Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Calotropis Procera Induced Caspase-Dependent Apoptosis and Impaired Akt/mTOR Signaling in 4T1 Breast Cancer Cells

Author(s): Ana Carolina Silveira Rabelo*, Maria Angélica Miglino, Shirley Arbizu, Ana Cláudia O. Carreira, Antônio José Cantanhede Filho, Fernando José Costa Carneiro, Marjorie Anne A. Layosa and Giuliana Noratto

Volume 22, Issue 18, 2022

Published on: 02 August, 2022

Page: [3136 - 3147] Pages: 12

DOI: 10.2174/1871520622666220608122154

Price: $65

Abstract

Introduction: Calotropis procera (Aiton) Dryand (Apocynaceae) is an herb that has been commonly used in folk medicine to treat various diseases for more than 1500 years.

Aims: Our goal was to investigate the anti-metastatic effects of phenolics extracted from C. procera (CphE) against 4T1 breast cancer cells and in BALB/c mice.

Methods: 4T1 cells were treated with CphE and quercetin (positive control) at concentrations that inhibited cell viability by 50% (IC50). Levels of reactive oxygen species (ROS), wound healing, and protein expressions were determined following standard protocols. For the in vivo pilot study, the syngeneic BALB/c mouse model was used. 4T1 cells were injected into mammary fat pads. Tumors were allowed to grow for 9 days before gavage treatment with CphE (150 mg GAE/kg/day) or PBS (controls) for one week. Excised tumors, liver, and lungs were analyzed for gene and protein expression and histology.

Results: In vitro results showed that CphE suppressed cell viability through apoptosis induction, via caspase-3 cleavage and total PARP reduction. CphE also scavenged ROS and suppressed Akt, mTOR, ERK1/2, CREB, and Src activation contributing to cell motility inhibition. CphE reduced IR, PTEN, TSC2, p70S6, and RPS6, protein levels, which are proteins involved in the PI3K/Akt/mTOR pathway, suggesting this pathway as CphE primary target. In vivo results showed downregulation of ERK1/2 activation by phosphorylation in tumor tissues, accompanied by angiogenesis reduction in tumor and lung tissues. A reduction of Cenpf mRNA levels in liver and lung tissues strongly suggested anti-invasive cancer activity of CphE.

Conclusion: CphE inhibited 4T1 cell signal pathways that play a key role in cell growth and invasion. The potential for in vitro results to be translated in vivo was confirmed. A complete animal study is a guarantee to confirm the CphE anticancer and antimetastatic activity in vivo.

Keywords: stage IV human breast cancer, milkweed (Calotropis procera), MAPK/ERK1/2, medicinal plants, angiogenesis, metastasis.

Graphical Abstract

[1]
World Health Organization - WHO. Breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (Accessed December 08, 2021).
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Jin, X.; Mu, P. Targeting breast cancer metastasis. Breast Cancer (Auckl.), 2015, 9(Suppl. 1), 23-34.
[PMID: 26380552]
[4]
Zubair, M.; Wang, S.; Ali, N. Advanced approaches to breast cancer classification and diagnosis. Front. Pharmacol., 2021, 11, 632079.
[http://dx.doi.org/10.3389/fphar.2020.632079] [PMID: 33716731]
[5]
Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet., 2016, 293(2), 247-269.
[http://dx.doi.org/10.1007/s00404-015-3859-y] [PMID: 26341644]
[6]
Gadi, V.K.; Davidson, N.E. Practical approach to triple-negative breast cancer. J. Oncol. Pract., 2017, 13(5), 293-300.
[http://dx.doi.org/10.1200/JOP.2017.022632] [PMID: 28489980]
[7]
Kim, C.; Gao, R.; Sei, E.; Brandt, R.; Hartman, J.; Hatschek, T.; Crosetto, N.; Foukakis, T.; Navin, N.E. Chemoresistance evolution in tri-ple-negative breast cancer delineated by single-cell sequencing. Cell, 2018, 173(4), 879-893.e13.
[http://dx.doi.org/10.1016/j.cell.2018.03.041] [PMID: 29681456]
[8]
Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A re-view on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[9]
Bailey-Downs, L.C.; Thorpe, J.E.; Disch, B.C.; Bastian, A.; Hauser, P.J.; Farasyn, T.; Berry, W.L.; Hurst, R.E.; Ihnat, M.A. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS One, 2014, 9(5), e98624.
[http://dx.doi.org/10.1371/journal.pone.0098624] [PMID: 24878664]
[10]
Kim, E.J.; Choi, M.R.; Park, H.; Kim, M.; Hong, J.E.; Lee, J.Y.; Chun, H.S.; Lee, K.W.; Yoon Park, J.H. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res., 2011, 13(4), R78.
[http://dx.doi.org/10.1186/bcr2927] [PMID: 21834963]
[11]
Hosonaga, M.; Saya, H.; Arima, Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer. Cancer Metastasis Rev., 2020, 39(3), 711-720.
[http://dx.doi.org/10.1007/s10555-020-09881-y] [PMID: 32399646]
[12]
Jabbarzadeh Kaboli, P.; Salimian, F.; Aghapour, S.; Xiang, S.; Zhao, Q.; Li, M.; Wu, X.; Du, F.; Zhao, Y.; Shen, J.; Cho, C.H.; Xiao, Z. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol. Res., 2020, 156, 104806.
[http://dx.doi.org/10.1016/j.phrs.2020.104806] [PMID: 32294525]
[13]
Koul, H.K.; Pal, M.; Koul, S. Role of p38 map kinase signal transduction in solid tumors. Genes Cancer, 2013, 4(9-10), 342-359.
[http://dx.doi.org/10.1177/1947601913507951] [PMID: 24349632]
[14]
Ahmad, D.A.; Negm, O.H.; Alabdullah, M.L.; Mirza, S.; Hamed, M.R.; Band, V.; Green, A.R.; Ellis, I.O.; Rakha, E.A. Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers. Breast Cancer Res. Treat., 2016, 159(3), 457-467.
[http://dx.doi.org/10.1007/s10549-016-3967-9] [PMID: 27592113]
[15]
Cao, Z.; Liao, Q.; Su, M.; Huang, K.; Jin, J.; Cao, D. AKT and ERK dual inhibitors: The way forward? Cancer Lett., 2019, 459, 30-40.
[http://dx.doi.org/10.1016/j.canlet.2019.05.025] [PMID: 31128213]
[16]
Vijay, G.V.; Zhao, N.; Den Hollander, P.; Toneff, M.J.; Joseph, R.; Pietila, M.; Taube, J.H.; Sarkar, T.R.; Ramirez-Pena, E.; Werden, S.J.; Shariati, M.; Gao, R.; Sobieski, M.; Stephan, C.C.; Sphyris, N.; Miura, N.; Davies, P.; Chang, J.T.; Soundararajan, R.; Rosen, J.M.; Mani, S.A. GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res., 2019, 21(1), 37.
[http://dx.doi.org/10.1186/s13058-019-1125-0] [PMID: 30845991]
[17]
Bolós, V.; Gasent, J.M.; López-Tarruella, S.; Grande, E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. OncoTargets Ther., 2010, 3, 83-97.
[http://dx.doi.org/10.2147/OTT.S6909] [PMID: 20616959]
[18]
Kapinova, A.; Stefanicka, P.; Kubatka, P.; Zubor, P.; Uramova, S.; Kello, M.; Mojzis, J.; Blahutova, D.; Qaradakhi, T.; Zulli, A.; Caprnda, M.; Danko, J.; Lasabova, Z.; Busselberg, D.; Kruzliak, P. Are plant-based functional foods better choice against cancer than single phyto-chemicals? A critical review of current breast cancer research. Biomed. Pharmacother., 2017, 96, 1465-1477.
[http://dx.doi.org/10.1016/j.biopha.2017.11.134] [PMID: 29198744]
[19]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[20]
Russo, G.L. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem. Pharmacol., 2007, 74(4), 533-544.
[http://dx.doi.org/10.1016/j.bcp.2007.02.014] [PMID: 17382300]
[21]
Kumar, P. Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete. Comput. Concr., 2006, 3(1), 17-28.
[http://dx.doi.org/10.12989/cac.2006.3.1.017]
[22]
Al-Taweel, A.M.; Perveen, S.; Fawzy, G.A.; Rehman, A.U.; Khan, A.; Mehmood, R.; Fadda, L.M. Evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. Evid. Based Complement. Alternat. Med., 2017, 2017, 8086791.
[http://dx.doi.org/10.1155/2017/8086791] [PMID: 28951762]
[23]
Moustafa, A.M.Y.; Ahmed, S.H.; Nabil, Z.I.; Hussein, A.A.; Omran, M.A. Extraction and phytochemical investigation of Calotropis procera: Effect of plant extracts on the activity of diverse muscles. Pharm. Biol., 2010, 48(10), 1080-1190.
[http://dx.doi.org/10.3109/13880200903490513] [PMID: 20690894]
[24]
Jucá, T.L.; Ramos, M.V.; Moreno, F.B.M.B.; Viana de Matos, M.P.; Marinho-Filho, J.D.B.; Moreira, R.A.; de Oliveira Monteiro-Moreira, A.C. Insights on the phytochemical profile (cyclopeptides) and biological activities of Calotropis procera latex organic fractions. Sci. World J., 2013, 2013, 615454.
[http://dx.doi.org/10.1155/2013/615454] [PMID: 24348174]
[25]
Kazeem, M.I.; Oyedapo, B.F.; Raimi, O.G.; Adu, O.B. Evaluation of ficus exasperata vahl. leaf extracts in the management of diabetes mellitus in vitro. J. Med. Sci., (Faisalabad, Pak.), 2013, 13(4), 269-275.
[http://dx.doi.org/10.3923/jms.2013.269.275]
[26]
Sweidan, N.I.; Abu Zarga, M.H. Two novel cardenolides from Calotropis procera. J. Asian Nat. Prod. Res., 2015, 17(9), 900-907.
[http://dx.doi.org/10.1080/10286020.2015.1040772] [PMID: 25971597]
[27]
Mohamed, M.A.; Hamed, M.M.; Ahmed, W.S.; Abdou, A.M. Antioxidant and cytotoxic flavonols from Calotropis procera. Z. Naturforsch. C J. Biosci., 2011, 66(11-12), 547-554.
[http://dx.doi.org/10.1515/znc-2011-11-1203] [PMID: 22351979]
[28]
Oraibi, A.I.; Hamad, M.N. Phytochemical investigation of flavanoid of Calotropis procera in Iraq, isolation and identification of rutin, quercitin and kampferol. J. Pharm. Sci. Res., 2018, 10, 2407-2411.
[29]
Samy, R.P.; Rajendran, P.; Li, F.; Anandi, N.M.; Stiles, B.G.; Ignacimuthu, S.; Sethi, G.; Chow, V.T.K. Identification of a novel Calotropis procera protein that can suppress tumor growth in breast cancer through the suppression of NF-κB pathway. PLoS One, 2012, 7(12), e48514.
[http://dx.doi.org/10.1371/journal.pone.0048514] [PMID: 23284617]
[30]
Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol., 2002, 37(2), 153-161.
[http://dx.doi.org/10.1046/j.1365-2621.2002.00552.x]
[31]
Noratto, G.D.; Angel-Morales, G.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolics from açaí (Euterpe oleracea Mart.) and red musca-dine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J. Agric. Food Chem., 2011, 59(14), 7999-8012.
[http://dx.doi.org/10.1021/jf201056x] [PMID: 21682256]
[32]
Van Quaquebeke, E.; Simon, G.; André, A.; Dewelle, J.; El Yazidi, M.; Bruyneel, F.; Tuti, J.; Nacoulma, O.; Guissou, P.; Decaestecker, C.; Braekman, J.C.; Kiss, R.; Darro, F. Identification of a novel cardenolide (2′'-oxovoruscharin) from Calotropis procera and the hemisyn-thesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: Structure-activity relationship analyses. J. Med. Chem., 2005, 48(3), 849-856.
[http://dx.doi.org/10.1021/jm049405a] [PMID: 15689169]
[33]
Juncker, T.; Schumacher, M.; Dicato, M.; Diederich, M. UNBS1450 from Calotropis procera as a regulator of signaling pathways involved in proliferation and cell death. Biochem. Pharmacol., 2009, 78(1), 1-10.
[http://dx.doi.org/10.1016/j.bcp.2009.01.018] [PMID: 19447218]
[34]
Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina (Kaunas), 2019, 55(4), 114.
[http://dx.doi.org/10.3390/medicina55040114] [PMID: 31013662]
[35]
Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem., 2009, 57(12), 5219-5226.
[http://dx.doi.org/10.1021/jf900259m] [PMID: 19530711]
[36]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 1-26.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[37]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[38]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progres-sion. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[39]
Kuno, T.; Tsukamoto, T.; Hara, A.; Tanaka, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156-173.
[http://dx.doi.org/10.4236/jbpc.2012.32018]
[40]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[41]
Rabelo, A.C.; Borghesi, J.; Carreira, A.C.O.; Hayashi, R.G.; Bessa, F.; Barreto, R.D.S.N.; da Costa, R.P.; Cantanhede Filho, A.J.; Carneiro, F.J.C.; Miglino, M.A. Calotropis procera (Aiton) Dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteo-sarcoma cells. Res. Vet. Sci., 2021, 138, 79-89.
[http://dx.doi.org/10.1016/j.rvsc.2021.06.005] [PMID: 34119813]
[42]
Choedon, T.; Mathan, G.; Arya, S.; Kumar, V.L.; Kumar, V. Anticancer and cytotoxic properties of the latex of Calotropis procera in a transgenic mouse model of hepatocellular carcinoma. World J. Gastroenterol., 2006, 12(16), 2517-2522.
[http://dx.doi.org/10.3748/wjg.v12.i16.2517] [PMID: 16688796]
[43]
Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sadhukhan, R.; Mondal, J.; Khuda-Bukhsh, A.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: Signal cascade and drug-DNA interac-tion. Cell Prolif., 2013, 46(2), 153-163.
[http://dx.doi.org/10.1111/cpr.12017] [PMID: 23510470]
[44]
Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol., 2019, 30(7), 1051-1060.
[http://dx.doi.org/10.1093/annonc/mdz133] [PMID: 31050709]
[45]
El Guerrab, A.; Bamdad, M.; Bignon, Y.J.; Penault-Llorca, F.; Aubel, C. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci. Rep., 2020, 10(1), 6367.
[http://dx.doi.org/10.1038/s41598-020-63310-2] [PMID: 32286420]
[46]
Sakamoto, K.M.; Frank, D.A. CREB in the pathophysiology of cancer: Implications for targeting transcription factors for cancer therapy. Clin. Cancer Res., 2009, 15(8), 2583-2587.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1137] [PMID: 19351775]
[47]
Ortega, M.A.; Fraile-Martínez, O.; Asúnsolo, Á.; Buján, J.; García-Honduvilla, N.; Coca, S. Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR. J. Oncol., 2020, 2020, 9258396.
[http://dx.doi.org/10.1155/2020/9258396] [PMID: 32211045]
[48]
Qin, Y.; Chen, W.; Jiang, G.; Zhou, L.; Yang, X.; Li, H.; He, X.; Wang, H.L.; Zhou, Y.B.; Huang, S.; Liu, S. Interfering MSN-NONO com-plex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Sci. Adv., 2020, 6(8), eaaw9960.
[http://dx.doi.org/10.1126/sciadv.aaw9960] [PMID: 32128390]
[49]
Nicholson, K.M.; Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal., 2002, 14(5), 381-395.
[http://dx.doi.org/10.1016/S0898-6568(01)00271-6] [PMID: 11882383]
[50]
Huang, Y.H.; Lei, J.; Yi, G.H.; Huang, F.Y.; Li, Y.N.; Wang, C.C.; Sun, Y.; Dai, H.F.; Tan, G.H. Coroglaucigenin induces senescence and autophagy in colorectal cancer cells. Cell Prolif., 2018, 51(4), e12451.
[http://dx.doi.org/10.1111/cpr.12451] [PMID: 29484762]
[51]
Malaguarnera, R.; Belfiore, A. The insulin receptor: A new target for cancer therapy. Front. Endocrinol. (Lausanne), 2011, 2(2), 93.
[http://dx.doi.org/10.3389/fendo.2011.00093] [PMID: 22654833]
[52]
Jiang, W.G.; Sampson, J.; Martin, T.A.; Lee-Jones, L.; Watkins, G.; Douglas-Jones, A.; Mokbel, K.; Mansel, R.E. Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: The role of promoter methylation of TSC genes. Eur. J. Cancer, 2005, 41(11), 1628-1636.
[http://dx.doi.org/10.1016/j.ejca.2005.03.023] [PMID: 15951164]
[53]
Zhao, M.; Howard, E.W.; Parris, A.B.; Guo, Z.; Zhao, Q.; Yang, X. Alcohol promotes migration and invasion of triple-negative breast cancer cells through activation of p38 MAPK and JNK. Mol. Carcinog., 2017, 56(3), 849-862.
[http://dx.doi.org/10.1002/mc.22538] [PMID: 27533114]
[54]
Salaroglio, I.C.; Mungo, E.; Gazzano, E.; Kopecka, J.; Riganti, C. ERK is a pivotal player of chemo-immune-resistance in cancer. Int. J. Mol. Sci., 2019, 20(10), 2505.
[http://dx.doi.org/10.3390/ijms20102505] [PMID: 31117237]
[55]
Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 2009, 8(8), 1168-1175.
[http://dx.doi.org/10.4161/cc.8.8.8147] [PMID: 19282669]
[56]
Corre, I.; Paris, F.; Huot, J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget, 2017, 8(33), 55684-55714.
[http://dx.doi.org/10.18632/oncotarget.18264] [PMID: 28903453]
[57]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[58]
Patel, A.; Sabbineni, H.; Clarke, A.; Somanath, P.R. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular perme-ability, microinvasion and metastasis. Life Sci., 2016, 157, 52-61.
[http://dx.doi.org/10.1016/j.lfs.2016.05.036] [PMID: 27245276]
[59]
Secondini, C.; Coquoz, O.; Spagnuolo, L.; Spinetti, T.; Peyvandi, S.; Ciarloni, L.; Botta, F.; Bourquin, C.; Rüegg, C. Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. OncoImmunology, 2017, 6(6), e1316437.
[http://dx.doi.org/10.1080/2162402X.2017.1316437] [PMID: 28680747]
[60]
Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms involved in breast cancer liver metastasis. J. Transl. Med., 2015, 13(1), 64.
[http://dx.doi.org/10.1186/s12967-015-0425-0] [PMID: 25885919]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy