Bloigu, A.; Kangastupa, P.; Juvonen, T. Serum calprotectin, a marker of neutrophil activation, and other mediators of inflammation in response to various types of extreme physical exertion in healthy volunteers. J. Inflamm. Res., 2020, 13, 223-231.
[http://dx.doi.org/10.2147/JIR.S250675] [PMID: 32547154]
[23]
Burri, E.; Beglinger, C. The use of fecal calprotectin as a biomarker in gastrointestinal disease. Expert Rev. Gastroenterol. Hepatol., 2014, 8(2), 197-210.
[http://dx.doi.org/10.1586/17474124.2014.869476] [PMID: 24345070]
[24]
Fagerhol, M.K. Calprotectin, a faecal marker of organic gastrointestinal abnormality. Lancet, 2000, 356(9244), 1783-1784.
[http://dx.doi.org/10.1016/S0140-6736(00)03224-4] [PMID: 11117904]
[25]
Fagerberg, U.L.; Lööf, L.; Myrdal, U.; Hansson, L.O.; Finkel, Y. Colorectal inflammation is well predicted by fecal calprotectin in children with gastrointestinal symptoms. J. Pediatr. Gastroenterol. Nutr., 2005, 40(4), 450-455.
[http://dx.doi.org/10.1097/01.MPG.0000154657.08994.94] [PMID: 15795593]
[26]
Tøn, H.; Brandsnes, Ø.; Dale, S.; Holtlund, J.; Skuibina, E.; Schjønsby, H.; Johne, B. Improved assay for fecal calprotectin. Clin. Chim. Acta, 2000, 292(1-2), 41-54.
[http://dx.doi.org/10.1016/S0009-8981(99)00206-5] [PMID: 10686275]
[27]
Sutherland, A.D.; Gearry, R.B.; Frizelle, F.A. Review of fecal biomarkers in inflammatory bowel disease. Dis. Colon Rectum, 2008, 51(8), 1283-1291.
[http://dx.doi.org/10.1007/s10350-008-9310-8] [PMID: 18543035]
[28]
An, Y.K.; Prince, D.; Gardiner, F.; Neeman, T.; Linedale, E.C.; Andrews, J.M.; Connor, S.; Begun, J. Faecal calprotectin testing for identi-fying patients with organic gastrointestinal disease: Systematic review and meta-analysis. Med. J. Aust., 2019, 211(10), 461-467.
[http://dx.doi.org/10.5694/mja2.50384] [PMID: 31680263]
[29]
Petryszyn, P.; Staniak, A.; Wolosianska, A.; Ekk-Cierniakowski, P. Faecal calprotectin as a diagnostic marker of inflammatory bowel dis-ease in patients with gastrointestinal symptoms: Meta-analysis. Eur. J. Gastroenterol. Hepatol., 2019, 31(11), 1306-1312.
[http://dx.doi.org/10.1097/MEG.0000000000001509] [PMID: 31464777]
[30]
Larsson, G.; Shenoy, K.T.; Ramasubramanian, R.; Thayumanavan, L.; Balakumaran, L.K.; Bjune, G.A.; Moum, B.A. High faecal calpro-tectin levels in intestinal tuberculosis are associated with granulomas in intestinal biopsies. Infect. Dis. (Lond.), 2015, 47(3), 137-143.
[http://dx.doi.org/10.3109/00365548.2014.974206] [PMID: 25522183]
[31]
Ford, A.C.; Khan, K.J.; Achkar, J.P.; Moayyedi, P. Efficacy of oral vs. topical, or combined oral and topical 5-aminosalicylates, in ulcera-tive colitis: Systematic review and meta-analysis. Am. J. Gastroenterol., 2012, 107(2), 167-176.
[32]
Fukunaga, S.; Kuwaki, K.; Mitsuyama, K.; Takedatsu, H.; Yoshioka, S.; Yamasaki, H.; Yamauchi, R.; Mori, A.; Kakuma, T.; Tsuruta, O.; Torimura, T. Detection of calprotectin in inflammatory bowel disease: Fecal and serum levels and immunohistochemical localization. Int. J. Mol. Med., 2018, 41(1), 107-118.
[PMID: 29115397]
[33]
Meuwis, M.A.; Vernier-Massouille, G.; Grimaud, J.C.; Bouhnik, Y.; Laharie, D.; Piver, E. GETAID (Groupe d’Étude Thérapeutique Des Affections Inflammatoires Digestives). Serum calprotectin as a biomarker for Crohn’s disease. J. Crohn’s Colitis, 2013, 7, e678-e683.
[http://dx.doi.org/10.1016/j.crohns.2013.06.008]
[34]
Duman, M.; Gencpinar, P.; Biçmen, M.; Arslan, N.; Özden, Ö.; Üzüm, Ö.; Çelik, D.; Sayıner, A.A.; Gülay, Z. Fecal calprotectin: Can be used to distinguish between bacterial and viral gastroenteritis in children? Am. J. Emerg. Med., 2015, 33(10), 1436-1439.
[http://dx.doi.org/10.1016/j.ajem.2015.07.007] [PMID: 26233616]
[35]
Sýkora, J.; Siala, K.; Huml, M.; Varvařovská, J.; Schwarz, J.; Pomahačová, R. Evaluation of faecal calprotectin as a valuable non-invasive marker in distinguishing gut pathogens in young children with acute gastroenteritis. Acta Paediatr., 2010, 99(9), 1389-1395.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01843.x] [PMID: 20412103]
[36]
Sánchez de Medina, F.; Romero-Calvo, I.; Mascaraque, C.; Martínez-Augustin, O. Intestinal inflammation and mucosal barrier function. Inflamm. Bowel Dis., 2014, 20(12), 2394-2404.
[http://dx.doi.org/10.1097/MIB.0000000000000204] [PMID: 25222662]
[37]
Guardiola, J.; Lobatón, T.; Rodríguez-Alonso, L.; Ruiz-Cerulla, A.; Arajol, C.; Loayza, C.; Sanjuan, X.; Sánchez, E.; Rodríguez-Moranta, F. Fecal level of calprotectin identifies histologic inflammation in patients with ulcerative colitis in clinical and endoscopic remission. Clin. Gastroenterol. Hepatol., 2014, 12(11), 1865-1870.
[http://dx.doi.org/10.1016/j.cgh.2014.06.020] [PMID: 24993368]
[38]
Zhang, Q.; Wu, Y.; Wang, J.; Wu, G.; Long, W.; Xue, Z.; Wang, L.; Zhang, X.; Pang, X.; Zhao, Y.; Zhao, L.; Zhang, C. Accelerated dysbio-sis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Sci. Rep., 2016, 6(1), 27572.
[http://dx.doi.org/10.1038/srep27572] [PMID: 27264309]
[39]
Nacken, W.; Roth, J.; Sorg, C.; Kerkhoff, C. S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc. Res. Tech., 2003, 60(6), 569-580.
[http://dx.doi.org/10.1002/jemt.10299] [PMID: 12645005]
[40]
Bourgonje, A.R.; Gabriëls, R.Y.; de Borst, M.H.; Bulthuis, M.L.C.; Faber, K.N.; van Goor, H.; Dijkstra, G. serum free thiols are superior to fecal calprotectin in reflecting endoscopic disease activity in inflammatory bowel disease. Antioxidants, 2019, 8(9), 351.
[http://dx.doi.org/10.3390/antiox8090351] [PMID: 31480545]
[41]
Prantner, D.; Nallar, S.; Vogel, S.N. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J., 2020, 34(12), 15659-15674.
[http://dx.doi.org/10.1096/fj.202002136R] [PMID: 33131091]
[42]
Hiroshima, Y.; Hsu, K.; Tedla, N.; Chung, Y.M.; Chow, S.; Herbert, C.; Geczy, C.L. S100A8 induces IL-10 and protects against acute lung injury. J. Immunol., 2014, 192(6), 2800-2811.
[http://dx.doi.org/10.4049/jimmunol.1302556] [PMID: 24532576]
[43]
Cunningham, K.E.; Turner, J.R. Myosin light chain kinase: Pulling the strings of epithelial tight junction function. Ann. N. Y. Acad. Sci., 2012, 1258(1), 34-42.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06526.x] [PMID: 22731713]
[44]
Martínez-Augustin, O.; Merlos, M.; Zarzuelo, A.; Suárez, M.D.; de Medina, F.S. Disturbances in metabolic, transport and structural genes in experimental colonic inflammation in the rat: A longitudinal genomic analysis. BMC Genomics, 2008, 9(1), 490.
[http://dx.doi.org/10.1186/1471-2164-9-490] [PMID: 18928539]
[45]
Wang, K.; Xuan, X.; Wang, L.; Tong, L.; Huang, Q.; Zhu, L. Expression and correlation analysis between inflammatory cytokines and calprotectin in the rat model of ulcerative colitis. Xibao Yu Fenzi Mian Yi Xue Zazhi, 2014, 30(3), 278-280.
[46]
Havelka, A.; Sejersen, K.; Venge, P.; Pauksens, K.; Larsson, A. Calprotectin, a new biomarker for diagnosis of acute respiratory infec-tions. Sci. Rep., 2020, 10(1), 4208.
[http://dx.doi.org/10.1038/s41598-020-61094-z] [PMID: 32144345]
[47]
Schnapp, Z.; Hartman, C.; Livnat, G.; Shteinberg, M.; Elenberg, Y. Decreased fecal calprotectin levels in cystic fibrosis patients after anti-biotic treatment for respiratory exacerbation. J. Pediatr. Gastroenterol. Nutr., 2019, 68(2), 282-284.
[http://dx.doi.org/10.1097/MPG.0000000000002197] [PMID: 30640865]
[48]
Fang, P. Serum S100A8 as an early diagnostic biomarker in patients with community-acquired pneumonia. Arch. Med. Sci., 2021, 1-11.
[http://dx.doi.org/10.5114/aoms/130648]
[49]
Achouiti, A.; Vogl, T.; Van der Meer, A.J.; Stroo, I.; Florquin, S.; de Boer, O.J.; Roth, J.; Zeerleder, S.; van ’t Veer, C.; de Vos, A.F.; van der Poll, T. Myeloid-related protein-14 deficiency promotes inflammation in staphylococcal pneumonia. Eur. Respir. J., 2015, 46(2), 464-473.
[http://dx.doi.org/10.1183/09031936.00183814] [PMID: 25792636]
[50]
Siljan, W.W.; Holter, J.C.; Michelsen, A.E.; Nymo, S.H.; Lauritzen, T.; Oppen, K.; Husebye, E.; Ueland, T.; Mollnes, T.E.; Aukrust, P.; Heggelund, L. Inflammatory biomarkers are associated with aetiology and predict outcomes in community-acquired pneumonia: Results of a 5-year follow-up cohort study. ERJ Open Res., 2019, 5(1), 00014-02019.
[http://dx.doi.org/10.1183/23120541.00014-2019] [PMID: 30863773]
[51]
Xu, D.; Li, Y.; Li, X.; Wei, L.L.; Pan, Z.; Jiang, T.T.; Chen, Z.L.; Wang, C.; Cao, W.M.; Zhang, X.; Ping, Z.P.; Liu, C.M.; Liu, J.Y.; Li, Z.J.; Li, J.C. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, 2015, 15(1), 58-67.
[http://dx.doi.org/10.1002/pmic.201400366] [PMID: 25332062]
[52]
Lee, T.H.; Jang, A.S.; Park, J.S.; Kim, T.H.; Choi, Y.S.; Shin, H.R.; Park, S.W.; Uh, S.T.; Choi, J.S.; Kim, Y.H.; Kim, Y.; Kim, S.; Chung, I.Y.; Jeong, S.H.; Park, C.S. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann. Allergy Asthma Immunol., 2013, 111(4), 268-275.e1.
[http://dx.doi.org/10.1016/j.anai.2013.06.028] [PMID: 24054362]
[53]
Lee, Y.G.; Hong, J.; Lee, P.H.; Lee, J.; Park, S.W.; Kim, D.; Jang, A.S. Serum calprotectin is a potential marker in patients with asthma. J. Korean Med. Sci., 2020, 35(43), e362.
[http://dx.doi.org/10.3346/jkms.2020.35.e362] [PMID: 33169556]
[54]
Hemshekhar, M.; Piyadasa, H.; Mostafa, D.; Chow, L.N.Y.; Halayko, A.J.; Mookherjee, N. Cathelicidin and calprotectin are disparately altered in murine models of inflammatory arthritis and airway inflammation. Front. Immunol., 2020, 11, 1932.
[http://dx.doi.org/10.3389/fimmu.2020.01932] [PMID: 32973796]
[55]
Orivuori, L.; Mustonen, K.; de Goffau, M.C.; Hakala, S.; Paasela, M.; Roduit, C.; Dalphin, J.C.; Genuneit, J.; Lauener, R.; Riedler, J.; We-ber, J.; von Mutius, E.; Pekkanen, J.; Harmsen, H.J.M.; Vaarala, O. High level of fecal calprotectin at age 2 months as a marker of intesti-nal inflammation predicts atopic dermatitis and asthma by age 6. Clin. Exp. Allergy, 2015, 45(5), 928-939.
[http://dx.doi.org/10.1111/cea.12522] [PMID: 25758537]
[56]
Andréasson, K.; Alrawi, Z.; Persson, A.; Jönsson, G.; Marsal, J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res. Ther., 2016, 18(1), 278.
[http://dx.doi.org/10.1186/s13075-016-1182-z] [PMID: 27894337]
[57]
Volkmann, E.R. Intestinal microbiome in scleroderma: Recent progress. Curr. Opin. Rheumatol., 2017, 29(6), 553-560.
[http://dx.doi.org/10.1097/BOR.0000000000000429] [PMID: 28719392]
[58]
Aktas, B.; Aslim, B. Gut-lung axis and dysbiosis in COVID-19. Turk. J. Biol., 2020, 44(3), 265-272.
[http://dx.doi.org/10.3906/biy-2005-102] [PMID: 32595361]
[59]
Cagnina, R.E.; Michels, K.R.; Bettina, A.M.; Burdick, M.D.; Scindia, Y.; Zhang, Z. Neutrophil-derived TNF drives fungal acute lung injury in chronic granulomatous disease. J. Infect. Dis., 2021, 5.
[60]
Eckard, A.R.; Hughes, H.Y.; Hagood, N.L.; O’Riordan, M.A.; Labbato, D.; Kosco, J.C.; Scott, S.E.; McComsey, G.A. Fecal calprotectin is elevated in HIV and related to systemic inflammation. J. Acquir. Immune Defic. Syndr., 2021, 86(2), 231-239.
[http://dx.doi.org/10.1097/QAI.0000000000002538] [PMID: 33065582]
[61]
Sweet, S.P.; Denbury, A.N.; Challacombe, S.J. Salivary calprotectin levels are raised in patients with oral candidiasis or Sjögren’s syn-drome but decreased by HIV infection. Oral Microbiol. Immunol., 2001, 16(2), 119-123.
[http://dx.doi.org/10.1034/j.1399-302x.2001.016002119.x] [PMID: 11240866]
[62]
Fujisawa, H. Inhibitory role of neutrophils on influenza virus multiplication in the lungs of mice. Microbiol. Immunol., 2001, 45(10), 679-688.
[http://dx.doi.org/10.1111/j.1348-0421.2001.tb01302.x] [PMID: 11762750]
[63]
Lamichhane, P.P.; Samarasinghe, A.E. The role of innate leukocytes during influenza virus infection. J. Immunol. Res., 2019, 2019, 8028725.
[http://dx.doi.org/10.1155/2019/8028725] [PMID: 31612153]
[64]
Al-kuraishy, H.M.; Al-Maiahy, T.J.; Al-Gareeb, A.I.; Musa, R.A.; Ali, Z.H. COVID-19 pneumonia in an Iraqi pregnant woman with pre-term delivery. Asian Pac. J. Reprod., 2020, 9(3), 156.
[http://dx.doi.org/10.4103/2305-0500.282984]
[65]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; El-Saber Batiha, G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur. J. Pharmacol., 2021, 904, 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[66]
Mönkemüller, K.; Fry, L.; Rickes, S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev. Esp. Enferm. Dig., 2020, 112(5), 383-388.
[PMID: 32343593]
[67]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Alexiou, A.; Batiha, G.E. Niclosamide for Covid-19: Bridging the gap. Mol. Biol. Rep., 2021, 48(12), 8195-8202.
[http://dx.doi.org/10.1007/s11033-021-06770-7] [PMID: 34664162]
[68]
Silvin, A.; Chapuis, N.; Dunsmore, G.; Goubet, A.G.; Dubuisson, A.; Derosa, L.; Almire, C.; Hénon, C.; Kosmider, O.; Droin, N.; Rameau, P.; Catelain, C.; Alfaro, A.; Dussiau, C.; Friedrich, C.; Sourdeau, E.; Marin, N.; Szwebel, T.A.; Cantin, D.; Mouthon, L.; Borderie, D.; Deloger, M.; Bredel, D.; Mouraud, S.; Drubay, D.; Andrieu, M.; Lhonneur, A.S.; Saada, V.; Stoclin, A.; Willekens, C.; Pommeret, F.; Gris-celli, F.; Ng, L.G.; Zhang, Z.; Bost, P.; Amit, I.; Barlesi, F.; Marabelle, A.; Pène, F.; Gachot, B.; André, F.; Zitvogel, L.; Ginhoux, F.; Fon-tenay, M.; Solary, E. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell, 2020, 182(6), 1401-1418.e18.
[http://dx.doi.org/10.1016/j.cell.2020.08.002] [PMID: 32810439]
[69]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516.
[http://dx.doi.org/10.1016/j.intimp.2021.108516] [PMID: 35032828]
[70]
Chen, L.; Long, X.; Xu, Q.; Tan, J.; Wang, G.; Cao, Y.; Wei, J.; Luo, H.; Zhu, H.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Zhao, L.; Chen, X.; Mao, Z.; Chen, C.; Li, Z.; Sun, Z.; Zhao, J.; Wang, D.; Huang, G.; Wang, W.; Zhou, J. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell. Mol. Immunol., 2020, 17(9), 992-994.
[http://dx.doi.org/10.1038/s41423-020-0492-x] [PMID: 32620787]
[71]
Sohn, K.M.; Lee, S.G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; Chung, C.; Park, C.; Kim, Y.S.; Jo, E.K. COVID-19 patients up-regulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci., 2020, 35(38), e343.
[http://dx.doi.org/10.3346/jkms.2020.35.e343] [PMID: 32989935]
[72]
Wu, M.; Chen, Y.; Xia, H.; Wang, C.; Tan, C.Y.; Cai, X.; Liu, Y.; Ji, F.; Xiong, P.; Liu, R.; Guan, Y.; Duan, Y.; Kuang, D.; Xu, S.; Cai, H.; Xia, Q.; Yang, D.; Wang, M.W.; Chiu, I.M.; Cheng, C.; Ahern, P.P.; Liu, L.; Wang, G.; Surana, N.K.; Xia, T.; Kasper, D.L. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 28336-28343.
[http://dx.doi.org/10.1073/pnas.2018030117] [PMID: 33082228]
[73]
Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; De Domenico, E.; Wendisch, D.; Grasshoff, M.; Kapellos, T.S.; Beckstette, M.; Pecht, T.; Saglam, A.; Dietrich, O.; Mei, H.E.; Schulz, A.R.; Conrad, C.; Kunkel, D.; Vafadarnejad, E.; Xu, C.J.; Horne, A.; Herbert, M.; Drews, A.; Thibeault, C.; Pfeiffer, M.; Hippenstiel, S.; Hocke, A.; Müller-Redetzky, H.; Heim, K.M.; Machleidt, F.; Uhrig, A.; Bosquillon de Jarcy, L.; Jürgens, L.; Stegemann, M.; Glösenkamp, C.R.; Volk, H.D.; Goffinet, C.; Landthaler, M.; Wyler, E.; Georg, P.; Schneider, M.; Dang-Heine, C.; Neuwinger, N.; Kappert, K.; Tauber, R.; Corman, V.; Raabe, J.; Kaiser, K.M.; Vinh, M.T.; Rieke, G.; Meisel, C.; Ulas, T.; Becker, M.; Geffers, R.; Witzenrath, M.; Drosten, C.; Suttorp, N.; von Kalle, C.; Kurth, F.; Händler, K.; Schultze, J.L.; Aschenbrenner, A.C.; Li, Y.; Nattermann, J.; Sawitzki, B.; Saliba, A.E.; Sander, L.E. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell, 2020, 182(6), 1419-1440.e23.
[http://dx.doi.org/10.1016/j.cell.2020.08.001] [PMID: 32810438]
[74]
Ren, X.; Wen, W.; Fan, X.; Hou, W.; Su, B.; Cai, P.; Li, J.; Liu, Y.; Tang, F.; Zhang, F.; Yang, Y.; He, J.; Ma, W.; He, J.; Wang, P.; Cao, Q.; Chen, F.; Chen, Y.; Cheng, X.; Deng, G.; Deng, X.; Ding, W.; Feng, Y.; Gan, R.; Guo, C.; Guo, W.; He, S.; Jiang, C.; Liang, J.; Li, Y.M.; Lin, J.; Ling, Y.; Liu, H.; Liu, J.; Liu, N.; Liu, S.Q.; Luo, M.; Ma, Q.; Song, Q.; Sun, W.; Wang, G.; Wang, F.; Wang, Y.; Wen, X.; Wu, Q.; Xu, G.; Xie, X.; Xiong, X.; Xing, X.; Xu, H.; Yin, C.; Yu, D.; Yu, K.; Yuan, J.; Zhang, B.; Zhang, P.; Zhang, T.; Zhao, J.; Zhao, P.; Zhou, J.; Zhou, W.; Zhong, S.; Zhong, X.; Zhang, S.; Zhu, L.; Zhu, P.; Zou, B.; Zou, J.; Zuo, Z.; Bai, F.; Huang, X.; Zhou, P.; Jiang, Q.; Huang, Z.; Bei, J.X.; Wei, L.; Bian, X.W.; Liu, X.; Cheng, T.; Li, X.; Zhao, P.; Wang, F.S.; Wang, H.; Su, B.; Zhang, Z.; Qu, K.; Wang, X.; Chen, J.; Jin, R.; Zhang, Z. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184(7), 1895-1913.e19.
[http://dx.doi.org/10.1016/j.cell.2021.01.053] [PMID: 33657410]
[75]
Younes, C. Fecal calprotectin and RT-PCR from both nasopharyngeal swab and stool samples prior to treatment decision in IBD patients during CoVID-19 outbreak. Dig. Liver Dis., 2020, 52(11), 1230.
[http://dx.doi.org/10.1016/j.dld.2020.05.039] [PMID: 32527653]
[76]
Lahmer, T.; Rasch, S.; Spinner, C.; Geisler, F.; Schmid, R.M.; Huber, W. Invasive pulmonary aspergillosis in severe coronavirus disease 2019 pneumonia. Clin. Microbiol. Infect., 2020, 26(10), 1428-1429.
[http://dx.doi.org/10.1016/j.cmi.2020.05.032] [PMID: 32502643]
[77]
Benucci, M.; Damiani, A.; Giannasi, G.; Li Gobbi, F.; Quartuccio, L.; Grossi, V.; Infantino, M.; Manfredi, M. Serological tests confirm the low incidence of COVID-19 in chronic rheumatic inflammatory diseases treated with biological DMARD. Ann. Rheum. Dis., 2020, 5.
[http://dx.doi.org/10.1136/annrheumdis-2020-218214] [PMID: 32632035]
[78]
Bengtsson, A.A.; Sturfelt, G.; Lood, C.; Rönnblom, L.; van Vollenhoven, R.F.; Axelsson, B.; Sparre, B.; Tuvesson, H.; Ohman, M.W.; Leanderson, T. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis Rheum., 2012, 64(5), 1579-1588.
[http://dx.doi.org/10.1002/art.33493] [PMID: 22131101]
[79]
Bai, X.; Hippensteel, J.; Leavitt, A.; Maloney, J.P.; Beckham, D.; Garcia, C.; Li, Q.; Freed, B.M.; Ordway, D.; Sandhaus, R.A.; Chan, E.D. Hypothesis: Alpha-1-antitrypsin is a promising treatment option for COVID-19. Med. Hypotheses, 2021, 146, 110394.
[http://dx.doi.org/10.1016/j.mehy.2020.110394] [PMID: 33239231]
[80]
Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. (Maywood), 2017, 242(8), 859-873.
[http://dx.doi.org/10.1177/1535370216681551] [PMID: 27895095]
[81]
Effenberger, M.; Grabherr, F.; Mayr, L.; Schwaerzler, J.; Nairz, M.; Seifert, M.; Hilbe, R.; Seiwald, S.; Scholl-Buergi, S.; Fritsche, G. Bell-mann-Weiler, R.; Weiss, G.; Müller, T.; Adolph, T.E.; Tilg, H. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut, 2020, 69(8), 1543-1544.
[http://dx.doi.org/10.1136/gutjnl-2020-321388] [PMID: 32312790]
[82]
Chen, Y.; Wang, J.; Liu, C.; Su, L.; Zhang, D.; Fan, J.; Yang, Y.; Xiao, M.; Xie, J.; Xu, Y.; Li, Y.; Zhang, S. IP-10 and MCP-1 as bi-omarkers associated with disease severity of COVID-19. Mol. Med., 2020, 26(1), 97.
[http://dx.doi.org/10.1186/s10020-020-00230-x] [PMID: 33121429]
[83]
Chan, J.K.; Roth, J.; Oppenheim, J.J.; Tracey, K.J.; Vogl, T.; Feldmann, M.; Horwood, N.; Nanchahal, J. Alarmins: Awaiting a clinical re-sponse. J. Clin. Invest., 2012, 122(8), 2711-2719.
[http://dx.doi.org/10.1172/JCI62423] [PMID: 22850880]
[84]
Britton, G.J.; Chen-Liaw, A.; Cossarini, F.; Livanos, A.E.; Spindler, M.P.; Plitt, T. SARS-CoV-2-specific IgA and limited inflammatory cytokines are present in the stool of select patients with acute COVID-19. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.09.03.20183947]
[85]
Han, C.; Duan, C.; Zhang, S.; Spiegel, B.; Shi, H. Digestive symptoms in COVID-19 patients with mild disease severity: Clinical presenta-tion, stool viral RNA testing, and outcomes. Am. J. Gastroenterol., 2020, 1.
[86]
Ojetti, V.; Saviano, A.; Covino, M.; Acampora, N.; Troiani, E.; Franceschi, F. COVID-19 and intestinal inflammation: Role of fecal calpro-tectin. Dig. Liver Dis., 2020, 52(11), 1231-1233.
[http://dx.doi.org/10.1016/j.dld.2020.09.015] [PMID: 33060042]
[87]
Hanrahan, T.P.; Lubel, J.S.; Garg, M. Lessons from COVID-19, ACE2, and intestinal inflammation: Could a virus trigger chronic intestinal inflammation? Clin. Gastroenterol. Hepatol., 2021, 19(1), 206.
[http://dx.doi.org/10.1016/j.cgh.2020.07.036] [PMID: 32712394]
[88]
Mago, S.; Vaziri, H.; Tadros, M. The usefulness of fecal calprotectin in the era of the COVID-19 pandemic. Gastroenterology, 2021, 160(7), 2623-2625.
[http://dx.doi.org/10.1053/j.gastro.2020.05.045] [PMID: 32425230]
[89]
Shi, H.; Zuo, Y.; Yalavarthi, S.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Woodward, W.; Lezak, S.P.; Lugogo, N.L.; Woods, R.J.; Lood, C.; Knight, J.S.; Kanthi, Y. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J. Leukoc. Biol., 2021, 109(1), 67-72.
[http://dx.doi.org/10.1002/JLB.3COVCRA0720-359R] [PMID: 32869342]
[90]
Jerkic, S.P.; Michel, F.; Donath, H.; Herrmann, E.; Schubert, R.; Rosewich, M.; Zielen, S. Calprotectin as a new sensitive marker of neu-trophilic inflammation in patients with bronchiolitis obliterans. Mediators Inflamm., 2020, 2020, 4641585.
[http://dx.doi.org/10.1155/2020/4641585] [PMID: 32410855]
[91]
Hetland, G.; Talgö, G.J.; Fagerhol, M.K. Chemotaxins C5a and fMLP induce release of calprotectin (leucocyte L1 protein) from polymor-phonuclear cells in vitro. Mol. Pathol., 1998, 51(3), 143-148.
[http://dx.doi.org/10.1136/mp.51.3.143] [PMID: 9850337]
[92]
Koenderman, L.; Siemers, M.J.; van Aalst, C.; Bongers, S.H.; Spijkerman, R.; Bindels, B.J.J.; Giustarini, G.; van Goor, H.M.R.; Kaasjager, K.A.H.; Vrisekoop, N. The systemic immune response in COVID-19 is associated with a shift to formyl-peptide unresponsive eosino-phils. Cells, 2021, 10(5), 1109.
[http://dx.doi.org/10.3390/cells10051109] [PMID: 34062964]
[93]
Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, 20(6), 343-344.
[http://dx.doi.org/10.1038/s41577-020-0320-7] [PMID: 32327719]
[94]
Rohwedder, I.; Kurz, A.R.M.; Pruenster, M.; Immler, R.; Pick, R.; Eggersmann, T.; Klapproth, S.; Johnson, J.L.; Alsina, S.M.; Lowell, C.A.; Mócsai, A.; Catz, S.D.; Sperandio, M. Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration. Haematologica, 2020, 105(7), 1845-1856.
[http://dx.doi.org/10.3324/haematol.2019.225722] [PMID: 31699792]
[95]
Agrati, C.; Bordoni, V.; Sacchi, A.; Petrosillo, N.; Nicastri, E.; Del Nonno, F.; D’Offizi, G.; Palmieri, F.; Marchioni, L.; Capobianchi, M.R.; Antinori, A.; Ippolito, G.; Bibas, M. Elevated P-Selectin in severe Covid-19: Considerations for therapeutic options. Mediterr. J. Hematol. Infect. Dis., 2021, 13(1), e2021016.
[http://dx.doi.org/10.4084/mjhid.2021.016] [PMID: 33747397]
[96]
Du, F.; Jiang, P.; He, S.; Song, D.; Xu, F. Antiplatelet therapy for critically ill patients: A pairwise and Bayesian network meta-analysis. Shock: Injury, inflammation, and sepsis. Labor. Clin. Approach., 2018, 49(6), 616-624.
[http://dx.doi.org/10.1097/SHK.0000000000001057] [PMID: 29176404]
[97]
Gebhardt, C.; Németh, J.; Angel, P.; Hess, J. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol., 2006, 72(11), 1622-1631.
[http://dx.doi.org/10.1016/j.bcp.2006.05.017] [PMID: 16846592]
[98]
Narumi, K.; Miyakawa, R.; Ueda, R.; Hashimoto, H.; Yamamoto, Y.; Yoshida, T.; Aoki, K. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J. Immunol., 2015, 194(11), 5539-5548.
[http://dx.doi.org/10.4049/jimmunol.1402301] [PMID: 25911757]
[99]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; El-Saber Batiha, G. The possible role of ursolic acid in Covid-19: A real game changer. Clin. Nutr. ESPEN, 2022, 47, 414-417.
[http://dx.doi.org/10.1016/j.clnesp.2021.12.030] [PMID: 35063236]
[100]
Batiha, G.E.; Gari, A.; Elshony, N.; Shaheen, H.M.; Abubakar, M.B.; Adeyemi, S.B.; Al-Kuraishy, H.M. Hypertension and its management in COVID-19 patients: The assorted view. Inter. J. Cardiol. Cardiov. Risk Prev., 2021, 11, 200121.
[http://dx.doi.org/10.1016/j.ijcrp.2021.200121] [PMID: 34806090]
[101]
Chiappalupi, S.; Salvadori, L.; Vukasinovic, A.; Donato, R.; Sorci, G.; Riuzzi, F. Targeting RAGE to prevent SARS-CoV-2-mediated multi-ple organ failure: Hypotheses and perspectives. Life Sci., 2021, 272, 119251.
[http://dx.doi.org/10.1016/j.lfs.2021.119251] [PMID: 33636175]
[102]
Nishikawa, Y.; Kajiura, Y.; Lew, J.H.; Kido, J.I.; Nagata, T.; Naruishi, K. Calprotectin induces IL-6 and MCP-1 production via toll-Like receptor 4 signaling in human gingival fibroblasts. J. Cell. Physiol., 2017, 232(7), 1862-1871.
[http://dx.doi.org/10.1002/jcp.25724] [PMID: 27925202]
[103]
Batiha, G.E.; Shaheen, H.M.; Al-Kuraishy, H.M.; Teibo, J.O.; Akinfe, O.A.; Al-Garbee, A.I.; Teibo, T.K.A.; Kabrah, S.M. Possible mecha-nistic insights into iron homeostasis role of the action of 4-aminoquinolines (chloroquine/hydroxychloroquine) on COVID-19 (SARS-CoV-2) infection. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(23), 7565-7584.
[PMID: 34919258]
[104]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med., 2021, 8, 644095.
[http://dx.doi.org/10.3389/fcvm.2021.644095] [PMID: 34124187]
[105]
Rodriguez-Barrueco, R.; Yu, J.; Saucedo-Cuevas, L.P.; Olivan, M.; Llobet-Navas, D.; Putcha, P.; Castro, V.; Murga-Penas, E.M.; Collazo-Lorduy, A.; Castillo-Martin, M.; Alvarez, M.; Cordon-Cardo, C.; Kalinsky, K.; Maurer, M.; Califano, A.; Silva, J.M. Inhibition of the auto-crine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers. Genes Dev., 2015, 29(15), 1631-1648.
[http://dx.doi.org/10.1101/gad.262642.115] [PMID: 26227964]
[106]
Moubarak, M.; Kasozi, K.I.; Hetta, H.F.; Shaheen, H.M.; Rauf, A.; Al-Kuraishy, H.M.; Qusti, S.; Alshammari, E.M.; Ayikobua, E.T.; Ssempijja, F.; Afodun, A.M.; Kenganzi, R.; Usman, I.M.; Ochieng, J.J.; Osuwat, L.O.; Matama, K.; Al-Gareeb, A.I.; Kairania, E.; Musenero, M.; Welburn, S.C.; Batiha, G.E. The rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life (Basel), 2021, 11(8), 734.
[http://dx.doi.org/10.3390/life11080734] [PMID: 34440478]
[107]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Atanu, F.O.; Batiha, G.E. Arginine vasopressin and pathophysiology of COVID-19: An innovative perspective. Biomed. Pharmacother., 2021, 143, 112193.
[http://dx.doi.org/10.1016/j.biopha.2021.112193] [PMID: 34543987]
[108]
Tsai, S.Y.; Segovia, J.A.; Chang, T.H.; Morris, I.R.; Berton, M.T.; Tessier, P.A.; Tardif, M.R.; Cesaro, A.; Bose, S. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: Role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog., 2014, 10(1), e1003848.
[http://dx.doi.org/10.1371/journal.ppat.1003848] [PMID: 24391503]
[109]
Ntyonga-Pono, M.P. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan Afr. Med. J., 2020, 35(Suppl. 2), 12.
[110]
Tan, X.; Zheng, X.; Huang, Z.; Lin, J.; Xie, C.; Lin, Y. Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell. Physiol. Biochem., 2017, 43(1), 209-222.
[http://dx.doi.org/10.1159/000480340] [PMID: 28854431]
[111]
Batiha, G.E.; Al-Gareeb, D.A.I.; Qusti, S.; Alshammari, E.M.; Rotimi, D.; Adeyemi, O.S.; Al-Kuraishy, H.M. Common NLRP3 inflam-masome inhibitors and Covid-19: Divide and conquer. Sci. Am., 2021, 18, e01084.
[http://dx.doi.org/10.1016/j.sciaf.2021.e01084] [PMID: 34957352]
[112]
Onohuean, H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Batiha, G.E. Covid-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(10), 2013-2021.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]
[113]
Chatzopoulos, A.; Tzani, A.I.; Doulamis, I.P.; Konstantopoulos, P.S.; Birmpa, D.; Verikokos, C.; Tentolouris, N.; Karatzas, G.; Perrea, D.N. Dynamic changes in calprotectin and its correlation with traditional markers of oxidative stress in patients with acute ischemic stroke. Hellenic J. Cardiol., 2017, 58(6), 456-458.
[http://dx.doi.org/10.1016/j.hjc.2017.07.002] [PMID: 28712999]
[114]
Ziegler, G.; Prinz, V.; Albrecht, M.W.; Harhausen, D.; Khojasteh, U.; Nacken, W. Mrp-8 and-14 mediate CNS injury in focal cerebral is-chemia. Biochimica et Biophysica Acta (BBA). Mol. Basis Dis., 2009, 1792(12), 1198-1204.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.003]
[115]
Croce, K.; Gao, H.; Wang, Y.; Mooroka, T.; Sakuma, M.; Shi, C.; Sukhova, G.K.; Packard, R.R.; Hogg, N.; Libby, P.; Simon, D.I. Myeloid-related protein-8/14 is critical for the biological response to vascular injury. Circulation, 2009, 120(5), 427-436.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814582] [PMID: 19620505]
[116]
Shabani, F.; Farasat, A.; Mahdavi, M.; Gheibi, N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm. Res., 2018, 67(10), 801-812.
[http://dx.doi.org/10.1007/s00011-018-1173-4] [PMID: 30083975]
[117]
Banupriya, N.; Vishnu Bhat, B.; Benet, B.D.; Sridhar, M.G.; Parija, S.C. Efficacy of zinc supplementation on serum calprotectin, inflamma-tory cytokines and outcome in neonatal sepsis - a randomized controlled trial. J. Matern. Fetal Neonatal Med., 2017, 30(13), 1627-1631.
[http://dx.doi.org/10.1080/14767058.2016.1220524] [PMID: 27491377]
[118]
Wessels, I.; Rolles, B.; Rink, L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol., 2020, 11, 1712.
[http://dx.doi.org/10.3389/fimmu.2020.01712] [PMID: 32754164]
[119]
Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; Rela, M. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis., 2020, 100, 343-349.
[http://dx.doi.org/10.1016/j.ijid.2020.09.014] [PMID: 32920234]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy