Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Research Article

Design, Synthesis, Anti-microbial and Molecular Docking Studies of Novel 5-Pyrazyl-2-Sulfanyl-1, 3, 4-Oxadiazole Derivatives

Author(s): Rina Das, Dinesh Kumar Mehta*, Sumeet Gupta and Meenakshi Dhanawat

Volume 17, Issue 2, 2022

Published on: 05 August, 2022

Page: [118 - 130] Pages: 13

DOI: 10.2174/2772434417666220609105755

Price: $65

Abstract

Background: Chemical modification of Oxadiazole may lead to a potent therapeutic agent. A series of novel 5-pyrazyl-2-sulfanyl-1, 3, 4-oxadiazole derivatives (5ag) have been synthesised utilising pyrazinoic acid as a precursor. The new oxadiazole compounds were docked against potential targets and evaluated for antibacterial and antitubercular activity.

Methods: The 5-pyrazyl-2-substituted sulfanyl-1, 3,4-oxadiazole derivatives (5a-g) were synthesized from the crucial intermediate 2-sulfanyl-5-pyrazyl-1, 3,4-oxadiazole (4), which was prepared by treating the 2-pyrazyl hydrazide with CS2 and pyridine. IR, 1HNMR, 13C, MS and elemental analyses were used to confirm the chemical structures.

Results: Antimicrobial activity was determined for each synthesized compound. Additionally, compounds were evaluated for antitubercular activity against the Mycobacterium Tuberculosis H37Rv strain. Compounds 5c, 5g, and 5a had a favourable antibacterial profile, while 5c and 5g (MIC = 25 g/ml) demonstrated potential antitubercular activity when compared to the other produced compounds. Molecular docking experiments using V-Life Science MDS 4.6 supplemented the biological data.

Conclusion: Each compound has been tested for antibacterial and antitubercular action against a variety of microorganism strains and exhibits considerable activity. Additionally, molecular docking analysis confirmed the experimental results by describing improved interaction patterns.

Keywords: Antimicrobial, antitubercular, oxadiazole, pyrazinoic acid, molecular docking, v-life.

Graphical Abstract

[1]
Zhang, Y.; Amzel, L.M. Tuberculosis drug targets. Curr. Drug Targets, 2002, 3(2), 131-154.
[http://dx.doi.org/10.2174/1389450024605391] [PMID: 11958297]
[2]
Janin, Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem., 2007, 15(7), 2479-2513.
[http://dx.doi.org/10.1016/j.bmc.2007.01.030] [PMID: 17291770]
[3]
Pepper, D.J.; Meintjes, G.A.; McIlleron, H.; Wilkinson, R.J. Combined therapy for tuberculosis and HIV-1: The challenge for drug discovery. Drug Discov. Today, 2007, 12(21-22), 980-989.
[http://dx.doi.org/10.1016/j.drudis.2007.08.001] [PMID: 17993418]
[4]
Martinez, L.; Blanc, L.; Nunn, P.; Raviglione, M. Tuberculosis and air travel: WHO guidance in the era of drug-resistant TB. Travel Med. Infect. Dis., 2008, 6(4), 177-181.
[http://dx.doi.org/10.1016/j.tmaid.2007.10.004] [PMID: 18571104]
[5]
Abdou, NA; Soliman, SN; Abou, SAH synthesis of certain pyrazolo [1, 5-d]1, 2, 4 triazines. Bull Fac pharm, 1990, 28, 19-29.
[6]
Dabak, K.; Sezer, O.; Akar, A.; Anaç, O. Synthesis and investigation of tuberculosis inhibition activities of some 1,2,3-triazole derivatives. Eur. J. Med. Chem., 2003, 38(2), 215-218.
[http://dx.doi.org/10.1016/S0223-5234(02)01445-9] [PMID: 12620665]
[7]
Mistry, K.; Desai, K.R. Synthesis of pyrazole imines and azetidinones compounds using conventional and microwave technique and studies of their antibacterial activity. Indian J. Chem., 2005, 44B, 1452-1455.
[http://dx.doi.org/10.1002/chin.200545156]
[8]
Nivsarkar, M.; Thavaselvam, D.; Prasanna, S.; Sharma, M.; Kaushik, M.P. Design, synthesis and biological evaluation of novel bicyclic β-lactams as potential antimalarials. Bioorg. Med. Chem. Lett., 2005, 15(5), 1371-1373.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.011] [PMID: 15713389]
[9]
Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg. Med. Chem., 2004, 12(10), 2523-2528.
[http://dx.doi.org/10.1016/j.bmc.2004.03.033] [PMID: 15110834]
[10]
Zoidis, G.; Fytas, C.; Papanastasiou, I. Heterocyclic rimantadine analogues with antiviral activity. Bioorg. Med. Chem., 2006, 14(10), 3341-3348.
[http://dx.doi.org/10.1016/j.bmc.2005.12.056] [PMID: 16439137]
[11]
Küçükgüzel, S.G.; Oruç, E.E.; Rollas, S.; Sahin, F.; Ozbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[http://dx.doi.org/10.1016/S0223-5234(01)01326-5] [PMID: 11900864]
[12]
Ghattas, A.G.; El-Sherief, H.A.; Abdel Rahman, A.E.; Mahmoud, A.M. Synthesis of some new heterocyclic 1,3,4-oxadiazoles with antibacterial activity. Pharmazie, 1982, 37(6), 410-412.
[PMID: 7122680]
[13]
Shah, H.; Bhatt, J.; Desai, N. Synthesis of 2,5-disubstituted 1,3,4-Oxadiazoles as potential antimicrobial, anticancer and anti-HIV agents. Ind J Chem, 1998, 37180-37182.
[14]
Omar, F.; Mahfouz, N.; Rahman, M. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem., 1996, 31(10), 819-825.
[http://dx.doi.org/10.1016/0223-5234(96)83976-6] [PMID: 22026938]
[15]
Aboraria, A.; Mahfouz, N.; El-Gendy, M. Novel 5-(2-hydroxyphenyl)-3-substituted-2, 3-dihydro-1,3,4-oxadiazole-2-thion derivatives: Promising anticancer agents. Bioorg. Med. Chem., 2006, 41236-41246.
[16]
Mehta, D.; Das, R.; Dua, K. Synthesis, anti-inflammatory and antimicrobial activity of some new 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-2-thione derivatives as mannich bases containing furan moiety. Int. J. Chem. Sci., 2009, 7, 225-234.
[17]
Narayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new 2-(6-methoxy-2-naphthyl)- 5-aryl-1,3,4-oxadiazoles as possible non-steroidal anti-inflammatory and analgesic agents. Arch. Pharm., 2005, 338(8), 373-377.
[http://dx.doi.org/10.1002/ardp.200500974] [PMID: 16041838]
[18]
Sahin, G.; Palaska, E. Ekizoğlu M, Ozalp M. Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco, 2002, 57(7), 539-542.
[http://dx.doi.org/10.1016/S0014-827X(02)01245-4] [PMID: 12164209]
[19]
Tan, T.M.; Chen, Y.; Kong, K.H. Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-(1,3,4)-oxadiazoles as potential anti-hepatitis B virus agents. Antiviral Res., 2006, 71, 7-14.
[http://dx.doi.org/10.1016/j.antiviral.2006.02.007] [PMID: 16564099]
[20]
Mehta, D.K.; Das, R. Synthesis and in-vitro antioxidant activity of some new 2, 5 disubstituted -1, 3, 4- oxadiazole containing furan moiety. Int. J. Pharm. Sci. Res., 2011, 2, 2959-2963.
[21]
Zarghi, A.; Tabatabai, S.A.; Faizi, M. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazole. Bioorg. Med. Chem. Lett., 2005, 151863-151865.
[22]
Gaonkar, S.L.; Rai, K.M.; Prabhuswamy, B. Synthesis and antimicrobial studies of a new series of 2-4-[2-(5-ethylpyridin-2-yl) ethoxy] phenyl-5-substituted-1,3,4-oxadiazoles. Eur. J. Med. Chem., 2006, 41, 841-846.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.002] [PMID: 16616395]
[23]
Navarrete-Vázquez, G.; Molina-Salinas, G.M.; Duarte-Fajardo, Z.V. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg. Med. Chem., 2007, 15(16), 5502-5508.
[http://dx.doi.org/10.1016/j.bmc.2007.05.053] [PMID: 17562368]
[24]
Shahar, M.; Siddiqui, A.; Ashraf, A.M. Synthesis and anti-tuberculostatic activity of novel 1,3,4-oxadiazole derivatives. J. Chin. Chem. Soc., 2007, 54, 5-8.
[http://dx.doi.org/10.1002/jccs.200700002]
[25]
Somani, R.; Shirodkar, P. Synthesis, antibacterial and antitubercular evaluation of some 1, 3, 4-oxadiazole analogues. Asian J. Chem., 2008, 20, 6189-6194.
[26]
Jakubkiene, V.; Burbuliene, M.M.; Mekuskiene, G.; Udrenaite, E.; Gaidelis, P.; Vainilavicius, P. Synthesis and anti-inflammatory activity of 5-(6-methyl-2-substituted 4-pyrimidinyloxymethyl)-1,3,4-oxadiazole-2-thiones and their 3-morpholinomethyl derivatives. Farmaco, 2003, 58(4), 323-328.
[http://dx.doi.org/10.1016/S0014-827X(02)00022-8] [PMID: 12727542]
[27]
Cynamon, M.H.; Klemens, S.P.; Chou, T.S.; Gimi, R.H.; Welch, J.T. Antimycobacterial activity of a series of pyrazinoic acid esters. J. Med. Chem., 1992, 35(7), 1212-1215.
[http://dx.doi.org/10.1021/jm00085a007] [PMID: 1560435]
[28]
Yamamoto, S.; Toida, I.; Watanabe, N.; Ura, T. In vitro antimycobacterial activities of pyrazinamide analogs. Antimicrob. Agents Chemother., 1995, 39(9), 2088-2091.
[http://dx.doi.org/10.1128/AAC.39.9.2088] [PMID: 8540721]
[29]
Opletalová, V.; Hartl, J.; Patel, A.; Palát, K., Jr; Buchta, V. Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco, 2002, 57(2), 135-144.
[http://dx.doi.org/10.1016/S0014-827X(01)01187-9] [PMID: 11902656]
[30]
Taya, P.; Mehta, D.K.; Das, R. Synthesis and pharmacological evaluation novel N-(5-(1H-indol-3-yl)-1,3,4-thiadiazol-2-yl)-5-(substituted phenyl)-3-(phenylamino)-4,5-dihydropyrazole-1-acetamide derivatives for anti-inflammatory and antimicrobial potential. IJPR, 2016, 8(4), 44-52.
[31]
Das, R.; Mehta, D.K. Evaluation and docking study of pyrazine containing 1, 3, 4-oxadiazoles clubbed with substituted azetidin-2-one: A new class of potential antimicrobial and antitubercular agents. Drug Res., 2021, 71(1), 26-35.
[http://dx.doi.org/10.1055/a-1252-2378] [PMID: 33027823]
[32]
Amir, M.; Shalini, S. Synthesis and anti-inflammatory activity of naphthylmethyl oxadiazoles, thiadiazoles and triazoles. Ind J of Het Chem, 1998, 8, 107-110.
[33]
Pattan, S.R.; Rabara, P.; Musmade, D.S. Synthesis and evaluation of some novel substituted 1, 3, 4-oxadiazole and pyrazole derivatives for antitubercular activity. Indian J. Chem., 2009, 48B, 1453-1456.
[34]
Foks, H.; Mieczkowska, J.; Sitarz, M. Studies on pyrazine derivatives. XXXI. Synthesis and reactions of alkyl 3-pyrazinoyldithio-carbazates and S,S′-Dialkyldithiocarbonate pyrazinoylhydrazones towards amines and hydrazines. Phosphorus Sulfur Silicon Relat. Elem., 2000, 158, 107-116.
[http://dx.doi.org/10.1080/10426500008042078]
[35]
Morgunova, E.; Illarionov, B.; Sambaiah, T. Structural and thermodynamic insights into the binding mode of five novel inhibitors of lumazine synthase from Mycobacterium tuberculosis. FEBS J., 2006, 273(20), 4790-4804.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05481.x] [PMID: 16984393]
[36]
Morgunova, E.; Meining, W.; Illarionov, B. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: Binding mode of a new class of purinetrione inhibitors. Biochemistry, 2005, 44(8), 2746-2758.
[http://dx.doi.org/10.1021/bi047848a] [PMID: 15723519]
[37]
V-Life MDS 4.6 Documentation, Tutorial. 2010, 1-20.
[38]
Cappucino, J.G.; Sherman, N. Microbiology: A Laboratory Manual; Addison Wesley Longman: New York, USA, 1999.
[39]
Prasanna Kumar, B.N.; Mohana, K.N.; Mallesha, L.; Harish, K.P. Synthesis and in-vitro antimicrobial evaluation of new 1,3,4-oxadiazoles bearing 5-chloro-2-methoxyphenyl moiety. Int. J. Med. Chem., 2013, 2013, 725673.
[http://dx.doi.org/10.1155/2013/725673] [PMID: 25374693]
[40]
Patel, N.B.; Khan, I.H.; Rajani, S.D.; Rajani, S.D. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur. J. Med. Chem., 2010, 45(9), 4293-4299.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.031] [PMID: 20630629]
[41]
Das, R.; Mehta, D.K.; Dhanawat, M. Exploring azatidinone moiety: An insight into its anti-tubercular potency. Drug Res., 2021, 71(7), 355-362.
[http://dx.doi.org/10.1055/a-1481-7879] [PMID: 34034345]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy