Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Therapeutic Implications of Curcumin in the Treatment of Inflammatory Eye Diseases: A Review

Author(s): Mojtaba Heydari, Mohammad Reza Khalili, Mohammad Hossein Nowroozzadeh, Shahram Bamdad, Amirhossein Sahebkar, Mohammad Ali Shariati and Muthu Thiruvengadam*

Volume 24, Issue 4, 2023

Published on: 29 August, 2022

Page: [553 - 561] Pages: 9

DOI: 10.2174/1389201023666220609085614

Price: $65

Abstract

Curcumin is the main active constituent of the medicinal plant Curcuma longa L., used traditionally as a medicinal spice in several ancient civilizations. Different preclinical and clinical studies support the anti-inflammatory properties of curcumin in various inflammatory diseases. As inflammation has an essential role in the pathophysiology of many ocular diseases, curcumin has been suggested as a promising therapeutic agent with anti-inflammatory properties. Based on the extent of experimental and clinical evidence, curcumin can exert protective effects against the corneal, uveal, retinal, optic nerve, orbital, and lacrimal gland inflammatory disorders. Herein, the available literature on the beneficial effects of curcumin in inflammatory eye diseases is reviewed. The limitations and future directions of these investigations are also discussed.

Keywords: Curcumin, eye, cornea, retina, Curcuma longa L., turmeric.

Graphical Abstract

[1]
Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice: From Traditional Medicine to Modern Medicine. In: Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed; In: Benzie IFF, Wachtel- Galor S, editors. CRC Press/Taylor & Francis: Boca Raton (FL), 2011.
[2]
Satil, F.; Mikail, A. Ethnobotanical use of Stachys L. (Lamiaceae) taxa in Turkey. Int. J. Nat. Life Sci., 2020, 4(2), 66-86.
[3]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[4]
Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883.
[http://dx.doi.org/10.1016/j.bmc.2004.05.006] [PMID: 15210154]
[5]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[6]
Zahid Ashraf, M.; Hussain, M.E.; Fahim, M. Antiatherosclerotic effects of dietary supplementations of garlic and turmeric: Restoration of endothelial function in rats. Life Sci., 2005, 77(8), 837-857.
[http://dx.doi.org/10.1016/j.lfs.2004.11.039] [PMID: 15964306]
[7]
Kaur, G.; Meena, C. Evaluation of anti-hyperlipidemic potential of combinatorial extract of curcumin, piperine and quercetin in Triton-induced hyperlipidemia in rats. Sci. Int., 2013, 1(3), 57-63.
[http://dx.doi.org/10.5567/sciintl.2013.57.63]
[8]
Gutierres, V.O.; Campos, M.L.; Arcaro, C.A.; Assis, R.P.; Baldan-Cimatti, H.M.; Peccinini, R.G.; Paula-Gomes, S.; Kettelhut, I.C.; Baviera, A.M.; Brunetti, I.L. Curcumin pharmacokinetic and pharmacodynamic evidences in streptozotocin-diabetic rats support the antidiabetic activity to be via metabolite(s). Evid. Based Complement. Alternat. Med., 2015, 2015678218
[http://dx.doi.org/10.1155/2015/678218] [PMID: 26064170]
[9]
Wang, Y.; Wang, Y.; Cai, N.; Xu, T.; He, F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int. Immunopharmacol., 2021, 96107600
[http://dx.doi.org/10.1016/j.intimp.2021.107600] [PMID: 33798807]
[10]
Wang, C.; Han, Z.; Wu, Y.; Lu, X.; Tang, X.; Xiao, J.; Li, N. Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food Chem. Toxicol., 2021, 151112123
[http://dx.doi.org/10.1016/j.fct.2021.112123] [PMID: 33744379]
[11]
Rinkunaite, I.; Simoliunas, E.; Alksne, M.; Dapkute, D.; Bukelskiene, V. Anti-inflammatory effect of different curcumin preparations on adjuvant-induced arthritis in rats. BMC Complement Med. Ther., 2021, 21(1), 39.
[http://dx.doi.org/10.1186/s12906-021-03207-3] [PMID: 33478498]
[12]
Karthikeyan, A.; Young, K.N.; Moniruzzaman, M.; Beyene, A.M.; Do, K.; Kalaiselvi, S.; Min, T. Curcumin and its modified formulations on Inflammatory Bowel Disease (IBD): The story so far and future outlook. Pharmaceutics, 2021, 13(4), 484.
[http://dx.doi.org/10.3390/pharmaceutics13040484] [PMID: 33918207]
[13]
Mohan, M.; Hussain, M.A.; Khan, F.A.; Anindya, R. Symmetrical and un-symmetrical curcumin analogues as selective COX-1 and COX-2 inhibitor. Eur. J. Pharm. Sci., 2021, 160105743
[http://dx.doi.org/10.1016/j.ejps.2021.105743] [PMID: 33540041]
[14]
Gutierrez, M.E.Z.; Savall, A.S.P.; da Luz Abreu, E.; Nakama, K.A.; Dos Santos, R.B.; Guedes, M.C.M.; Ávila, D.S.; Luchese, C.; Haas, S.E.; Quines, C.B.; Pinton, S. Co-nanoencapsulated meloxicam and curcumin improves cognitive impairment induced by amyloid-beta through modulation of cyclooxygenase-2 in mice. Neural Regen. Res., 2021, 16(4), 783-789.
[http://dx.doi.org/10.4103/1673-5374.295339] [PMID: 33063743]
[15]
Mirzaei, M.; Harismah, K.; Soleimani, M.; Mousavi, S. Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. J. Biomol. Struct. Dyn., 2021, 39(17), 6424-6430.
[http://dx.doi.org/10.1080/07391102.2020.1800513] [PMID: 32734850]
[16]
Niederkorn, J.Y. Corneal transplantation and immune privilege. Int. Rev. Immunol., 2013, 32(1), 57-67.
[http://dx.doi.org/10.3109/08830185.2012.737877] [PMID: 23360158]
[17]
Sharif, Z.; Sharif, W. Corneal neovascularization: Updates on pathophysiology, investigations & management. Rom. J. Ophthalmol., 2019, 63(1), 15-22.
[http://dx.doi.org/10.22336/rjo.2019.4] [PMID: 31198893]
[18]
Pradhan, N.; Guha, R.; Chowdhury, S.; Nandi, S.; Konar, A.; Hazra, S. Curcumin nanoparticles inhibit corneal neovascularization. J. Mol. Med., 2015, 93(10), 1095-1106.
[http://dx.doi.org/10.1007/s00109-015-1277-z] [PMID: 25877858]
[19]
Bian, F.; Zhang, M.C.; Zhu, Y. Inhibitory effect of curcumin on corneal neovascularization in vitro and in vivo. Ophthalmologica, 2008, 222(3), 178-186.
[http://dx.doi.org/10.1159/000126081] [PMID: 18497527]
[20]
Guo, C.; Li, M.; Qi, X.; Lin, G.; Cui, F.; Li, F.; Wu, X. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci. Rep., 2016, 6(1), 29753.
[http://dx.doi.org/10.1038/srep29753] [PMID: 27405815]
[21]
Dick, A.D.; Tundia, N.; Sorg, R.; Zhao, C.; Chao, J.; Joshi, A.; Skup, M. Risk of ocular complications in patients with noninfectious intermediate uveitis, posterior uveitis, or panuveitis. Ophthalmology, 2016, 123(3), 655-662.
[http://dx.doi.org/10.1016/j.ophtha.2015.10.028] [PMID: 26712559]
[22]
Foxman, E.F.; Zhang, M.; Hurst, S.D.; Muchamuel, T.; Shen, D.; Wawrousek, E.F.; Chan, C.C.; Gery, I. Inflammatory mediators in uveitis: Differential induction of cytokines and chemokines in Th1- versus Th2-mediated ocular inflammation. J. Immunol., 2002, 168(5), 2483-2492.
[http://dx.doi.org/10.4049/jimmunol.168.5.2483] [PMID: 11859142]
[23]
van Laar, J.A.; van Hagen, P.M. Cytokines in uveitis. Clin. Med. Res., 2006, 4(4), 248-249.
[http://dx.doi.org/10.3121/cmr.4.4.248] [PMID: 17210973]
[24]
Gupta, S.K.; Agarwal, R.; Srivastava, S.; Agarwal, P.; Agrawal, S.S.; Saxena, R.; Galpalli, N. The anti-inflammatory effects of Curcuma longa and Berberis aristata in endotoxin-induced uveitis in rabbits. Invest. Ophthalmol. Vis. Sci., 2008, 49(9), 4036-4040.
[http://dx.doi.org/10.1167/iovs.07-1186] [PMID: 18421073]
[25]
Allegri, P.; Mastromarino, A.; Neri, P. Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin. Ophthalmol., 2010, 4, 1201-1206.
[PMID: 21060672]
[26]
Lal, B.; Kapoor, A.K.; Asthana, O.P.; Agrawal, P.K.; Prasad, R.; Kumar, P.; Srimal, R.C. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother. Res., 1999, 13(4), 318-322.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<318:AID-PTR445>3.0.CO;2-7] [PMID: 10404539]
[27]
Knickelbein, J.E.; Chan, C.C.; Sen, H.N.; Ferris, F.L.; Nussenblatt, R.B. Inflammatory mechanisms of age-related macular degeneration. Int. Ophthalmol. Clin., 2015, 55(3), 63-78.
[http://dx.doi.org/10.1097/IIO.0000000000000073] [PMID: 26035762]
[28]
Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and its role in age-related macular degeneration. Cell. Mol. Life Sci., 2016, 73(9), 1765-1786.
[http://dx.doi.org/10.1007/s00018-016-2147-8] [PMID: 26852158]
[29]
Wang, Y.; Wang, V.M.; Chan, C.C. The role of anti-inflammatory agents in Age-related Macular Degeneration (AMD) treatment. Eye, 2011, 25(2), 127-139.
[http://dx.doi.org/10.1038/eye.2010.196] [PMID: 21183941]
[30]
Peddada, K.V.; Brown, A.; Verma, V.; Nebbioso, M. Therapeutic potential of curcumin in major retinal pathologies. Int. Ophthalmol., 2019, 39(3), 725-734.
[http://dx.doi.org/10.1007/s10792-018-0845-y] [PMID: 29404861]
[31]
Li, Y.; Zou, X.; Cao, K.; Xu, J.; Yue, T.; Dai, F.; Zhou, B.; Lu, W.; Feng, Z.; Liu, J. Curcumin analog 1, 5-bis (2-trifluoromethyl-phenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol. Appl. Pharmacol., 2013, 272(3), 726-735.
[http://dx.doi.org/10.1016/j.taap.2013.07.029] [PMID: 23954767]
[32]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[33]
Bucolo, C.; Drago, F.; Maisto, R.; Romano, G.L.; D’Agata, V.; Maugeri, G.; Giunta, S. Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J. Cell. Physiol., 2019, 234(10), 17295-17304.
[http://dx.doi.org/10.1002/jcp.28347] [PMID: 30770549]
[34]
Rübsam, A.; Parikh, S.; Fort, P.E. Role of inflammation in diabetic retinopathy. Int. J. Mol. Sci., 2018, 19(4), 942.
[http://dx.doi.org/10.3390/ijms19040942] [PMID: 29565290]
[35]
Chalam, K.V.; Grover, S.; Sambhav, K.; Balaiya, S.; Murthy, R.K. Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J. Ophthalmol., 2014, 2014, 6.
[http://dx.doi.org/10.1155/2014/502174]
[36]
Aldebasi, Y.H.; Aly, S.M.; Rahmani, A.H. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int. J. Physiol. Pathophysiol. Pharmacol., 2013, 5(4), 194-202.
[PMID: 24379904]
[37]
Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J. Ocul. Pharmacol. Ther., 2011, 27(2), 123-130.
[http://dx.doi.org/10.1089/jop.2010.0123] [PMID: 21314438]
[38]
Mazzolani, F.; Togni, S.; Giacomelli, L.; Eggenhoffner, R.; Franceschi, F. Oral administration of a curcumin-phospholipid formulation (Meriva®) for treatment of chronic diabetic macular edema: A pilot study. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3617-3625.
[PMID: 29917217]
[39]
Filippelli, M.; Campagna, G.; Vito, P.; Zotti, T.; Ventre, L.; Rinaldi, M.; Bartollino, S.; dell’Omo, R.; Costagliola, C. Anti-inflammatory effect of curcumin, homotaurine, and vitamin D3 on human vitreous in patients with diabetic retinopathy. Front. Neurol., 2021, 11592274
[http://dx.doi.org/10.3389/fneur.2020.592274] [PMID: 33633656]
[40]
Vohra, R.; Tsai, J.C.; Kolko, M. The role of inflammation in the pathogenesis of glaucoma. Surv. Ophthalmol., 2013, 58(4), 311-320.
[http://dx.doi.org/10.1016/j.survophthal.2012.08.010] [PMID: 23768921]
[41]
Adornetto, A.; Russo, R.; Parisi, V. Neuroinflammation as a target for glaucoma therapy. Neural Regen. Res., 2019, 14(3), 391-394.
[http://dx.doi.org/10.4103/1673-5374.245465] [PMID: 30539803]
[42]
Yang, X.; Hondur, G.; Tezel, G. Antioxidant treatment limits neuroinflammation in experimental glaucoma. Invest. Ophthalmol. Vis. Sci., 2016, 57(4), 2344-2354.
[http://dx.doi.org/10.1167/iovs.16-19153] [PMID: 27127934]
[43]
Davis, B.M.; Pahlitzsch, M.; Guo, L.; Balendra, S.; Shah, P.; Ravindran, N.; Malaguarnera, G.; Sisa, C.; Shamsher, E.; Hamze, H.; Noor, A.; Sornsute, A.; Somavarapu, S.; Cordeiro, M.F. Topical curcumin nanocarriers are neuroprotective in eye disease. Sci. Rep., 2018, 8(1), 11066.
[http://dx.doi.org/10.1038/s41598-018-29393-8] [PMID: 30038334]
[44]
Şahin, İ.O. How curcumin affects hyperglycemia-induced optic nerve damage: A short review. J. Chem. Neuroanat., 2021, 113, 101932.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101932] [PMID: 33581265]
[45]
Özkaya, D. Nazıroğlu, M. Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J. Recept. Signal Transduct. Res., 2020, 40(2), 97-108.
[http://dx.doi.org/10.1080/10799893.2020.1720240] [PMID: 32019426]
[46]
Bothun, E.D.; Scheurer, R.A.; Harrison, A.R.; Lee, M.S. Update on thyroid eye disease and management. Clin. Ophthalmol., 2009, 3, 543-551.
[PMID: 19898626]
[47]
Ludgate, M.; Baker, G. Unlocking the immunological mechanisms of orbital inflammation in thyroid eye disease. Clin. Exp. Immunol., 2002, 127(2), 193-198.
[http://dx.doi.org/10.1046/j.1365-2249.2002.01792.x] [PMID: 11876739]
[48]
Lehmann, G.M.; Feldon, S.E.; Smith, T.J.; Phipps, R.P. Immune mechanisms in thyroid eye disease. Thyroid, 2008, 18(9), 959-965.
[http://dx.doi.org/10.1089/thy.2007.0407] [PMID: 18752427]
[49]
Lee, J.S.; Kim, J.; Lee, E.J.; Yoon, J.S. Therapeutic effect of curcumin, a plant polyphenol extracted from Curcuma longae, in fibroblasts from patients with graves’ orbitopathy. Invest. Ophthalmol. Vis. Sci., 2019, 60(13), 4129-4140.
[http://dx.doi.org/10.1167/iovs.19-27376] [PMID: 31593984]
[50]
Pawlowski, P.; Reszec, J.; Eckstein, A.; Johnson, K.; Grzybowski, A.; Chyczewski, L.; Mysliwiec, J. Markers of inflammation and fibrosis in the orbital fat/connective tissue of patients with Graves’ orbitopathy: Clinical implications. Mediators Inflamm., 2014, 2014412158
[http://dx.doi.org/10.1155/2014/412158] [PMID: 25309050]
[51]
Tsai, C.C.; Wu, S.B.; Kao, S.C.; Kau, H.C.; Lee, F.L.; Wei, Y.H. The protective effect of antioxidants on orbital fibroblasts from patients with Graves’ ophthalmopathy in response to oxidative stress. Mol. Vis., 2013, 19, 927-934.
[PMID: 23687429]
[52]
Yu, W.K.; Hwang, W.L.; Wang, Y.C.; Tsai, C.C.; Wei, Y.H. Curcumin suppresses TGF-β1-induced myofibroblast differentiation and attenuates angiogenic activity of orbital fibroblasts. Int. J. Mol. Sci., 2021, 22(13), 6829.
[http://dx.doi.org/10.3390/ijms22136829] [PMID: 34202024]
[53]
Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The pathology of dry eye: The interaction between the ocular surface and lacrimal glands. Cornea, 1998, 17(6), 584-589.
[http://dx.doi.org/10.1097/00003226-199811000-00002] [PMID: 9820935]
[54]
Wilson, S.E. Inflammation: A unifying theory for the origin of dry eye syndrome. Manag. Care, 2003, 12(12)(Suppl.), 14-19.
[PMID: 14723109]
[55]
Rhee, M.K.; Mah, F.S. Inflammation in dry eye disease: How do we break the cycle? Ophthalmology, 2017, 124(11S), S14-S19.
[http://dx.doi.org/10.1016/j.ophtha.2017.08.029] [PMID: 29055357]
[56]
Damato, B.E.; Allan, D.; Murray, S.B.; Lee, W.R. Senile atrophy of the human lacrimal gland: The contribution of chronic inflammatory disease. Br. J. Ophthalmol., 1984, 68(9), 674-680.
[http://dx.doi.org/10.1136/bjo.68.9.674] [PMID: 6331845]
[57]
Stevenson, D.; Tauber, J.; Reis, B.L.; Group, C.A.P.S.; Cyclosporin, A. Phase 2 Study Group. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: A dose-ranging, randomized trial. Ophthalmology, 2000, 107(5), 967-974.
[http://dx.doi.org/10.1016/S0161-6420(00)00035-X] [PMID: 10811092]
[58]
Pflugfelder, S.C. Antiinflammatory therapy for dry eye. Am. J. Ophthalmol., 2004, 137(2), 337-342.
[http://dx.doi.org/10.1016/j.ajo.2003.10.036] [PMID: 14962426]
[59]
Kaja, S.; Koulen, P. Antioxidants restore lacrimal gland function through a calcium-mediated mechanism in experimental models of dry-eye disease. Invest. Ophthalmol. Vis. Sci., 2012, 53(14), 2346.
[60]
Chung, S.H.; Choi, S.H.; Choi, J.A.; Chuck, R.S.; Joo, C.K. Curcumin suppresses ovalbumin-induced allergic conjunctivitis. Mol. Vis., 2012, 18, 1966-1972.
[PMID: 22876123]
[61]
Chen, M.; Hu, D.N.; Pan, Z.; Lu, C.W.; Xue, C.Y.; Aass, I. Curcumin protects against hyperosmoticity-induced IL-1β elevation in human corneal epithelial cell via MAPK pathways. Exp. Eye Res., 2010, 90(3), 437-443.
[http://dx.doi.org/10.1016/j.exer.2009.12.004] [PMID: 20026325]
[62]
Muz, O.E.; Orhan, C.; Erten, F.; Tuzcu, M.; Ozercan, I.H.; Singh, P.; Morde, A.; Padigaru, M.; Rai, D.; Sahin, K. A novel integrated active herbal formulation ameliorates dry eye syndrome by inhibiting inflammation and oxidative stress and enhancing glycosylated phosphoproteins in rats. Pharmaceuticals (Basel), 2020, 13(10), 295.
[http://dx.doi.org/10.3390/ph13100295] [PMID: 33036453]
[63]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[64]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5(2), 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[65]
Basnet, P.; Hussain, H.; Tho, I.; Skalko-Basnet, N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J. Pharm. Sci., 2012, 101(2), 598-609.
[http://dx.doi.org/10.1002/jps.22785] [PMID: 21989712]
[66]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 2005, 104(6), 1322-1331.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[67]
Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382.
[http://dx.doi.org/10.1021/jf100135h] [PMID: 20486686]
[68]
Bhawana, B.R.; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem., 2011, 59(5), 2056-2061.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[69]
Farajipour, H.; Rahimian, S.; Taghizadeh, M. Curcumin: A new candidate for retinal disease therapy? J. Cell. Biochem., 2018, 120(5), 6886-6893.
[http://dx.doi.org/10.1002/jcb.28068] [PMID: 30548307]
[70]
Yang, J.; Miao, X.; Yang, F.J.; Cao, J.F.; Liu, X.; Fu, J.L.; Su, G.F. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int. J. Mol. Med., 2021, 47(5), 75.
[http://dx.doi.org/10.3892/ijmm.2021.4908] [PMID: 33693955]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy