Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review

Author(s): Lahanya Guha, Ishfaq Ahmad Bhat, Aasiya Bashir, Jawad Ur Rahman and Faheem Hyder Pottoo*

Volume 23, Issue 10, 2022

Published on: 06 July, 2022

Page: [781 - 799] Pages: 19

DOI: 10.2174/1389200223666220608144551

Price: $65

Abstract

Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.

Keywords: Triple-negative breast cancer, human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), estrogen receptor (ER), nanoparticles, nanotechnology, targeted therapy.

Next »
Graphical Abstract

[1]
Cooper, G.M.S.M. The Cell: A Molecular Approach., Sinauer Associates, 2000.
[2]
Skuse, A. Definition, diagnosis and cause: Ravenous natures. In: Constructions of Cancer in Early Modern; Skuse, A., Ed.; Springer Nature: England, 2015.
[3]
Manjunath, M.; Choudhary, B. Triple-negative breast cancer: A run-through of features, classification and current therapies. Oncol. Lett., 2021, 22(1), 512.
[http://dx.doi.org/10.3892/ol.2021.12773] [PMID: 33986872]
[4]
Breast Cancer Treatment (Adult). 2020. Available from: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq
[5]
Shafi, S.; Khan, S.; Hoda, F.; Fayaz, F.; Singh, A.; Khan, M.A.; Ali, R.; Pottoo, F.H.; Tariq, S.; Najmi, A.K. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance. Curr. Drug Metab., 2020, 21(3), 199-210.
[http://dx.doi.org/10.2174/1389200221666200303124946] [PMID: 32124694]
[6]
Zucca-Matthes, G.; Urban, C.; Vallejo, A. Anatomy of the nipple and breast ducts. Gland Surg., 2016, 5(1), 32-36.
[PMID: 26855906]
[8]
Alkabban, F.M.; Ferguson, T. Breast Cancer., StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
[9]
Saunders, C. Breast Cancer., 1st ed; Jassal, S., Ed.; Oxford University Press, 2009.
[10]
Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther., 2010, 10(10), 955-960.
[http://dx.doi.org/10.4161/cbt.10.10.13879] [PMID: 21057215]
[11]
Wu, X.; Chen, G.; Qiu, J.; Lu, J.; Zhu, W.; Chen, J.; Zhuo, S.; Yan, J. Visualization of basement membranes in normal breast and breast cancer tissues using multiphoton microscopy. Oncol. Lett., 2016, 11(6), 3785-3789.
[http://dx.doi.org/10.3892/ol.2016.4472] [PMID: 27313695]
[12]
Karakas, C. Paget’s disease of the breast. J. Carcinog., 2011, 10(1), 31.
[http://dx.doi.org/10.4103/1477-3163.90676] [PMID: 22279416]
[13]
Chen, H.; Wu, J.; Zhang, Z.; Tang, Y.; Li, X.; Liu, S.; Cao, S.; Li, X. Association between BRCA status and triple-negative breast cancer: A meta-analysis. Front. Pharmacol., 2018, 9, 909.
[http://dx.doi.org/10.3389/fphar.2018.00909] [PMID: 30186165]
[14]
Kim, A.; Jang, M.H.; Lee, S.J.; Bae, Y.K. Mutations of the epidermal growth factor receptor gene in triple-negative breast cancer. J. Breast Cancer, 2017, 20(2), 150-159.
[http://dx.doi.org/10.4048/jbc.2017.20.2.150] [PMID: 28690651]
[15]
Arpino, G.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Res., 2004, 6(3), R149-R156.
[http://dx.doi.org/10.1186/bcr767] [PMID: 15084238]
[16]
Korhonen, T.; Huhtala, H.; Holli, K. A comparison of the biological and clinical features of invasive lobular and ductal carcinomas of the breast. Breast Cancer Res. Treat., 2004, 85(1), 23-29.
[http://dx.doi.org/10.1023/B:BREA.0000021038.97593.8b] [PMID: 15039595]
[17]
Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer, 2005, 93(9), 1046-1052.
[http://dx.doi.org/10.1038/sj.bjc.6602787] [PMID: 16175185]
[18]
Raman, D.; Tiwari, A.K.; Tiriveedhi, V.; Rhoades Sterling, J.A. Editorial: The role of breast cancer stem cells in clinical outcomes. Front. Oncol., 2020, 10(299), 299.
[http://dx.doi.org/10.3389/fonc.2020.00299] [PMID: 32211328]
[19]
Al-Thoubaity, F.K. Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg. (Lond.), 2019, 49(49), 44-48.
[PMID: 31890196]
[20]
Viale, G. The current state of breast cancer classification. Ann. Oncol., 2012, 23(Suppl. 10), x207-x210.
[http://dx.doi.org/10.1093/annonc/mds326] [PMID: 22987963]
[21]
Shawarby, M.; Al-Tamimi, D.; Ahmed, A. Molecular classification of breast cancer: An overview with emphasis on ethnic variations and future perspectives. Saudi J. Med. Med. Sci., 2013, 1(1), 14-19.
[http://dx.doi.org/10.4103/1658-631X.112908]
[22]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of hu-man breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[23]
Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression fea-tures between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76.
[http://dx.doi.org/10.1186/gb-2007-8-5-r76] [PMID: 17493263]
[24]
Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med., 2010, 363(20), 1938-1948.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[25]
Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[26]
Li, J.; Qi, D.; Hsieh, T-C.; Huang, J.H.; Wu, J.M.; Wu, E. Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol. Ther., 2021, 223, 107800.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107800] [PMID: 33421449]
[27]
Emami, F.; Pathak, S.; Nguyen, T.T.; Shrestha, P.; Maharjan, S.; Kim, J.O.; Jeong, J.H.; Yook, S. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages. J. Control. Release, 2021, 329, 645-664.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.001] [PMID: 33022330]
[28]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heteroge-neous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[29]
Chaudhary, L.N.; Wilkinson, K.H.; Kong, A. Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy? Surg. Oncol. Clin. N. Am., 2018, 27(1), 141-153.
[PMID: 29132557]
[30]
Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med., 2015, 12(2), 106-116.
[PMID: 26175926]
[31]
Truffi, M.; Mazzucchelli, S.; Bonizzi, A.; Sorrentino, L.; Allevi, R.; Vanna, R.; Morasso, C.; Corsi, F. Nano-strategies to target breast cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy. Int. J. Mol. Sci., 2019, 20(6), 1263.
[http://dx.doi.org/10.3390/ijms20061263] [PMID: 30871158]
[32]
Keihan Shokooh, M.; Emami, F.; Jeong, J-H.; Yook, S. Bio-inspired and smart nanoparticles for triple negative breast cancer microenviron-ment. Pharmaceutics, 2021, 13(2), 287.
[http://dx.doi.org/10.3390/pharmaceutics13020287] [PMID: 33671698]
[33]
Andreopoulou, E.; Schweber, S.J.; Sparano, J.A.; McDaid, H.M. Therapies for triple negative breast cancer. Expert Opin. Pharmacother., 2015, 16(7), 983-998.
[http://dx.doi.org/10.1517/14656566.2015.1032246]
[34]
Kang, C.; Syed, Y.Y. Atezolizumab (in combination with Nab-Paclitaxel): A review in advanced triple-negative breast cancer. Drugs, 2020, 80(6), 601-607.
[35]
Barkat, M.A.; Pottoo, F.H.; Beg, S.; Rahman, M.; Ahmad, F. Evidence-based review on clinical potential of thymoquinone in breast cancer. In: Nanomedicine for Bioactives. ; Rahman, M.; Beg, S.; Kumar, V.; Ahmad, F., Eds.; Springer: Singapore, 2020; pp. 471-486.
[http://dx.doi.org/10.1007/978-981-15-1664-1_19]
[36]
Ansari, M.A.; Badrealam, K.F.; Alam, A.; Tufail, S.; Khalique, G.; Equbal, M.J. Recent nano-based therapeutic intervention of bioactive sesquiterpenes: Prospects in cancer therapeutics. Curr. Pharm. Des., 2020, 26(11), 1138-1144.
[http://dx.doi.org/10.2174/1381612826666200116151522]
[37]
Masuda, N.; Lee, S-J.; Ohtani, S. Im, Y.H.; Lee, E.S.; Yokota, I.; Kuroi, K.; Im, S.A.; Park, B.W.; Kim, S.B.; Yanagita, Y.; Ohno, S.; Takao, S.; Aogi, K.; Iwata, H.; Jeong, J.; Kim, A.; Park, K.H.; Sasano, H.; Ohashi, Y.; Toi, M. Adjuvant capecitabine for breast cancer after pre-operative chemotherapy. N. Engl. J. Med., 2017, 376(22), 2147-2159.
[http://dx.doi.org/10.1056/NEJMoa1612645] [PMID: 28564564]
[38]
Rouzier, R.; Perou, C.M.; Symmans, W.F.; Ibrahim, N.; Cristofanilli, M.; Anderson, K.; Hess, K.R.; Stec, J.; Ayers, M.; Wagner, P.; Morandi, P.; Fan, C.; Rabiul, I.; Ross, J.S.; Hortobagyi, G.N.; Pusztai, L. Breast cancer molecular subtypes respond differently to preoperative chemo-therapy. Clin. Cancer Res., 2005, 11(16), 5678-5685.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2421] [PMID: 16115903]
[39]
Beuvink, I.; Boulay, A.; Fumagalli, S.; Zilbermann, F.; Ruetz, S.; O’Reilly, T.; Natt, F.; Hall, J.; Lane, H.A.; Thomas, G. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell, 2005, 120(6), 747-759.
[http://dx.doi.org/10.1016/j.cell.2004.12.040] [PMID: 15797377]
[40]
Engebraaten, O.; Vollan, H.K.M.; Børresen-Dale, A-L. Triple-negative breast cancer and the need for new therapeutic targets. Am. J. Pathol., 2013, 183(4), 1064-1074.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.033] [PMID: 23920327]
[41]
Setyawati, M.I.; Kutty, R.V.; Leong, D.T. DNA nanostructures carrying stoichiometrically definable antibodies. Small, 2016, 12(40), 5601-5611.
[http://dx.doi.org/10.1002/smll.201601669]
[42]
Freedman, G.M.; Anderson, P.R.; Li, T.; Nicolaou, N. Locoregional recurrence of triple-negative breast cancer after breast-conserving sur-gery and radiation. Cancer, 2009, 115(5), 946-951.
[http://dx.doi.org/10.1002/cncr.24094] [PMID: 19156929]
[43]
Han, Y.; Yu, X.; Li, S.; Tian, Y.; Liu, C. New perspectives for resistance to PARP inhibitors in triple-negative breast cancer. Front. Oncol., 2020, 10(2456), 578095.
[http://dx.doi.org/10.3389/fonc.2020.578095] [PMID: 33324554]
[44]
Zhang, Z.; Richmond, A. The role of PI3K inhibition in the treatment of breast cancer, alone or combined with immune checkpoint inhibi-tors. Front. Mol. Biosci., 2021, 8, 648663.
[http://dx.doi.org/10.3389/fmolb.2021.648663] [PMID: 34026830]
[45]
Jeong, S-H.; Jang, J-H.; Lee, Y-B. Pharmacokinetic comparison between methotrexate-loaded nanoparticles and nanoemulsions as hard- and soft-type nanoformulations: A population pharmacokinetic modeling approach. Pharmaceutics, 2021, 13(7), 1050.
[http://dx.doi.org/10.3390/pharmaceutics13071050] [PMID: 34371740]
[46]
Kutty, R.V.; Feng, S-S. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials, 2013, 34(38), 10160-10171.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.043] [PMID: 24090836]
[47]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[48]
Khodabandehloo, H.; Zahednasab, H.; Ashrafi Hafez, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, 9(2), e3966.
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[49]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[50]
Li, Y.; Miao, W.; He, D.; Wang, S.; Lou, J.; Jiang, Y.; Wang, S. Recent progress on immunotherapy for breast cancer: Tumor microenviron-ment, nanotechnology and more. Front. Bioeng. Biotechnol., 2021, 9(453), 680315.
[http://dx.doi.org/10.3389/fbioe.2021.680315] [PMID: 34150736]
[51]
Li, M.; Fang, H.; Liu, Q.; Gai, Y.; Yuan, L.; Wang, S.; Li, H.; Hou, Y.; Gao, M.; Lan, X. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater. Sci., 2020, 8(7), 1802-1814.
[http://dx.doi.org/10.1039/D0BM00029A] [PMID: 32163070]
[52]
Deepak Singh, D.; Han, I.; Choi, E-H.; Yadav, D.K. CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer. Comput. Struct. Biotechnol. J., 2021, 19, 2384-2397.
[http://dx.doi.org/10.1016/j.csbj.2021.04.036] [PMID: 34025931]
[53]
Coleman, M.P.; Quaresma, M.; Berrino, F.; Lutz, J-M.; De Angelis, R.; Capocaccia, R.; Baili, P.; Rachet, B.; Gatta, G.; Hakulinen, T.; Micheli, A.; Sant, M.; Weir, H.K.; Elwood, J.M.; Tsukuma, H.; Koifman, S.; E., Silva G.A.; Francisci, S.; Santaquilani, M.; Verdecchia, A.; Storm, H.H.; Young, J.L. Cancer survival in five continents: A worldwide population-based study (CONCORD). Lancet Oncol., 2008, 9(8), 730-756.
[http://dx.doi.org/10.1016/S1470-2045(08)70179-7] [PMID: 18639491]
[54]
Anders, C.; Carey, L.A. Understanding and treating triple-negative breast cancer. Oncology, 2008, 22(11), 1233-1239.
[55]
Trivers, K.F.; Lund, M.J.; Porter, P.L.; Liff, J.M.; Flagg, E.W.; Coates, R.J.; Eley, J.W. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control, 2009, 20(7), 1071-1082.
[http://dx.doi.org/10.1007/s10552-009-9331-1] [PMID: 19343511]
[56]
Wang, X.; Qi, Y.; Kong, X.; Zhai, J.; Li, Y.; Song, Y.; Wang, J.; Feng, X.; Fang, Y. Immunological therapy: A novel thriving area for triple-negative breast cancer treatment. Cancer Lett., 2019, 442, 409-428.
[http://dx.doi.org/10.1016/j.canlet.2018.10.042] [PMID: 30419345]
[57]
Singh, D.; Roy, N.; Maiti, S. Epidemiology, pattern of recurrence and survival in triple-negative breast cancer: A retrospective analysis. Asian Pac. J. Cancer Care, 2020, 5(2), 87-94.
[http://dx.doi.org/10.31557/apjcc.2020.5.2.87-94]
[58]
Chacón, R.D.; Costanzo, M.V. Triple-negative breast cancer. Breast Cancer Res., 2010, 12(2)(Suppl. 2), S3.
[http://dx.doi.org/10.1186/bcr2574] [PMID: 21050424]
[59]
Weisman, P.S.; Ng, C.K.; Brogi, E.; Eisenberg, R.E.; Won, H.H.; Piscuoglio, S.; De Filippo, M.R.; Ioris, R.; Akram, M.; Norton, L.; Weigelt, B.; Berger, M.F.; Reis-Filho, J.S.; Wen, H.Y. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol., 2016, 29(5), 476-488.
[http://dx.doi.org/10.1038/modpathol.2016.39] [PMID: 26939876]
[60]
Raju, R.; Paul, A.M.; Asokachandran, V.; George, B.; Radhamony, L.; Vinaykumar, M.; Girijadevi, R.; Pillai, M.R. The triple-negative breast cancer database: An omics platform for reference, integration and analysis of triple-negative breast cancer data. Breast Cancer Res., 2014, 16(6), 490.
[http://dx.doi.org/10.1186/s13058-014-0490-y] [PMID: 25472854]
[61]
Nusse, R.; Brown, A.; Papkoff, J.; Scambler, P.; Shackleford, G.; McMahon, A.; Moon, R.; Varmus, H. A new nomenclature for int-1 and related genes: The Wnt gene family. Cell, 1991, 64(2), 231.
[http://dx.doi.org/10.1016/0092-8674(91)90633-A] [PMID: 1846319]
[62]
Cragg, GM Newman, DJ Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta -General Subjects, 2013, 1830(6), 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[63]
Pohl, S-G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A.P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis, 2017, 6(4), 310.
[http://dx.doi.org/10.1038/oncsis.2017.14]
[64]
Dey, N.; Barwick, B.G.; Moreno, C.S.; Ordanic-Kodani, M.; Chen, Z.; Oprea-Ilies, G.; Tang, W.; Catzavelos, C.; Kerstann, K.F.; Sledge, G.W., Jr; Abramovitz, M.; Bouzyk, M.; De, P.; Leyland-Jones, B.R. Wnt signaling in triple negative breast cancer is associated with metasta-sis. BMC Cancer, 2013, 13(1), 537.
[http://dx.doi.org/10.1186/1471-2407-13-537] [PMID: 24209998]
[65]
Dey, N.; Young, B.; Abramovitz, M.; Bouzyk, M.; Barwick, B.; De, P.; Leyland-Jones, B. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner. PLoS One, 2013, 8(10), e77425.
[http://dx.doi.org/10.1371/journal.pone.0077425] [PMID: 24143235]
[66]
Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; Mills, G.B.; Lau, C.C.; Brown, P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 2015, 21(7), 1688-1698.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432] [PMID: 25208879]
[67]
Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev., 2008, 22(10), 1276-1312.
[http://dx.doi.org/10.1101/gad.1653708] [PMID: 18483217]
[68]
Laezza, C.; D’Alessandro, A.; Paladino, S.; Maria Malfitano, A.; Chiara Proto, M.; Gazzerro, P.; Pisanti, S.; Santoro, A.; Ciaglia, E.; Bifulco, M. Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells. Eur. J. Cancer, 2012, 48(16), 3112-3122.
[http://dx.doi.org/10.1016/j.ejca.2012.02.062] [PMID: 22425263]
[69]
Liu, Y-R.; Jiang, Y-Z.; Xu, X-E.; Yu, K-D.; Jin, X.; Hu, X.; Zuo, W.J.; Hao, S.; Wu, J.; Liu, G.Y.; Di, G.H.; Li, D.Q.; He, X.H.; Hu, W.G.; Shao, Z.M. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res., 2016, 18(1), 33.
[http://dx.doi.org/10.1186/s13058-016-0690-8] [PMID: 26975198]
[70]
King, T.D.; Suto, M.J.; Li, Y. The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J. Cell. Biochem., 2012, 113(1), 13-18.
[http://dx.doi.org/10.1002/jcb.23350] [PMID: 21898546]
[71]
Yang, L.; Wu, X.; Wang, Y.; Zhang, K.; Wu, J.; Yuan, Y.C.; Deng, X.; Chen, L.; Kim, C.C.; Lau, S.; Somlo, G.; Yen, Y. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene, 2011, 30(43), 4437-4446.
[http://dx.doi.org/10.1038/onc.2011.145] [PMID: 21532620]
[72]
Liu, C.C.; Prior, J.; Piwnica-Worms, D.; Bu, G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5136-5141.
[http://dx.doi.org/10.1073/pnas.0911220107] [PMID: 20194742]
[73]
King, D.; Yeomanson, D.; Bryant, H.E. PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuro-blastoma. J. Pediatr. Hematol. Oncol., 2015, 37(4), 245-251.
[http://dx.doi.org/10.1097/MPH.0000000000000329] [PMID: 25811750]
[74]
Lee, J.J.; Loh, K.; Yap, Y.S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med., 2015, 12(4), 342-354.
[PMID: 26779371]
[75]
Brown, J.S.; Banerji, U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther., 2017, 172, 101-115.
[http://dx.doi.org/10.1016/j.pharmthera.2016.12.001] [PMID: 27919797]
[76]
Sun, Y.; Ding, H.; Liu, X.; Li, X.; Li, L. INPP4B overexpression enhances the antitumor efficacy of PARP inhibitor AG014699 in MDA-MB-231 triple-negative breast cancer cells. Tumour Biol., 2014, 35(5), 4469-4477.
[http://dx.doi.org/10.1007/s13277-013-1589-y] [PMID: 24420152]
[77]
Fang, H.; Xie, J.; Zhang, M.; Zhao, Z.; Wan, Y.; Yao, Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am. J. Transl. Res., 2017, 9(3), 953-961.
[PMID: 28386324]
[78]
Ito, K.; Ogata, H.; Honma, N.; Shibuya, K.; Mikami, T. Expression of mTOR signaling pathway molecules in triple-negative breast cancer. Pathobiology, 2019, 86(5-6), 315-321.
[http://dx.doi.org/10.1159/000503311] [PMID: 31707383]
[79]
Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[80]
Massihnia, D.; Galvano, A.; Fanale, D.; Perez, A.; Castiglia, M.; Incorvaia, L.; Listì, A.; Rizzo, S.; Cicero, G.; Bazan, V.; Castorina, S.; Russo, A. Triple negative breast cancer: shedding light onto the role of PI3k/Akt/mTOR pathway. Oncotarget, 2016, 7(37), 60712-60722.
[http://dx.doi.org/10.18632/oncotarget.10858] [PMID: 27474173]
[81]
Ossovskaya, V.; Wang, Y.; Budoff, A.; Xu, Q.; Lituev, A.; Potapova, O.; Vansant, G.; Monforte, J.; Daraselia, N. Exploring molecular path-ways of triple-negative breast cancer. Genes Cancer, 2011, 2(9), 870-879.
[http://dx.doi.org/10.1177/1947601911432496] [PMID: 22593799]
[82]
Pan, S.; Dong, Q.; Sun, L.S.; Li, T.J. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: Modification of the two-hit hypothesis. Clin. Cancer Res., 2010, 16(2), 442-450.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2574] [PMID: 20068110]
[83]
ten Haaf, A.; Bektas, N.; von Serenyi, S.; Losen, I.; Arweiler, E.C.; Hartmann, A.; Knüchel, R.; Dahl, E. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer, 2009, 9(1), 298.
[http://dx.doi.org/10.1186/1471-2407-9-298] [PMID: 19706168]
[84]
Yauch, R.L.; Dijkgraaf, G.J.; Alicke, B.; Januario, T.; Ahn, C.P.; Holcomb, T.; Pujara, K.; Stinson, J.; Callahan, C.A.; Tang, T.; Bazan, J.F.; Kan, Z.; Seshagiri, S.; Hann, C.L.; Gould, S.E.; Low, J.A.; Rudin, C.M.; de Sauvage, F.J. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science, 2009, 326(5952), 572-574.
[http://dx.doi.org/10.1126/science.1179386] [PMID: 19726788]
[85]
Epstein, E.H. Basal cell carcinomas: Attack of the hedgehog. Nat. Rev. Cancer, 2008, 8(10), 743-754.
[http://dx.doi.org/10.1038/nrc2503] [PMID: 18813320]
[86]
Habib, J.G.; O’Shaughnessy, J.A. The hedgehog pathway in triple-negative breast cancer. Cancer Med., 2016, 5(10), 2989-3006.
[http://dx.doi.org/10.1002/cam4.833] [PMID: 27539549]
[87]
Tao, Y.; Mao, J.; Zhang, Q.; Li, L. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol. Lett., 2011, 2(5), 995-1001.
[PMID: 22866163]
[88]
Jamdade, V.S.; Sethi, N.; Mundhe, N.A.; Kumar, P.; Lahkar, M.; Sinha, N. Therapeutic targets of triple-negative breast cancer: A review. Br. J. Pharmacol., 2015, 172(17), 4228-4237.
[http://dx.doi.org/10.1111/bph.13211] [PMID: 26040571]
[89]
Di Mauro, C.; Rosa, R.; D’Amato, V.; Ciciola, P.; Servetto, A.; Marciano, R.; Orsini, R.C.; Formisano, L.; De Falco, S.; Cicatiello, V.; Di Bonito, M.; Cantile, M.; Collina, F.; Chambery, A.; Veneziani, B.M.; De Placido, S.; Bianco, R. Hedgehog signalling pathway orchestrates an-giogenesis in triple-negative breast cancers. Br. J. Cancer, 2017, 116(11), 1425-1435.
[http://dx.doi.org/10.1038/bjc.2017.116] [PMID: 28441382]
[90]
Mirzoeva, O.K.; Das, D.; Heiser, L.M.; Bhattacharya, S.; Siwak, D.; Gendelman, R.; Bayani, N.; Wang, N.J.; Neve, R.M.; Guan, Y.; Hu, Z.; Knight, Z.; Feiler, H.S.; Gascard, P.; Parvin, B.; Spellman, P.T.; Shokat, K.M.; Wyrobek, A.J.; Bissell, M.J.; McCormick, F.; Kuo, W.L.; Mills, G.B.; Gray, J.W.; Korn, W.M. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res., 2009, 69(2), 565-572.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3389] [PMID: 19147570]
[91]
Hoeflich, K.P.; O’Brien, C.; Boyd, Z.; Cavet, G.; Guerrero, S.; Jung, K.; Januario, T.; Savage, H.; Punnoose, E.; Truong, T.; Zhou, W.; Berry, L.; Murray, L.; Amler, L.; Belvin, M.; Friedman, L.S.; Lackner, M.R. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin. Cancer Res., 2009, 15(14), 4649-4664.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0317] [PMID: 19567590]
[92]
Jiang, W.; Wang, X.; Zhang, C.; Xue, L.; Yang, L. Expression and clinical significance of MAPK and EGFR in triple-negative breast cancer. Oncol. Lett., 2020, 19(3), 1842-1848.
[http://dx.doi.org/10.3892/ol.2020.11274] [PMID: 32194678]
[93]
Liu, J.; Shen, J.X.; Wen, X.F.; Guo, Y.X.; Zhang, G.J. Targeting notch degradation system provides promise for breast cancer therapeutics. Crit. Rev. Oncol. Hematol., 2016, 104, 21-29.
[http://dx.doi.org/10.1016/j.critrevonc.2016.05.010] [PMID: 27263934]
[94]
Lamy, M.; Ferreira, A.; Dias, J.S.; Braga, S.; Silva, G.; Barbas, A. Notch-out for breast cancer therapies. New Biotechnol., 2017, 39(Pt B), 215-21.
[http://dx.doi.org/10.1016/j.nbt.2017.08.004]
[95]
Speiser, J.; Foreman, K.; Drinka, E.; Godellas, C.; Perez, C.; Salhadar, A.; Erşahin, Ç.; Rajan, P. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int. J. Surg. Pathol., 2012, 20(2), 139-145.
[http://dx.doi.org/10.1177/1066896911427035] [PMID: 22084425]
[96]
Reedijk, M.; Odorcic, S.; Chang, L.; Zhang, H.; Miller, N.; McCready, D.R.; Lockwood, G.; Egan, S.E. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res., 2005, 65(18), 8530-8537.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1069] [PMID: 16166334]
[97]
Chen, J.Y.; Li, C.F.; Chu, P.Y.; Lai, Y.S.; Chen, C.H.; Jiang, S.S.; Hou, M.F.; Hung, W.C. Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1. Oncotarget, 2016, 7(19), 27689-27710.
[http://dx.doi.org/10.18632/oncotarget.8381] [PMID: 27029061]
[98]
Bednarz-Knoll, N.; Efstathiou, A.; Gotzhein, F.; Wikman, H.; Mueller, V.; Kang, Y.; Pantel, K. Potential involvement of jagged1 in metastatic progression of human breast carcinomas. Clin. Chem., 2016, 62(2), 378-386.
[http://dx.doi.org/10.1373/clinchem.2015.246686] [PMID: 26721293]
[99]
Farnie, G.; Clarke, R.B. Mammary stem cells and breast cancer-role of notch signalling. Stem Cell Rev., 2007, 3(2), 169-175.
[http://dx.doi.org/10.1007/s12015-007-0023-5] [PMID: 17873349]
[100]
Napetschnig, J.; Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys., 2013, 42(1), 443-468.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130338] [PMID: 23495970]
[101]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[102]
Pires, B.R.; D.E., Amorim Í.S.; Souza, L.D.; Rodrigues, J.A.; Mencalha, A.L. Targeting cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment. Anticancer Res., 2016, 36(11), 5681-5691.
[http://dx.doi.org/10.21873/anticanres.11151] [PMID: 27793889]
[103]
Biswas, D.K.; Iglehart, J.D. Linkage between EGFR family receptors and nuclear factor kappaB (NF-kappaB) signaling in breast cancer. J. Cell. Physiol., 2006, 209(3), 645-652.
[http://dx.doi.org/10.1002/jcp.20785] [PMID: 17001676]
[104]
Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W. Jr Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639.
[http://dx.doi.org/10.1128/MCB.17.7.3629] [PMID: 9199297]
[105]
Kendellen, M.F.; Bradford, J.W.; Lawrence, C.L.; Clark, K.S.; Baldwin, A.S. Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene, 2014, 33(10), 1297-1305.
[http://dx.doi.org/10.1038/onc.2013.64] [PMID: 23474754]
[106]
Smith, S.M.; Lyu, Y.L.; Cai, L. NF-κB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PLoS One, 2014, 9(9), e106966.
[http://dx.doi.org/10.1371/journal.pone.0106966] [PMID: 25184276]
[107]
Gordon, A.H.; O’Keefe, R.J.; Schwarz, E.M.; Rosier, R.N.; Puzas, J.E. Nuclear factor-kappaB-dependent mechanisms in breast cancer cells regulate tumor burden and osteolysis in bone. Cancer Res., 2005, 65(8), 3209-3217.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4017] [PMID: 15833852]
[108]
Hartman, Z.C.; Poage, G.M.; den Hollander, P.; Tsimelzon, A.; Hill, J.; Panupinthu, N.; Zhang, Y.; Mazumdar, A.; Hilsenbeck, S.G.; Mills, G.B.; Brown, P.H. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cyto-kines IL-6 and IL-8. Cancer Res., 2013, 73(11), 3470-3480.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4524-T] [PMID: 23633491]
[109]
Fusella, F.; Seclì, L.; Busso, E.; Krepelova, A.; Moiso, E.; Rocca, S.; Conti, L.; Annaratone, L.; Rubinetto, C.; Mello-Grand, M.; Singh, V.; Chiorino, G.; Silengo, L.; Altruda, F.; Turco, E.; Morotti, A.; Oliviero, S.; Castellano, I.; Cavallo, F.; Provero, P.; Tarone, G.; Brancaccio, M. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat. Commun., 2017, 8(1), 1636.
[http://dx.doi.org/10.1038/s41467-017-01829-1] [PMID: 29158506]
[110]
Johnson, G.L.; Stuhlmiller, T.J.; Angus, S.P.; Zawistowski, J.S.; Graves, L.M. Molecular pathways: Adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res., 2014, 20(10), 2516-2522.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1081] [PMID: 24664307]
[111]
Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta, 2011, 1813(9), 1619-1633.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.012] [PMID: 21167873]
[112]
Cseh, B.; Doma, E.; Baccarini, M. “RAF” neighborhood: Protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett., 2014, 588(15), 2398-2406.
[http://dx.doi.org/10.1016/j.febslet.2014.06.025] [PMID: 24937142]
[113]
Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev., 2013, 39(8), 935-946.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.009] [PMID: 23643661]
[114]
Sharma, S.B.; Lin, C.C.; Farrugia, M.K.; McLaughlin, S.L.; Ellis, E.J.; Brundage, K.M.; Salkeni, M.A.; Ruppert, J.M. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol. Cell. Biol., 2014, 34(22), 4143-4164.
[http://dx.doi.org/10.1128/MCB.00480-14] [PMID: 25202123]
[115]
Parvani, J.G.; Jackson, M.W. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr. Relat. Cancer, 2017, 24(4), R81-R97.
[http://dx.doi.org/10.1530/ERC-16-0482] [PMID: 28148541]
[116]
Riley, R.S.; Day, E.S. Frizzled7 antibody-functionalized nanoshells enable multivalent binding for wnt signaling inhibition in triple negative breast cancer cells. Small, 2017, 13(26), 10.
[http://dx.doi.org/10.1002/smll.201700544]
[117]
Kamaruzman, N.I.; Tiash, S.; Ashaie, M.; Chowdhury, E.H. Sirnas targeting growth factor receptor and anti-apoptotic genes synergistically kill breast cancer cells through inhibition of MAPK and PI-3 kinase pathways. Biomedicines, 2018, 6(3), 73.
[http://dx.doi.org/10.3390/biomedicines6030073] [PMID: 29932151]
[118]
Qin, B.; Cheng, K. Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res., 2010, 12(5), R74.
[http://dx.doi.org/10.1186/bcr2644] [PMID: 20863366]
[119]
Bakhtiar, A.; Kamaruzman, N.; Othman, I.; Zaini, A.; Chowdhury, E. Intracellular delivery of p53 gene and MAPK siRNA into breast cancer cells utilizing barium salt nanoparticles. J. Breast Cancer Res., 2017, 1, 1-9.
[120]
Hu, H.; Zhang, Y.; Ji, W.; Mei, H.; Wu, T.; He, Z. Hyaluronic acid-coated and Olaparib-loaded PEI - PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J. Microencapsul., 2021, 1-12.
[PMID: 34859741]
[121]
Nicolini, C. Poly-lactic-co-glycolic acid nanoformulation of small molecule antagonist GANT61 for cancer annihilation by modulating hedgehog pathway. NanoWorld J., 2017, 1(2)
[122]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[123]
Silva, G.A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol., 2004, 61(3), 216-220.
[http://dx.doi.org/10.1016/j.surneu.2003.09.036] [PMID: 14984987]
[124]
Sarika, P.R.; Nirmala, R.J. Curcumin loaded gum Arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater. Sci. Eng. C, 2016, 65, 331-337.
[http://dx.doi.org/10.1016/j.msec.2016.04.044] [PMID: 27157759]
[125]
Pal, K.; Roy, S.; Parida, P.K.; Dutta, A.; Bardhan, S.; Das, S.; Jana, K.; Karmakar, P. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in in vitro and in vivo model. Mater. Sci. Eng. C, 2019, 95, 204-216.
[http://dx.doi.org/10.1016/j.msec.2018.10.071] [PMID: 30573243]
[126]
Vieira, D.B.; Gamarra, L.F. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo), 2016, 14(1), 99-103.
[http://dx.doi.org/10.1590/S1679-45082016RB3475] [PMID: 27074238]
[127]
Talluri, S.V.; Kuppusamy, G.; Karri, V.V.S.R.; Tummala, S.; Madhunapantula, S.V. Lipid-based nanocarriers for breast cancer treatment - comprehensive review. Drug Deliv., 2016, 23(4), 1291-1305.
[http://dx.doi.org/10.3109/10717544.2015.1092183] [PMID: 26430913]
[128]
Fontana, G.; Maniscalco, L.; Schillaci, D.; Cavallaro, G.; Giammona, G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv., 2005, 12(6), 385-392.
[http://dx.doi.org/10.1080/10717540590968855] [PMID: 16253954]
[129]
Acevedo-Morantes, C.Y.; Acevedo-Morantes, M.T.; Suleiman-Rosado, D.; Ramírez-Vick, J.E.J.D.D. Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells. Drug Deliv., 2013, 20(8), 338-348.
[http://dx.doi.org/10.3109/10717544.2013.834412] [PMID: 24024505]
[130]
Zhang, L.; Chan, J.M.; Gu, F.X.; Rhee, J-W.; Wang, A.Z.; Radovic-Moreno, A.F.; Alexis, F.; Langer, R.; Farokhzad, O.C. Self-assembled lipid polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano, 2008, 2(8), 1696-1702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]
[131]
Sun, S.; Liu, J.; Zhou, N.; Zhu, W.; Dou, Q.P.; Zhou, K. Isolation of three new annonaceous acetogenins from Graviola fruit (Annona muri-cata) and their anti-proliferation on human prostate cancer cell PC-3. Bioorg. Med. Chem. Lett., 2016, 26(17), 4382-4385.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.038] [PMID: 27499453]
[132]
de Sousa Cunha, F.; Dos Santos Pereira, L.N.; de Costa, E. Silva, T.P.; de Sousa Luz, R.A.; Nogueira Mendes, A. Development of nanopartic-ulate systems with action in breast and ovarian cancer. Nanotheragnostics. J. Drug Target., 2019, 27(7), 732-741.
[http://dx.doi.org/10.1080/1061186X.2018.1523418] [PMID: 30207742]
[133]
Valicherla, G.R.; Dave, K.M.; Syed, A.A.; Riyazuddin, M.; Gupta, A.P.; Singh, A. Wahajuddin; Mitra, K.; Datta, D.; Gayen, J.R. Formula-tion optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci. Rep., 2016, 6(1), 26895.
[http://dx.doi.org/10.1038/srep26895] [PMID: 27241877]
[134]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[135]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int., 2013, 2013, 578290.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[136]
Liu, Y.; Chen, C.; Qian, P.; Lu, X.; Sun, B.; Zhang, X.; Wang, L.; Gao, X.; Li, H.; Chen, Z.; Tang, J.; Zhang, W.; Dong, J.; Bai, R.; Lobie, P.E.; Wu, Q.; Liu, S.; Zhang, H.; Zhao, F.; Wicha, M.S.; Zhu, T.; Zhao, Y. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun., 2015, 6(1), 5988.
[http://dx.doi.org/10.1038/ncomms6988] [PMID: 25612916]
[137]
Nurunnabi, M.; Khatun, Z.; Huh, K.M.; Park, S.Y.; Lee, D.Y.; Cho, K.J.; Lee, Y.K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano, 2013, 7(8), 6858-6867.
[http://dx.doi.org/10.1021/nn402043c] [PMID: 23829293]
[138]
Casais-Molina, M.; Cab, C.; Canto, G.; Medina, J.; Tapia, A. Carbon nanomaterials for breast cancer treatment. J. Nanomater., 2018, 2018, 2058613.
[http://dx.doi.org/10.1155/2018/2058613]
[139]
Xie, R.; Wang, Z.; Yu, H.; Fan, Z.; Yuan, F.; Li, Y.; Li, X.; Fan, L.; Fan, H. Highly water-soluble and surface charge-tunable fluorescent fullerene nanoparticles: Facile fabrication and cellular imaging. Electrochim. Acta, 2016, 201, 220-227.
[http://dx.doi.org/10.1016/j.electacta.2016.03.198]
[140]
Zhou, T.; Zhang, B.; Wei, P.; Du, Y.; Zhou, H.; Yu, M.; Yan, L.; Zhang, W.; Nie, G.; Chen, C.; Tu, Y.; Wei, T. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35(37), 9833-9843.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.033] [PMID: 25212524]
[141]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceu-tics: Part II-Production scales and clinically compliant production methods. Nanomaterials (Basel), 2020, 10(3), 455.
[http://dx.doi.org/10.3390/nano10030455] [PMID: 32143286]
[142]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural mem-brane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[143]
Hiraga, T.; Ito, S.; Nakamura, H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res., 2013, 73(13), 4112-4122.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3801] [PMID: 23633482]
[144]
Ahmad, A.; Mondal, S.K.; Mukhopadhyay, D.; Banerjee, R.; Alkharfy, K.M. Development of liposomal formulation for delivering anti-cancer drug to breast cancer stem-cell-like cells and its pharmacokinetics in an animal model. Mol. Pharm., 2016, 13(3), 1081-1088.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00900] [PMID: 26832839]
[145]
Pinto, A.C.; Moreira, J.N.; Simões, S. Liposomal imatinib-mitoxantrone combination: formulation development and therapeutic evaluation in an animal model of prostate cancer. Prostate, 2011, 71(1), 81-90.
[http://dx.doi.org/10.1002/pros.21224] [PMID: 20607721]
[146]
Zhao, L.; Gu, C.; Gan, Y.; Shao, L.; Chen, H.; Zhu, H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metasta-sis. J. Control. Release, 2020, 318, 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.005] [PMID: 31830541]
[147]
Liu, J.; Li, J.; Liu, N.; Guo, N.; Gao, C.; Hao, Y.; Chen, L.; Zhang, X. In vitro studies of phospholipid-modified PAMAM-siMDR1 complex-es for the reversal of multidrug resistance in human breast cancer cells. Int. J. Pharm., 2017, 530(1-2), 291-299.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.026] [PMID: 28619457]
[148]
Chittasupho, C.; Anuchapreeda, S.; Sarisuta, N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur. J. Pharm. Biopharm., 2017, 119, 310-321.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.003] [PMID: 28694161]
[149]
Vert, M.; Doi, Y.; Hellwich, K-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and appli-cations (IUPAC Recommendations 2012). Pure Appl. Chem., 2012, 84(2), 377-410.
[http://dx.doi.org/10.1351/PAC-REC-10-12-04]
[150]
Selot, R.; Marepally, S.; Kumar Vemula, P. Nanoparticle coated viral vectors for gene therapy. Curr. Biotechnol., 2016, 5(1), 44-53.
[http://dx.doi.org/10.2174/2211550104666151008213153]
[151]
Pinon-Segundo, E.; Mendoza-Munoz, N.; Quintanar-Guerrero, D. Nanoparticles as dental drug-delivery systems. In: Nanobiomaterials in Clinical Dentistry; Subramani, K.; Ahmed, W.; Hartsfield, J.K., Eds.; William Andrew: Norwich, NY, 2013; pp. 475-495.
[152]
Sun, T-M.; Wang, Y-C.; Wang, F.; Du, J-Z.; Mao, C-Q.; Sun, C-Y.; Tang, R.Z.; Liu, Y.; Zhu, J.; Zhu, Y.H.; Yang, X.Z.; Wang, J. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35(2), 836-845.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.011] [PMID: 24144908]
[153]
Muthukrishnan, S.; Vellingiri, B.; Murugesan, G. Anticancer effects of silver nanoparticles encapsulated by Gloriosa superba (L.) leaf ex-tracts in DLA tumor cells. Future J. Pharm. Sci., 2018, 4(2), 206-214.
[http://dx.doi.org/10.1016/j.fjps.2018.06.001]
[154]
Sorolla, A.; Wang, E.; Clemons, T.D.; Evans, C.W.; Plani-Lam, J.H.; Golden, E.; Dessauvagie, B.; Redfern, A.D.; Swaminathan-Iyer, K.; Blancafort, P. Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles, EN1-iPeps and RGD peptides. Nanomedicine, 2019, 20, 102003.
[http://dx.doi.org/10.1016/j.nano.2019.04.006] [PMID: 31055077]
[155]
Hernandez-Delgadillo, R.; García-Cuéllar, C.M.; Sánchez-Pérez, Y.; Pineda-Aguilar, N.; Martínez-Martínez, M.A.; Rangel-Padilla, E.E. Nak-agoshi-Cepeda, S.E.; Solís-Soto, J.M.; Sánchez-Nájera, R.I.; Nakagoshi-Cepeda, M.A.A.; Chellam, S.; Cabral-Romero, C. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int. J. Nanomedicine, 2018, 13, 6089-6097.
[http://dx.doi.org/10.2147/IJN.S179095] [PMID: 30323596]
[156]
Chowdhury, P.; Ghosh, U.; Samanta, K.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact. Mater., 2021, 6(10), 3269-3287.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.037] [PMID: 33778204]
[157]
Li, S-Y.; Sun, R.; Wang, H-X.; Shen, S.; Liu, Y.; Du, X-J.; Zhu, Y.H.; Jun, W. Combination therapy with epigenetic-targeted and chemothera-peutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J. Control. Release, 2015, 205, 7-14.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.011] [PMID: 25445694]
[158]
Johnstone, T.; Kulak, N.; Pridgen, E.; Farokhzad, O.; Langer, R.; Lippard, S.J. Nanoparticle encapsulation of mitaplatin and the effect thereof on in vivo properties. ACS Nano, 2013, 7(7), 5675-5683.
[159]
Palma, G.; Conte, C.; Barbieri, A.; Bimonte, S.; Luciano, A.; Rea, D.; Ungaro, F.; Tirino, P.; Quaglia, F.; Arra, C. Antitumor activity of PEGylated biodegradable nanoparticles for sustained release of docetaxel in triple-negative breast cancer. Int. J. Pharm., 2014, 473(1-2), 55-63.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.058] [PMID: 24992317]
[160]
Malarvizhi, G.L.; Chandran, P.; Retnakumari, A.P.; Ramachandran, R.; Gupta, N.; Nair, S.; Koyakutty, M. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing. Nanomedicine, 2014, 10(3), 579-587.
[http://dx.doi.org/10.1016/j.nano.2013.10.006] [PMID: 24200524]
[161]
Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Arrojo, R.; Liu, D. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: Characterization and efficacy in pancreatic, gastric, and other cancers. J. Bioconjug. Chem., 2015, 26(5), 919-931.
[162]
Khanna, V.; Kalscheuer, S.; Kirtane, A.; Zhang, W.; Panyam, J. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov., 2019, 1(1), FDD8.
[http://dx.doi.org/10.4155/fdd-2019-0005] [PMID: 31448368]
[163]
Ghosh, S.; Harke, A.; Chacko, M.; Gurav, S.; Joshi, K.; Dhepe, A. Gloriosa superba mediated synthesis of silver and gold nanoparticles for anticancer applications. J. Nanomed. Nanotechnol., 2016, 7(390), 2.
[http://dx.doi.org/10.4172/2157-7439.1000390]
[164]
Rokade, S.S.; Joshi, K.A.; Mahajan, K.; Patil, S.; Tomar, G.; Dubal, D.S. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorg. Chem. Appl., 2018, 2018, 4924186.
[http://dx.doi.org/10.1155/2018/4924186]
[165]
Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B, 2012, 114, 87-93.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.014] [PMID: 22722055]
[166]
Wahab, R.; Siddiqui, M.A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; Shin, H.S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B Biointerfaces, 2014, 117, 267-276.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.038] [PMID: 24657613]
[167]
Baskar, G.; Chandhuru, J.; Sheraz Fahad, K.; Praveen, A.S.; Chamundeeswari, M.; Muthukumar, T. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. J. Mater. Sci. Mater. Med., 2015, 26(1), 5380.
[http://dx.doi.org/10.1007/s10856-015-5380-z] [PMID: 25589205]
[168]
Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Mathematical, Physical. Eng. Sci., 1915, 2010(368), 1333-1383.
[169]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[170]
Ovejero Paredes, K.; Díaz-García, D.; García-Almodóvar, V.; Lozano Chamizo, L.; Marciello, M.; Díaz-Sánchez, M.; Prashar, S.; Gómez-Ruiz, S.; Filice, M. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers (Basel), 2020, 12(1), 187.
[http://dx.doi.org/10.3390/cancers12010187] [PMID: 31940937]
[171]
Darvishi, B.; Farahmand, L.; Majidzadeh-A, K. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol. Ther. Nucleic Acids, 2017, 7, 164-180.
[http://dx.doi.org/10.1016/j.omtn.2017.03.007] [PMID: 28624192]
[172]
Hsieh, Y-S.; Yang, S-F.; Sethi, G.; Hu, D-N. Natural bioactives in cancer treatment and prevention. BioMed Res. Int., 2015, 2015, 182835.
[http://dx.doi.org/10.1155/2015/182835] [PMID: 25883943]
[173]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59.
[http://dx.doi.org/10.1159/000443404]
[174]
Varghese, E.; Samuel, S.M.; Abotaleb, M.; Cheema, S.; Mamtani, R.; Büsselberg, D. The “Yin and Yang” of natural compounds in anticancer therapy of triple-negative breast cancers. Cancers (Basel), 2018, 10(10), E346.
[http://dx.doi.org/10.3390/cancers10100346] [PMID: 30248941]
[175]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, re-tention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[176]
Mittal, L.; Raman, V.; Camarillo, I.G.; Sundararajan, R. Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers. Biochem. Biophys. Res. Commun., 2017, 491(4), 1015-1020.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.002] [PMID: 28780353]
[177]
Taurin, S.; Nehoff, H.; Diong, J.; Larsen, L.; Rosengren, R.J.; Greish, K. Curcumin-derivative nanomicelles for the treatment of triple nega-tive breast cancer. J. Drug Target., 2013, 21(7), 675-683.
[http://dx.doi.org/10.3109/1061186X.2013.796955] [PMID: 23679865]
[178]
Zhao, Y.; Huan, M.L.; Liu, M.; Cheng, Y.; Sun, Y.; Cui, H.; Liu, D.Z.; Mei, Q.B.; Zhou, S.Y. Doxorubicin and resveratrol co-delivery nano-particle to overcome doxorubicin resistance. Sci. Rep., 2016, 6(1), 35267.
[http://dx.doi.org/10.1038/srep35267] [PMID: 27731405]
[179]
Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: Implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm., 2013, 10(9), 3459-3474.
[http://dx.doi.org/10.1021/mp400311j] [PMID: 23927416]
[180]
Murugan, C.; Rayappan, K.; Thangam, R.; Bhanumathi, R.; Shanthi, K.; Vivek, R.; Thirumurugan, R.; Bhattacharyya, A.; Sivasubramanian, S.; Gunasekaran, P.; Kannan, S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: An improved nanomedicine strategy. Sci. Rep., 2016, 6(1), 34053.
[http://dx.doi.org/10.1038/srep34053] [PMID: 27725731]
[181]
Fernandes, J. Antitumor monoterpenes. In: de Sousa, D.; Ed. Bioactive Essential Oils and Cancer; Springer: Cham. 2015, pp. 175-200.
[182]
Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int. J. Biol. Macromol., 2019, 125, 700-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.003] [PMID: 30521927]
[183]
Mintz, R.L.; Gao, M.A.; Lo, K.; Lao, Y.H.; Li, M.; Leong, K.W. CRISPR technology for breast cancer: Diagnostics, modeling, and therapy. Adv. Biosyst., 2018, 2(11), 1800132.
[http://dx.doi.org/10.1002/adbi.201800132] [PMID: 32832592]
[184]
Wang, M.; Xin, Y.; Cao, H.; Li, W.; Hua, Y.; Webster, T.J.; Zhang, C.; Tang, W.; Liu, Z. Recent advances in mesenchymal stem cell mem-brane-coated nanoparticles for enhanced drug delivery. Biomater. Sci., 2021, 9(4), 1088-1103.
[http://dx.doi.org/10.1039/D0BM01164A] [PMID: 33332490]
[185]
Tian, W.; Lu, J.; Jiao, D. Stem cell membrane vesicle–coated nanoparticles for efficient tumor‐targeted therapy of orthotopic breast cancer. Polym. Adv. Technol., 2019, 30(4), 1051-1060.
[http://dx.doi.org/10.1002/pat.4538]
[186]
Kroll, A.V.; Fang, R.H.; Zhang, L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem., 2017, 28(1), 23-32.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00569] [PMID: 27798829]
[187]
Zhang, Y.; Cai, K.; Li, C.; Guo, Q.; Chen, Q.; He, X.; Liu, L.; Zhang, Y.; Lu, Y.; Chen, X.; Sun, T.; Huang, Y.; Cheng, J.; Jiang, C. Macro-phage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett., 2018, 18(3), 1908-1915.
[http://dx.doi.org/10.1021/acs.nanolett.7b05263] [PMID: 29473753]
[188]
Jiang, X.; Wang, K.; Zhou, Z.; Zhang, Y.; Sha, H.; Xu, Q.; Wu, J.; Wang, J.; Wu, J.; Hu, Y.; Liu, B. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel. Biochem. Biophys. Res. Commun., 2017, 488(2), 322-328.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.042] [PMID: 28495530]
[189]
Lang, T.; Dong, X.; Huang, Y.; Ran, W.; Yin, Q.; Zhang, P.; Zhang, Z.; Yu, H.; Li, Y. Ly6Chi monocytes delivering pH‐sensitive micelle loading paclitaxel improve targeting therapy of metastatic breast cancer. Adv. Funct. Mater., 2017, 27(26), 1701093.
[http://dx.doi.org/10.1002/adfm.201701093]
[190]
Zhang, Y.; Zhu, X.; Chen, X.; Chen, Q.; Zhou, W.; Guo, Q.; Lu, Y.; Li, C.; Zhang, Y.; Liang, D.; Sun, T.; Wei, X.; Jiang, C. Activated plate-lets‐targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer. Adv. Funct. Mater., 2019, 29(13), 1806620.
[http://dx.doi.org/10.1002/adfm.201806620]
[191]
Hao, J.; Chen, J.; Wang, M.; Zhao, J.; Wang, J.; Wang, X.; Li, Y.; Tang, H. Neutrophils, as “Trojan horses”, participate in the delivery of therapeutical PLGA nanoparticles into a tumor based on the chemotactic effect. Drug Deliv., 2020, 27(1), 1-14.
[http://dx.doi.org/10.1080/10717544.2019.1701141] [PMID: 31818156]
[192]
Su, J.; Sun, H.; Meng, Q.; Yin, Q.; Zhang, P.; Zhang, Z.; Yu, H.; Li, Y. Bioinspired nanoparticles with NIR‐controlled drug release for syn-ergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater., 2016, 26(41), 7495-7506.
[http://dx.doi.org/10.1002/adfm.201603381]
[193]
Chen, H.; Sha, H.; Zhang, L.; Qian, H.; Chen, F.; Ding, N.; Ji, L.; Zhu, A.; Xu, Q.; Meng, F.; Yu, L.; Zhou, Y.; Liu, B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomedicine, 2018, 13, 5347-5359.
[http://dx.doi.org/10.2147/IJN.S165109] [PMID: 30254439]
[194]
Rao, N.V.; Ko, H.; Lee, J.; Park, J.H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front. Bioeng. Biotechnol., 2018, 6, 110.
[http://dx.doi.org/10.3389/fbioe.2018.00110] [PMID: 30159310]
[195]
Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[196]
Chen, W.L.; Yang, S.D.; Li, F.; Qu, C.X.; Liu, Y.; Wang, Y.; Wang, D.D.; Zhang, X.N. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Acta Biomater., 2018, 81, 219-230.
[http://dx.doi.org/10.1016/j.actbio.2018.09.040] [PMID: 30267887]
[197]
Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release, 2015, 219, 205-214.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.050] [PMID: 26341694]
[198]
Son, S.; Shin, S.; Rao, N.V.; Um, W.; Jeon, J.; Ko, H.; Deepagan, V.G.; Kwon, S.; Lee, J.Y.; Park, J.H. Anti-Trop2 antibody-conjugated bio-reducible nanoparticles for targeted triple negative breast cancer therapy. Int. J. Biol. Macromol., 2018, 110, 406-415.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.113] [PMID: 29055700]
[199]
Zhuo, S.; Zhang, F.; Yu, J.; Zhang, X.; Yang, G.; Liu, X. pH-sensitive biomaterials for drug delivery. Molecules, 2020, 25(23), 5649.
[http://dx.doi.org/10.3390/molecules25235649] [PMID: 33266162]
[200]
Fan, Y.; Wang, Q.; Lin, G.; Shi, Y.; Gu, Z.; Ding, T. Combination of using prodrug-modified cationic liposome nanocomplexes and a poten-tiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Acta Biomater., 2017, 62, 257-272.
[http://dx.doi.org/10.1016/j.actbio.2017.08.034] [PMID: 28859899]
[201]
Wan, X.; Liu, C.; Lin, Y.; Fu, J.; Lu, G.; Lu, Z. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv., 2019, 26(1), 470-480.
[http://dx.doi.org/10.1080/10717544.2019.1576801] [PMID: 30957572]
[202]
Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J.O.; Jeong, J-H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nano-particles for colorectal cancer photochemotherapy. Mol. Pharm., 2019, 16(3), 1184-1199.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01157] [PMID: 30698975]
[203]
Shashni, B.; Nishikawa, Y.; Nagasaki, Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials, 2021, 269, 120645.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120645] [PMID: 33453633]
[204]
Duwa, R.; Emami, F.; Lee, S.; Jeong, J-H.; Yook, S. Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multi-forme. J. Ind. Eng. Chem., 2019, 79, 261-273.
[http://dx.doi.org/10.1016/j.jiec.2019.06.050]
[205]
Saravanakumar, G.; Kim, J.; Kim, W.J. Reactive‐oxygen‐species‐responsive drug delivery systems: Promises and challenges. Adv. Sci. (Weinh.), 2016, 4(1), 1600124.
[http://dx.doi.org/10.1002/advs.201600124] [PMID: 28105390]
[206]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[207]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Matrix metalloproteinase-sensitive size-shrinkable nanopar-ticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.006] [PMID: 25988725]
[208]
Hu, G.; Chun, X.; Wang, Y.; He, Q.; Gao, H. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced pene-trating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget, 2015, 6(38), 41258-41274.
[http://dx.doi.org/10.18632/oncotarget.5692] [PMID: 26517810]
[209]
Johnson, R.; Sabnis, N.; McConathy, W.J.; Lacko, A.G. The potential role of nanotechnology in therapeutic approaches for triple negative breast cancer. Pharmaceutics, 2013, 5(2), 353-370.
[http://dx.doi.org/10.3390/pharmaceutics5020353] [PMID: 24244833]
[210]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol., 2007, 151(3), 305-321.
[http://dx.doi.org/10.1038/sj.bjp.0707224] [PMID: 17401442]
[211]
Alimoradi, H.; Greish, K.; Barzegar-Fallah, A.; Alshaibani, L.; Pittalà, V. Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. Int. J. Nanomedicine, 2018, 13, 7771-7787.
[http://dx.doi.org/10.2147/IJN.S187089] [PMID: 30538458]
[212]
Mamnoon, B.; Loganathan, J.; Confeld, M.I.; De Fonseka, N.; Feng, L.; Froberg, J.; Choi, Y.; Tuvin, D.M.; Sathish, V.; Mallik, S. Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors. ACS Appl. Bio Mater., 2021, 4(2), 1450-1460.
[http://dx.doi.org/10.1021/acsabm.0c01336] [PMID: 33954285]
[213]
Wang, Y.; Xie, Y.; Li, J.; Peng, Z-H.; Sheinin, Y.; Zhou, J.; Oupický, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano, 2017, 11(2), 2227-2238.
[http://dx.doi.org/10.1021/acsnano.6b08731] [PMID: 28165223]
[214]
Park, E.; Yazdi, S.J.M.; Lee, J-H. Development of wearable temperature sensor based on peltier thermoelectric device to change human body temperature. Sens. Mater., 2020, 32(9), 2959-2970.
[http://dx.doi.org/10.18494/SAM.2020.2741]
[215]
Sánchez-Moreno, P.; de Vicente, J.; Nardecchia, S.; Marchal, J.A.; Boulaiz, H. Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications. Nanomaterials (Basel), 2018, 8(11), 935.
[http://dx.doi.org/10.3390/nano8110935] [PMID: 30428608]
[216]
Oliveira, A.M.; Oliveira, P.C.; Santos, A.M.; Zanin, M.H.A.; Ré, M.I. Synthesis and characterization of thermo-responsive particles of poly (hydroxybutirate-co-hydroxyvalerate)-b-poly (N-isopropylacrylamide). Braz. J. Phys., 2009, 39(1a), 217-222.
[http://dx.doi.org/10.1590/S0103-97332009000200015]
[217]
Ding, Y.; Su, S.; Zhang, R.; Shao, L.; Zhang, Y.; Wang, B.; Li, Y.; Chen, L.; Yu, Q.; Wu, Y.; Nie, G. Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 2017, 113, 243-252.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.053] [PMID: 27829203]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy