Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Optimized Synthesis and Cytotoxic Activity of α-Aminophosphonates Against a Multidrug Resistant Uterine Sarcoma Cell Line

Author(s): Petra Regina Varga, Emőke Dinnyési, Szilárd Tóth*, Gergely Szakács and György Keglevich*

Volume 20, Issue 3, 2023

Published on: 04 August, 2022

Page: [365 - 371] Pages: 7

DOI: 10.2174/1570180819666220609104427

Abstract

Background: α-Aminophosphonates are potentially biologically active species.

Objective: We wished to compare the synthetic methods and evaluate the effect of the α- aminophosphonates on sarcoma cell lines.

Methods: We investigated microwave-assisted Kabachnik–Fields and Pudovik reactions, as well as substitutions, and applied in vitro cytotoxicity screening.

Results: The Kabachnik–Fields condensation and the Pudovik reaction were found to be the most suitable regarding efficiency. Surprisingly, the multidrug resistant (MDR) uterine sarcoma (Mes-Sa/Dx5) cell line was the most susceptible to the aminophosphonates tested.

Conclusion: α-Aminophosphonates may indeed display anticancer effect. Substituents in the para position of the phenyl ring have an impact on the activity: the 4-Me and 4-Cl derivatives were more toxic to all cell lines as compared to the 4-H and 4-MeO species.

Keywords: α-Aminophosphonates, Kabachnik–Fields reaction, aza-Pudovik reaction, cytotoxicity, cancer, multidrug resistance, osteosarcoma, collateral sensitivity

« Previous
Graphical Abstract

[1]
Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980.
[http://dx.doi.org/10.1021/jm200587f]
[2]
Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1991, 63(1-2), 193-215.
[http://dx.doi.org/10.1080/10426509108029443]
[3]
Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anticancer Agents, 2001, 1(3), 301-312.
[http://dx.doi.org/10.2174/1568011013354543]
[4]
Berlicki, L.; Kafarski, P. Computer-aided analysis and design of phosphonic and phosphinic enzyme inhibitors as potential drugs and agrochemicals. Curr. Org. Chem., 2005, 9(18), 1829-1850.
[http://dx.doi.org/10.2174/138527205774913088]
[5]
Lejczak, B.; Kafarski, P. Biological activity of aminophosphonic acids and their short peptides. Topics in Heterocyclic Chemistry—Phosphorous Heterocycles I; Gupta, R.P; Bansal, R.K., Ed.; Springer: Berlin, Germany, 2009, Vol. 20, pp. 31-63.
[http://dx.doi.org/10.1007/7081_2008_14]
[6]
Kukhar, V.P.; Hudson, H.R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; John Wiley & Sons: Chichester, UK, 2000.
[7]
Naydenova, E.D.; Todorov, P.T.; Troev, K.D. Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids, 2010, 38(1), 23-30.
[http://dx.doi.org/10.1007/s00726-009-0254-7]
[8]
Abdel-Rahman, R.M.; Ali, T.E.; Abdel-Kariem, S.M. Methods for synthesis of N-heterocyclyl/heteroaryl- α-aminophosphonates and α-(azaheterocyclyl)phosphonates. ARKIVOC, 2016, 2016(i), 183-211.
[http://dx.doi.org/10.3998/ark.5550190.p009.519]
[9]
Shastri, R.I. Review on the synthesis of α-aminophosphonate derivatives. Chem. Sci. Trans., 2019, 8(3), 359-367.
[http://dx.doi.org/10.7598/cst2019.1585]
[10]
Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: Mechanism and synthetic use. Molecules, 2012, 17(11), 12821-12835.
[http://dx.doi.org/10.3390/molecules171112821]
[11]
Varga, P.R.; Keglevich, G. Synthesis of α-aminophosphonates and related derivatives; the last decade of the Kabachnik–Fields reaction. Molecules, 2021, 26(9), 2511.
[http://dx.doi.org/10.3390/molecules26092511]
[12]
Keglevich, G.; Szekrényi, A. Eco-friendly accomplishment of the extended Kabachnik–Fields reaction; a solvent- and catalyst-free microwave-assisted synthesis of α-aminophosphonates and α-aminophosphine oxides. Lett. Org. Chem., 2008, 5(8), 616-622.
[http://dx.doi.org/10.2174/157017808786857598]
[13]
Bálint, E.; Tajti, Á.; Ádám, A.; Csontos, I.; Karaghiosoff, K.; Czugler, M.; Ábrányi-Balogh, P.; Keglevich, G. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction. Beilstein J. Org. Chem., 2017, 13, 76-86.
[http://dx.doi.org/10.3762/bjoc.13.10]
[14]
Kiss, N.Z.; Kaszás, A.; Drahos, L.; Mucsi, Z.; Keglevich, G. A neighbouring group effect leading to enhanced nucleophilic substitution of amines at the hindered α-carbon atom of an α-hydroxyphosphonate. Tetrahedron Lett., 2012, 53(2), 207-209.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.026]
[15]
Kiss, N.Z.; Rádai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of α-aminophosphonates from α-hydroxyphosphonates; A theoretical study. Heteroatom Chem., 2016, 27(5), 260-268.
[http://dx.doi.org/10.1002/hc.21324]
[16]
Windt, T.; Tóth, S.; Patik, I.; Sessler, J.; Kucsma, N.; Szepesi, Á.; Zdrazil, B.; Özvegy-Laczka, C.; Szakács, G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch. Toxicol., 2019, 93(4), 953-964.
[http://dx.doi.org/10.1007/s00204-019-02417-6]
[17]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984]
[18]
Szakács, G.; Hall, M.D.; Gottesman, M.M.; Boumendjel, A.; Kachadourian, R.; Day, B.J.; Baubichon-Cortay, H.; Di Pietro, A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem. Rev., 2014, 114(11), 5753-5774.
[http://dx.doi.org/10.1021/cr4006236]
[19]
Cserepes, M.; Türk, D.; Tóth, S.; Pape, V.F.S.; Gaál, A.; Gera, M.; Szabó, J.E.; Kucsma, N.; Várady, G.; Vértessy, B.G.; Streli, C.; Szabó, P.T.; Tóvári, J.; Szoboszlai, N.; Szakács, G. Unshielding multidrug resistant cancer through selective iron depletion of P-glycoprotein-expressing cells. Cancer Res., 2020, 80(4), 663-674.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1407]
[20]
Füredi, A.; Tóth, S.; Szebényi, K.; Pape, V.F.S.; Türk, D.; Kucsma, N.; Cervenak, L.; Tóvári, J.; Szakács, G. Identification and validation of compounds selectively killing resistant cancer: Delineating cell line-specific effects from P-glycoprotein-induced toxicity. Mol. Cancer Ther., 2017, 16(1), 45-56.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0333-T]
[21]
Harker, W.G.; Sikic, B.I. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res., 1985, 45(9), 4091-4096.
[22]
Rádai, Z.; Windt, T.; Nagy, V.; Füredi, A.; Kiss, N.Z. Ranđelović.; Tóvári, J.; Keglevich, G.; Szakács, G.; Tóth, S. Synthesis and anticancer cytotoxicity with structural context of an α-hydroxyphosphonate based compound library derived from substituted benzaldehydes. New J. Chem., 2019, 43(35), 14028-14035.
[http://dx.doi.org/10.1039/C9NJ02144B]
[23]
Uma Maheswara Rao, K.; Namkoong, S.; Yu, H-C.; Park, J.; Chung, C-M.; Oh, S.Y. Green synthesis and biological evaluation of new di-α-aminophosphonate derivatives as cytotoxic agents. Arch. Pharm. (Weinheim), 2013, 346(12), 851-859.
[http://dx.doi.org/10.1002/ardp.201300249]
[24]
Deshmukh, S.U.; Kharat, K.R.; Yadav, A.R.; Shisodia, S.U.; Damale, M.J.; Sangshetti, J.N.; Pawar, R.P. Synthesis of novel α-aminophosphonate derivatives, biological evaluation as potent antiproliferative agents and molecular docking. ChemistrySelect, 2018, 3(20), 5552-5558.
[http://dx.doi.org/10.1002/slct.201800798]

© 2025 Bentham Science Publishers | Privacy Policy