Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Antibody-based Radiopharmaceuticals as Theranostic Agents: An Overview

Author(s): Rohit Sharma, Shishu K. Suman and Archana Mukherjee*

Volume 29, Issue 38, 2022

Published on: 11 August, 2022

Page: [5979 - 6005] Pages: 27

DOI: 10.2174/0929867329666220607160559

Price: $65

Abstract

Since the inception of antibodies as magic bullets for targeting antigens with high specificity for various in vitro and in-vivo detection and therapy applications, the field has evolved, and remarkable success has been achieved not only in the methods of development of these targeting agents but also in their applications. The utilization of these moieties for the development of antibody-based radiopharmaceuticals for diagnostic and therapy (theranostic) purposes has resulted in the availability of various cancer-targeting agents suitable for clinical applications. The high affinity and specificity of antibodies towards the target antigens overexpressed on tumors render them an excellent carrier molecules for radionuclide delivery. Although intact antibodies have high potential as imaging and therapeutic agents, a major drawback of intact antibody-based radionuclide targeting is their slow pharmacokinetics and poor penetration into solid tumors. In contrast to large intact antibodies, engineered antibody fragments, such as minibodies, diabodies, single-chain variable region fragments (scFvs), nanobodies, and non-antibody protein scaffolds-based moieties, retain the specificities and affinities of intact antibodies in addition to improved pharmacokinetics for imaging and therapy of solid tumors. These engineered carrier molecules are not only amenable for simple and robust radiolabeling procedures but also provide high contrast images with minimal radiotoxicity to vital organs. However, in various instances, rapid clearance with sub-optimal tumor accumulation, limiting renal dose, and cross-reactivity of these radiolabeled engineered smaller molecules have also been observed. Herein, we review current knowledge of the recent methods for the development of antibody-based targeting moieties, the suitability of various engineered formats for targeting tumors, and radiolabeling strategies for the development of radioformulations. We discuss promising antibody-based and non-antibody- based affibody radiopharmaceuticals reported for clinical applications. Finally, we highlight how emerging technologies in antibody engineering and drug development can be amalgamated for designing novel strategies for cancer imaging and therapy.

Keywords: Radiolabeled antibodies, radiolabeled antibody fragments, theranostic radiopharmaceuticals, radiolabeled affibodies, antibody-based small molecules, pharmacokinetics.

« Previous
[1]
Garousi, J.; Orlova, A.; Frejd, F.Y.; Tolmachev, V. Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharm. Chem., 2020, 5(1), 16.
[http://dx.doi.org/10.1186/s41181-020-00094-w] [PMID: 32577943]
[2]
Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov., 2020, 19(9), 589-608.
[http://dx.doi.org/10.1038/s41573-020-0073-9] [PMID: 32728208]
[3]
Wolf, W.; Shani, J. Criteria for the selection of the most desirable radionuclide for radiolabeling monoclonal antibodies. Int. J. Rad. Appl. Instrum. B, 1986, 13(4), 319-324.
[http://dx.doi.org/10.1016/0883-2897(86)90004-8] [PMID: 3793485]
[4]
Morais, M.; Ma, M.T. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. Drug Discov. Today. Technol., 2018, 30, 91-104.
[http://dx.doi.org/10.1016/j.ddtec.2018.10.002] [PMID: 30553525]
[5]
Bhattacharyya, S.; Dixit, M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans., 2011, 40(23), 6112-6128.
[http://dx.doi.org/10.1039/c1dt10379b] [PMID: 21541393]
[6]
Langbein, T.; Weber, W.A.; Eiber, M. Future of theranostics: An outlook on precision oncology in nuclear medicine. J. Nucl. Med., 2019, 60(Suppl. 2), 13S-19S.
[http://dx.doi.org/10.2967/jnumed.118.220566] [PMID: 31481583]
[7]
Turner, J.H. Recent advances in theranostics and challenges for the future. Br. J. Radiol., 2018, 91(1091), 20170893.
[http://dx.doi.org/10.1259/bjr.20170893] [PMID: 29565650]
[8]
Ballinger, J.R. Theranostic radiopharmaceuticals: Established agents in current use. Br. J. Radiol., 2018, 91(1091), 20170969.
[http://dx.doi.org/10.1259/bjr.20170969] [PMID: 29474096]
[9]
Macklis, R.M.; Pohlman, B. Radioimmunotherapy for non-Hodgkin’s lymphoma: a review for radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(3), 833-841.
[http://dx.doi.org/10.1016/j.ijrobp.2006.05.030] [PMID: 16965871]
[10]
Larson, S.M.; Carrasquillo, J.A.; Cheung, N-K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 15(6), 347-360.
[http://dx.doi.org/10.1038/nrc3925] [PMID: 25998714]
[11]
Kraeber-Bodéré, F.; Barbet, J.; Chatal, J-F. Radioimmunotherapy: From current clinical success to future industrial breakthrough. J. Nucl. Med., 2016, 57(3), 329-331.
[http://dx.doi.org/10.2967/jnumed.115.167247] [PMID: 26514174]
[12]
Jain, M.; Gupta, S.; Kaur, S.; Ponnusamy, M.P.; Batra, S.K. Emerging trends for radioimmunotherapy in solid tumors. Cancer Biother. Radiopharm., 2013, 28(9), 639-650.
[http://dx.doi.org/10.1089/cbr.2013.1523] [PMID: 23844555]
[13]
White, J.M.; Escorcia, F.E.; Viola, N.T. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics, 2021, 11(13), 6293-6314.
[http://dx.doi.org/10.7150/thno.57177] [PMID: 33995659]
[14]
Fu, R.; Carroll, L.; Yahioglu, G.; Aboagye, E.O.; Miller, P.W. Antibody fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling strategies and applications. ChemMedChem, 2018, 13(23), 2466-2478.
[http://dx.doi.org/10.1002/cmdc.201800624] [PMID: 30246488]
[15]
Thurber, G.M.; Schmidt, M.M.; Wittrup, K.D. Antibody tumor penetration: Transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev., 2008, 60(12), 1421-1434.
[http://dx.doi.org/10.1016/j.addr.2008.04.012] [PMID: 18541331]
[16]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[17]
AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750.
[http://dx.doi.org/10.1016/j.biopha.2019.108750] [PMID: 30849643]
[18]
Strohl, W.R. Current progress in innovative engineered antibodies. Protein Cell, 2018, 9(1), 86-120.
[http://dx.doi.org/10.1007/s13238-017-0457-8] [PMID: 28822103]
[19]
Bates, A.; Power, C.A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies (Basel), 2019, 8(2), 28.
[http://dx.doi.org/10.3390/antib8020028] [PMID: 31544834]
[20]
Parray, H.A.; Shukla, S.; Samal, S.; Shrivastava, T.; Ahmed, S.; Sharma, C.; Kumar, R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int. Immunopharmacol., 2020, 85, 106639.
[http://dx.doi.org/10.1016/j.intimp.2020.106639] [PMID: 32473573]
[21]
Carvalho, L.S.; da Silva, O.B.; de Almeida, G.C. Production Processes for Monoclonal Antibodies; IntechOpen, 2017, 2017, p. 64263.
[http://dx.doi.org/10.5772/64263]
[22]
Brüggemann, M.; Osborn, M.J.; Ma, B.; Hayre, J.; Avis, S.; Lundstrom, B.; Buelow, R. Human antibody production in transgenic animals. Arch. Immunol. Ther. Exp. (Warsz.), 2015, 63(2), 101-108.
[http://dx.doi.org/10.1007/s00005-014-0322-x] [PMID: 25467949]
[23]
Kinman, A.W.L.; Pompano, R.R. Optimization of enzymatic antibody fragmentation for yield, efficiency, and binding affinity. Bioconjug. Chem., 2019, 30(3), 800-807.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00912] [PMID: 30649877]
[24]
Khawli, L.A.; Biela, B.H.; Hu, P.; Epstein, A.L. Stable, genetically engineered F(ab’)(2) fragments of chimeric TNT-3 expressed in mammalian cells. Hybrid. Hybridomics, 2002, 21(1), 11-18.
[http://dx.doi.org/10.1089/15368590252917593] [PMID: 11991812]
[25]
Muller, D.; Bayers, K.; Mattanoich, D. Potentials and limitations of prokaryotic and eukaryotic expression systems for recombinant protein production – a comparative view. Microb. Cell Fact., 2006, 5(Suppl. 1), 61.
[http://dx.doi.org/10.1186/1475-2859-5-S1-P61]
[26]
Spadiut, O.; Capone, S.; Krainer, F.; Glieder, A.; Herwig, C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol., 2014, 32(1), 54-60.
[http://dx.doi.org/10.1016/j.tibtech.2013.10.002] [PMID: 24183828]
[27]
Todorovska, A.; Roovers, R.C.; Dolezal, O.; Kortt, A.A.; Hoogenboom, H.R.; Hudson, P.J. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods, 2001, 248(1-2), 47-66.
[http://dx.doi.org/10.1016/S0022-1759(00)00342-2] [PMID: 11223068]
[28]
Yazaki, P.J.; Wu, A.M. construction and characterization of minibodies for imaging and therapy of colorectal carcinomas. Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™; Welschof, M.; Krauss, J., Eds.; Humana Press: USA, 2003, 207, .
[29]
Lezzi, ME; Policastro, L; Werbajh, S; Podhajcer, O; Canziani, GA Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol., 2018, 9, 273.
[http://dx.doi.org/10.3389/fimmu.2018.00273]
[30]
Simeon, R.; Chen, Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell, 2018, 9(1), 3-14.
[http://dx.doi.org/10.1007/s13238-017-0386-6] [PMID: 28271446]
[31]
Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov., 2019, 18(8), 585-608.
[http://dx.doi.org/10.1038/s41573-019-0028-1] [PMID: 31175342]
[32]
Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs, 2017, 9(2), 182-212.
[http://dx.doi.org/10.1080/19420862.2016.1268307] [PMID: 28071970]
[33]
Seifert, O.; Rau, A.; Beha, N.; Richter, F.; Kontermann, R.E. Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules. MAbs, 2019, 11(5), 919-929.
[http://dx.doi.org/10.1080/19420862.2019.1603024] [PMID: 30951400]
[34]
Stech, M.; Hust, M.; Schulze, C.; Dübel, S.; Kubick, S. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments. Eng. Life Sci., 2014, 14(4), 387-398.
[http://dx.doi.org/10.1002/elsc.201400036] [PMID: 25821419]
[35]
Stech, M.; Nikolaeva, O.; Thoring, L.; Stöcklein, W.F.M.; Wüstenhagen, D.A.; Hust, M.; Dübel, S.; Kubick, S. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci. Rep., 2017, 7(1), 12030.
[http://dx.doi.org/10.1038/s41598-017-12364-w] [PMID: 28931913]
[36]
Arnau, J.; Lauritzen, C.; Petersen, G.E.; Pedersen, J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif., 2006, 48(1), 1-13.
[http://dx.doi.org/10.1016/j.pep.2005.12.002] [PMID: 16427311]
[37]
Rodrigo, G.; Gruvegård, M.; Van Alstine, J.M. Antibody fragments and their purification by Protein L affinity chromatography. Antibodies (Basel), 2015, 4(3), 259-277.
[http://dx.doi.org/10.3390/antib4030259]
[38]
Boschi, A.; Uccelli, L.; Martini, P. A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging. Appl. Sci. (Basel), 2019, 9(12), 2526.
[http://dx.doi.org/10.3390/app9122526]
[39]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[40]
Wei, W.; Rosenkrans, Z.T.; Liu, J.; Huang, G.; Luo, Q.Y.; Cai, W. ImmunoPET: Concept, design, and applications. Chem. Rev., 2020, 120(8), 3787-3851.
[http://dx.doi.org/10.1021/acs.chemrev.9b00738] [PMID: 32202104]
[41]
Chomet, M.; van Dongen, G.A.M.S.; Vugts, D.J. State of the Art in radiolabeling of antibodies with common and uncommon radiometals for preclinical and clinical Immuno-PET. Bioconjug. Chem., 2021, 32(7), 1315-1330.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00136] [PMID: 33974403]
[42]
Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical studies-Part 1. J. Nucl. Med., 2018, 59(6), 878-884.
[http://dx.doi.org/10.2967/jnumed.116.186338] [PMID: 29545378]
[43]
Pandey, U.; Mukherjee, A.; Sarma, H.D.; Das, T.; Pillai, M.R.; Venkatesh, M. Evaluation of 90Y-DTPA and 90Y-DOTA for potential application in intra-vascular radionuclide therapy. Appl. Radiat. Isot., 2002, 57(3), 313-318.
[http://dx.doi.org/10.1016/S0969-8043(02)00103-3] [PMID: 12201136]
[44]
Pillai, M.R.; Dash, A.; Knapp, F.F., Jr Rhenium-188: availability from the (188)W/(188)Re generator and status of current applications. Curr. Radiopharm., 2012, 5(3), 228-243.
[http://dx.doi.org/10.2174/1874471011205030228] [PMID: 22642385]
[45]
Dash, A.; Pillai, M.R.; Knapp, F.F., Jr Production of (177)Lu for targeted radionuclide therapy: Available options. Nucl. Med. Mol. Imaging, 2015, 49(2), 85-107.
[http://dx.doi.org/10.1007/s13139-014-0315-z] [PMID: 26085854]
[46]
46. International Atomic Energy Agency. Cyclotron produced radionuclides:radionuclides: physical characteristics and production methods; Technical report series 468: Vienna, 2009.
[47]
Gopal, B. Saha. Fundamentals of Nuclear Pharmacy; Springer, 2018.
[48]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[49]
Aluicio-Sarduy, E.; Ellison, P.A.; Barnhart, T.E.; Cai, W.; Nickles, R.J.; Engle, J.W. PET radiometals for antibody labeling. J. Labelled Comp. Radiopharm., 2018, 61(9), 636-651.
[http://dx.doi.org/10.1002/jlcr.3607] [PMID: 29341227]
[50]
Suman, S.K.; Subramanian, S.; Mukherjee, A. Combination radionuclide therapy: A new paradigm. Nucl. Med. Biol., 2021, 98-99, 40-58.
[http://dx.doi.org/10.1016/j.nucmedbio.2021.05.001] [PMID: 34029984]
[51]
Tsai, W.K.; Wu, A.M. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J. Labelled Comp. Radiopharm., 2018, 61(9), 693-714.
[http://dx.doi.org/10.1002/jlcr.3622] [PMID: 29537104]
[52]
Chitneni, S.K.; Koumarianou, E.; Vaidyanathan, G.; Zalutsky, M.R. Observations on the effects of residualization and dehalogenation on the utility of N-Succinimidyl ester acylation agents for radioiodination of the internalizing antibody Trastuzumab. Molecules, 2019, 24(21), 3907.
[http://dx.doi.org/10.3390/molecules24213907] [PMID: 31671554]
[53]
Giblin, M.F.; Veerendra, B.; Smith, C.J. Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. In Vivo, 2005, 19(1), 9-29.
[PMID: 15796153]
[54]
Davies, A.J. Radioimmunotherapy for B-cell lymphoma: Y90 ibritumomab tiuxetan and I(131) tositumomab. Oncogene, 2007, 26(25), 3614-3628.
[http://dx.doi.org/10.1038/sj.onc.1210378] [PMID: 17530015]
[55]
Sugiura, G.; Kühn, H.; Sauter, M.; Haberkorn, U.; Mier, W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules, 2014, 19(2), 2135-2165.
[http://dx.doi.org/10.3390/molecules19022135] [PMID: 24552984]
[56]
Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Monoclonal antibodies radiolabeling with Rhenium-188 for radioimmunotherapy. BioMed Res. Int., 2017, 2017, 5923609.
[http://dx.doi.org/10.1155/2017/5923609] [PMID: 28951872]
[57]
Ahenkorah, S.; Cassells, I.; Deroose, C.M.; Cardinaels, T.; Burgoyne, A.R.; Bormans, G.; Ooms, M.; Cleeren, F. Bismuth-213 for targeted radionuclide therapy: From atom to bedside. Pharmaceutics, 2021, 13(5), 599.
[http://dx.doi.org/10.3390/pharmaceutics13050599] [PMID: 33919391]
[58]
Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.; Dennis, M.S.; Lu, Y.; Meng, Y.G.; Ng, C.; Yang, J.; Lee, C.C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S.D.; Lee Wong, W.; Lowman, H.B.; Vandlen, R.; Sliwkowski, M.X.; Scheller, R.H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol., 2008, 26(8), 925-932.
[http://dx.doi.org/10.1038/nbt.1480] [PMID: 18641636]
[59]
Mushtaq, S.; Yun, S.J.; Jeon, J. Recent advances in bioorthogonal click chemistry for efficient synthesis of radiotracers and radiopharmaceuticals. Molecules, 2019, 24(19), 3567.
[http://dx.doi.org/10.3390/molecules24193567] [PMID: 31581645]
[60]
Sun, L.; Ding, J.; Xing, W.; Gai, Y.; Sheng, J.; Zeng, D. Novel strategy for preparing dual-modality optical/PET imaging probes via photo-click chemistry. Bioconjug. Chem., 2016, 27(5), 1200-1204.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00115] [PMID: 27098544]
[61]
Bolzati, C.; Spolaore, B. Enzymatic Methods for the site-specific radiolabeling of targeting Proteins. Molecules, 2021, 26(12), 3492.
[http://dx.doi.org/10.3390/molecules26123492] [PMID: 34201280]
[62]
Spycher, P.R.; Amann, C.A.; Wehrmüller, J.E.; Hurwitz, D.R.; Kreis, O.; Messmer, D.; Ritler, A.; Küchler, A.; Blanc, A.; Béhé, M.; Walde, P.; Schibli, R. Dual, site-specific modification of antibodies by using solid phase immobilized microbial transglutaminase. ChemBioChem, 2017, 18(19), 1923-1927.
[http://dx.doi.org/10.1002/cbic.201700188] [PMID: 28771896]
[63]
Drake, C.R.; Sevillano, N.; Truillet, C.; Craik, C.S.; VanBrocklin, H.F.; Evans, M.J. Site-specific radiofluorination of biomolecules with 8- [(18)F]-fluorooctanoic acid catalyzed by lipoic acid ligase. ACS Chem. Biol., 2016, 11(6), 1587-1594.
[http://dx.doi.org/10.1021/acschembio.6b00172] [PMID: 27008570]
[64]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
[65]
Olafsen, T.; Cheung, C.W.; Yazaki, P.J.; Li, L.; Sundaresan, G.; Gambhir, S.S.; Sherman, M.A.; Williams, L.E.; Shively, J.E.; Raubitschek, A.A.; Wu, A.M. Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng. Des. Sel., 2004, 17(1), 21-27.
[http://dx.doi.org/10.1093/protein/gzh009] [PMID: 14985534]
[66]
Farleigh, M.; Pham, T.T.; Yu, Z.; Kim, J.; Sunassee, K.; Firth, G.; Forte, N.; Chudasama, V.; Baker, J.R.; Long, N.J.; Rivas, C.; Ma, M.T. New bifunctional chelators incorporating dibromomaleimide groups for radiolabeling of antibodies with positron emission tomography imaging radioisotopes. Bioconjug. Chem., 2021, 32(7), 1214-1222.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00710] [PMID: 33724798]
[67]
Knox, S.J.; Meredith, R.F. Clinical radioimmunotherapy. Semin. Radiat. Oncol., 2000, 10(2), 73-93.
[http://dx.doi.org/10.1016/S1053-4296(00)80045-4] [PMID: 10727597]
[68]
De Feo, M.S.; Pontico, M.; Frantellizzi, V.; Corica, F.; De Cristofaro, F.; De Vincentis, G. 89Zr-PET imaging in humans: A systematic review. Clin. Transl. Imaging, 2022, 10(1), 23-36.
[http://dx.doi.org/10.1007/s40336-021-00462-9]
[69]
Kurdziel, K.A.; Mena, E.; McKinney, Y.; Wong, K.; Adler, S.; Sissung, T.; Lee, J.; Lipkowitz, S.; Lindenberg, L.; Turkbey, B.; Kummar, S.; Milenic, D.E.; Doroshow, J.H.; Figg, W.D.; Merino, M.J.; Paik, C.H.; Brechbiel, M.W.; Choyke, P.L. First-in-human phase 0 study of 111In-CHX-A"-DTPA trastuzumab for HER2 tumor imaging. J. Transl. Sci., 2019, 5(2), 5.
[PMID: 30906574]
[70]
Wong, J.Y.C.; Raubitschek, A.; Yamauchi, D.; Williams, L.E.; Wu, A.M.; Yazaki, P.; Shively, J.E.; Colcher, D.; Somlo, G. A pretherapy biodistribution and dosimetry study of indium-111-radiolabeled trastuzumab in patients with human epidermal growth factor receptor 2-overexpressing breast cancer. Cancer Biother. Radiopharm., 2010, 25(4), 387-394.
[http://dx.doi.org/10.1089/cbr.2010.0783] [PMID: 20707718]
[71]
Perik, P.J.; Lub-De Hooge, M.N.; Gietema, J.A.; van der Graaf, W.T.; de Korte, M.A.; Jonkman, S.; Kosterink, J.G.; van Veldhuisen, D.J.; Sleijfer, D.T.; Jager, P.L.; de Vries, E.G. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol., 2006, 24(15), 2276-2282.
[http://dx.doi.org/10.1200/JCO.2005.03.8448] [PMID: 16710024]
[72]
Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schröder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther., 2010, 87(5), 586-592.
[http://dx.doi.org/10.1038/clpt.2010.12] [PMID: 20357763]
[73]
Dijkers, E.C.; Kosterink, J.G.; Rademaker, A.P.; Perk, L.R.; van Dongen, G.A.; Bart, J.; de Jong, J.R.; de Vries, E.G.; Lub-de Hooge, M.N. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med., 2009, 50(6), 974-981.
[http://dx.doi.org/10.2967/jnumed.108.060392] [PMID: 19443585]
[74]
Ulaner, G.A.; Lyashchenko, S.K.; Riedl, C.; Ruan, S.; Zanzonico, P.B.; Lake, D.; Jhaveri, K.; Zeglis, B.; Lewis, J.S.; O’Donoghue, J.A. First-in-human human epidermal growth factor receptor 2-targeted imaging using 89Zr-Pertuzumab PET/CT: Dosimetry and clinical application in patients with breast cancer. J. Nucl. Med., 2018, 59(6), 900-906.
[http://dx.doi.org/10.2967/jnumed.117.202010] [PMID: 29146695]
[75]
Tamura, K.; Kurihara, H.; Yonemori, K.; Tsuda, H.; Suzuki, J.; Kono, Y.; Honda, N.; Kodaira, M.; Yamamoto, H.; Yunokawa, M.; Shimizu, C.; Hasegawa, K.; Kanayama, Y.; Nozaki, S.; Kinoshita, T.; Wada, Y.; Tazawa, S.; Takahashi, K.; Watanabe, Y.; Fujiwara, Y. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med., 2013, 54(11), 1869-1875.
[http://dx.doi.org/10.2967/jnumed.112.118612] [PMID: 24029656]
[76]
Mortimer, J.E.; Bading, J.R.; Park, J.M.; Frankel, P.H.; Carroll, M.I.; Tran, T.T.; Poku, E.K.; Rockne, R.C.; Raubitschek, A.A.; Shively, J.E.; Colcher, D.M. Tumor uptake of (64) Cu-DOTA-trastuzumab in patients with metastatic breast cancer. J. Nucl. Med., 2018, 59(1), 38-43.
[http://dx.doi.org/10.2967/jnumed.117.193888] [PMID: 28637802]
[77]
Beylergil, V.; Morris, P.G.; Smith-Jones, P.M.; Modi, S.; Solit, D.; Hudis, C.A.; Lu, Y.; O’Donoghue, J.; Lyashchenko, S.K.; Carrasquillo, J.A.; Larson, S.M.; Akhurst, T.J. Pilot study of 68Ga-DOTA-F(ab’)2-trastuzumab in patients with breast cancer. Nucl. Med. Commun., 2013, 34(12), 1157-1165.
[http://dx.doi.org/10.1097/MNM.0b013e328365d99b] [PMID: 24100444]
[78]
Keyaerts, M.; Xavier, C.; Heemskerk, J.; Devoogdt, N.; Everaert, H.; Ackaert, C.; Vanhoeij, M.; Duhoux, F.P.; Gevaert, T.; Simon, P.; Schallier, D.; Fontaine, C.; Vaneycken, I.; Vanhove, C.; De Greve, J.; Lamote, J.; Caveliers, V.; Lahoutte, T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med., 2016, 57(1), 27-33.
[http://dx.doi.org/10.2967/jnumed.115.162024] [PMID: 26449837]
[79]
Baum, R.P.; Prasad, V.; Müller, D.; Schuchardt, C.; Orlova, A.; Wennborg, A.; Tolmachev, V.; Feldwisch, J. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med., 2010, 51(6), 892-897.
[http://dx.doi.org/10.2967/jnumed.109.073239] [PMID: 20484419]
[80]
Tolmachev, V.; Nilsson, F.Y.; Widström, C.; Andersson, K.; Rosik, D.; Gedda, L.; Wennborg, A.; Orlova, A. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J. Nucl. Med., 2006, 47(5), 846-853.
[PMID: 16644755]
[81]
Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; Carlsson, J.; Lindman, H. Measuring HER2-receptor expression inmetastatic breast cancer using [68Ga] ABY-025 affibody PET/CT. Theranostics, 2016, 6(2), 262-271.
[http://dx.doi.org/10.7150/thno.13502] [PMID: 26877784]
[82]
Sandberg, D.; Tolmachev, V.; Velikyan, I.; Olofsson, H.; Wennborg, A.; Feldwisch, J.; Carlsson, J.; Lindman, H.; Sörensen, J. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(8), 1337-1346.
[http://dx.doi.org/10.1007/s00259-017-3650-3] [PMID: 28261749]
[83]
Lockhart, A.C.; Liu, Y.; Dehdashti, F.; Laforest, R.; Picus, J.; Frye, J.; Trull, L.; Belanger, S.; Desai, M.; Mahmood, S.; Mendell, J.; Welch, M.J.; Siegel, B.A. Phase 1evaluation of [(64) Cu] DOTA-patritumab to assess dosimetry, apparent receptor occupancy, and safety in subjects with advanced solid tumors. Mol. Imaging Biol., 2016, 18(3), 446-453.
[http://dx.doi.org/10.1007/s11307-015-0912-y] [PMID: 26567113]
[84]
Pandit-Taskar, N.; O’Donoghue, J.A.; Beylergil, V.; Lyashchenko, S.; Ruan, S.; Solomon, S.B.; Durack, J.C.; Carrasquillo, J.A.; Lefkowitz, R.A.; Gonen, M.; Lewis, J.S.; Holland, J.P.; Cheal, S.M.; Reuter, V.E.; Osborne, J.R.; Loda, M.F.; Smith-Jones, P.M.; Weber, W.A.; Bander, N.H.; Scher, H.I.; Morris, M.J.; Larson, S.M. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(11), 2093-2105.
[http://dx.doi.org/10.1007/s00259-014-2830-7] [PMID: 25143071]
[85]
Pandit-Taskar, N.; O’Donoghue, J.A.; Durack, J.C.; Lyashchenko, S.K.; Cheal, S.M.; Beylergil, V.; Lefkowitz, R.A.; Carrasquillo, J.A.; Martinez, D.F.; Fung, A.M.; Solomon, S.B.; Gönen, M.; Heller, G.; Loda, M.; Nanus, D.M.; Tagawa, S.T.; Feldman, J.L.; Osborne, J.R.; Lewis, J.S.; Reuter, V.E.; Weber, W.A.; Bander, N.H.; Scher, H.I.; Larson, S.M.; Morris, M.J. A phase I/IIstudy for analytic validation of 89Zr-J591 immunoPET as a molecular imaging agent for metastatic prostate cancer. Clin. Cancer Res., 2015, 21(23), 5277-5285.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0552] [PMID: 26175541]
[86]
O’Donoghue, J.A.; Danila, D.C.; Pandit-Taskar, N.; Beylergil, V.; Cheal, S.M.; Fleming, S.E.; Fox, J.J.; Ruan, S.; Zanzonico, P.B.; Ragupathi, G.; Lyashchenko, S.K.; Williams, S.P.; Scher, H.I.; Fine, B.M.; Humm, J.L.; Larson, S.M.; Morris, M.J.; Carrasquillo, J.A. Pharmacokinetics and biodistribution of a [(89) Zr] Zr-DFO-MSTP2109A anti-STEAP1 antibody in metastatic castration-resistant prostate cancer patients. Mol. Pharm., 2019, 16(7), 3083-3090.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00326] [PMID: 31117485]
[87]
Carrasquillo, J.A.; Fine, B.M.; Pandit-Taskar, N.; Larson, S.M.; Fleming, S.E.; Fox, J.J.; Cheal, S.M.; O’Donoghue, J.A.; Ruan, S.; Ragupathi, G.; Lyashchenko, S.K.; Humm, J.L.; Scher, H.I.; Gönen, M.; Williams, S.P.; Danila, D.C.; Morris, M.J. Imaging patients with metastatic castration resistant prostate cancer using 89Zr-DFO-MSTP2109A anti-STEAP1antibody. J. Nucl. Med., 2019, 60(11), 1517-1523.
[http://dx.doi.org/10.2967/jnumed.118.222844] [PMID: 31053681]
[88]
Pandit-Taskar, N.; O’Donoghue, J.A.; Ruan, S.; Lyashchenko, S.K.; Carrasquillo, J.A.; Heller, G.; Martinez, D.F.; Cheal, S.M.; Lewis, J.S.; Fleisher, M.; Keppler, J.S.; Reiter, R.E.; Wu, A.M.; Weber, W.A.; Scher, H.I.; Larson, S.M.; Morris, M.J. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J. Nucl. Med., 2016, 57(12), 1858-1864.
[http://dx.doi.org/10.2967/jnumed.116.176206] [PMID: 27516450]
[89]
Joraku, A.; Hatano, K.; Kawai, K.; Kandori, S.; Kojima, T.; Fukumitsu, N.; Isobe, T.; Mori, Y.; Sakata, M.; Hara, T.; Nasu, K.; Minami, M.; Iizumi, Y.; Nishiyama, H. Phase I/IIa PET imaging study with 89zirconium labeled anti-PSMA minibody for urological malignancies. Ann. Nucl. Med., 2019, 33(2), 119-127.
[http://dx.doi.org/10.1007/s12149-018-1312-6] [PMID: 30406361]
[90]
Pandit-Taskar, N.; Postow, M.A.; Hellmann, M.D.; Harding, J.J.; Barker, C.A.; O’Donoghue, J.A.; Ziolkowska, M.; Ruan, S.; Lyashchenko, S.K.; Tsai, F.; Farwell, M.; Mitchell, T.C.; Korn, R.; Le, W.; Lewis, J.S.; Weber, W.A.; Behera, D.; Wilson, I.; Gordon, M.; Wu, A.M.; Wolchok, J.D. First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 minibody in patients with solid malignancies: Preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med., 2020, 61(4), 512-519.
[http://dx.doi.org/10.2967/jnumed.119.229781] [PMID: 31586002]
[91]
Muylle, K.; Flamen, P.; Vugts, D.J.; Guiot, T.; Ghanem, G.; Meuleman, N.; Bourgeois, P.; Vanderlinden, B.; van Dongen, G.A.; Everaert, H.; Vaes, M.; Bron, D. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(8), 1304-1314.
[http://dx.doi.org/10.1007/s00259-015-3025-6] [PMID: 25792453]
[92]
Wong, J.Y.; Chu, D.Z.; Williams, L.E.; Yamauchi, D.M.; Ikle, D.N.; Kwok, C.S.; Liu, A.; Wilczynski, S.; Colcher, D.; Yazaki, P.J.; Shively, J.E.; Wu, A.M.; Raubitschek, A.A. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin. Cancer Res., 2004, 10(15), 5014-5021.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0576] [PMID: 15297402]
[93]
Jansen, M.H.; Veldhuijzen van Zanten, S.E.M.; van Vuurden, D.G.; Huisman, M.C.; Vugts, D.J.; Hoekstra, O.S.; van Dongen, G.A.; Kaspers, G.L. Molecular drug imaging: (89) Zr-bevacizumab PET in children with diffuse intrinsic pontineglioma. J. Nucl. Med., 2017, 58(5), 711-716.
[http://dx.doi.org/10.2967/jnumed.116.180216] [PMID: 27765855]
[94]
Veldhuijzen van Zanten, S.E.M.; Sewing, A.C.P.; van Lingen, A.; Hoekstra, O.S.; Wesseling, P.; Meel, M.H.; van Vuurden, D.G.; Kaspers, G.J.L.; Hulleman, E.; Bugiani, M. Multiregional tumor drug-uptake imaging by PET and microvascular morphology in end-stage diffuse intrinsic pontineglioma. J. Nucl. Med., 2018, 59(4), 612-615.
[http://dx.doi.org/10.2967/jnumed.117.197897] [PMID: 28818988]
[95]
O’Donoghue, J.A.; Lewis, J.S.; Pandit-Taskar, N.; Fleming, S.E.; Schöder, H.; Larson, S.M.; Beylergil, V.; Ruan, S.; Lyashchenko, S.K.; Zanzonico, P.B.; Weber, W.A.; Carrasquillo, J.A.; Janjigian, Y.Y. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-Trastuzumab in patients with esophagogastric cancer. J. Nucl. Med., 2018, 59(1), 161-166.
[http://dx.doi.org/10.2967/jnumed.117.194555] [PMID: 28637800]
[96]
Heukelom, J.; Hamming, O.; Bartelink, H.; Hoebers, F.; Giralt, J.; Herlestam, T.; Verheij, M.; van den Brekel, M.; Vogel, W.; Slevin, N.; Deutsch, E.; Sonke, J.J.; Lambin, P.; Rasch, C. Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer, 2013, 13(1), 84.
[http://dx.doi.org/10.1186/1471-2407-13-84] [PMID: 23433435]
[97]
van Loon, J.; Even, A.J.G.; Aerts, H.J.W.L.; Öllers, M.; Hoebers, F.; van Elmpt, W.; Dubois, L.; Dingemans, A.C.; Lalisang, R.I.; Kempers, P.; Brans, B.; Winnepenninckx, V.; Speel, E.J.; Thunnissen, E.; Smits, K.M.; Boellaard, R.; Vugts, D.J.; De Ruysscher, D.; Lambin, P. PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer. Radiother. Oncol., 2017, 122(2), 267-273.
[http://dx.doi.org/10.1016/j.radonc.2016.11.020] [PMID: 28012793]
[98]
Aerts, H.J.; Dubois, L.; Perk, L.; Vermaelen, P.; van Dongen, G.A.; Wouters, B.G.; Lambin, P. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med., 2009, 50(1), 123-131.
[http://dx.doi.org/10.2967/jnumed.108.054312] [PMID: 19091906]
[99]
Even, A.J.; Hamming-Vrieze, O.; van Elmpt, W.; Winnepenninckx, V.J.; Heukelom, J.; Tesselaar, M.E.; Vogel, W.V.; Hoeben, A.; Zegers, C.M.; Vugts, D.J.; van Dongen, G.A.; Bartelink, H.; Mottaghy, F.M.; Hoebers, F.; Lambin, P. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget, 2017, 8(3), 3870-3880.
[http://dx.doi.org/10.18632/oncotarget.13910] [PMID: 27965472]
[100]
Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; Windhorst, A.D.; Hendrikse, N.H.; Poot, A.; Vugts, D.J.; Thunnissen, E.; Morin, P.; Lipovsek, D.; Donnelly, D.J.; Bonacorsi, S.J.; Velasquez, L.M.; de Gruijl, T.D.; Smit, E.F.; de Langen, A.J. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun., 2018, 9(1), 4664.
[http://dx.doi.org/10.1038/s41467-018-07131-y] [PMID: 30405135]
[101]
Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; Groen, H.J.M.; Kwee, T.C.; Elias, S.G.; Gietema, J.A.; Bohorquez, S.S.; de Crespigny, A.; Williams, S.P.; Mancao, C.; Brouwers, A.H.; Fine, B.M.; de Vries, E.G.E. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med., 2018, 24(12), 1852-1858.
[http://dx.doi.org/10.1038/s41591-018-0255-8] [PMID: 30478423]
[102]
Meredith, R.; Torgue, J.; Shen, S.; Fisher, D.R.; Banaga, E.; Bunch, P.; Morgan, D.; Fan, J.; Straughn, J.M., Jr Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med., 2014, 55(10), 1636-1642.
[http://dx.doi.org/10.2967/jnumed.114.143842] [PMID: 25157044]
[103]
Meredith, R.F.; Torgue, J.; Azure, M.T.; Shen, S.; Saddekni, S.; Banaga, E.; Carlise, R.; Bunch, P.; Yoder, D.; Alvarez, R. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother. Radiopharm., 2014, 29(1), 12-17.
[http://dx.doi.org/10.1089/cbr.2013.1531] [PMID: 24229395]
[104]
Akhavan, D.; Yazaki, P.; Yamauchi, D.; Simpson, J.; Frankel, P.H.; Bading, J.; Colcher, D.; Poku, K.; Chen, Y.J.; Lim, D.; Cristea, M.; Wu, A.; Shively, J.; Wong, J.Y.C. Phase I Study of Yttrium-90 Radiolabeled M5A Anti-carcinoembryonic antigen humanized antibody in patients with advanced carcinoembryonic antigen producing malignancies. Cancer Biother. Radiopharm., 2020, 35(1), 10-15.
[http://dx.doi.org/10.1089/cbr.2019.2992] [PMID: 31910346]
[105]
Bander, N.H.; Milowsky, M.I.; Nanus, D.M.; Kostakoglu, L.; Vallabhajosula, S.; Goldsmith, S.J. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J. Clin. Oncol., 2005, 23(21), 4591-4601.
[http://dx.doi.org/10.1200/JCO.2005.05.160] [PMID: 15837970]
[106]
Tagawa, S.T.; Milowsky, M.I.; Morris, M.; Vallabhajosula, S.; Christos, P.; Akhtar, N.H.; Osborne, J.; Goldsmith, S.J.; Larson, S.; Taskar, N.P.; Scher, H.I.; Bander, N.H.; Nanus, D.M. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res., 2013, 19(18), 5182-5191.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0231] [PMID: 23714732]
[107]
Batra, J.S.; Niaz, M.J.; Whang, Y.E.; Sheikh, A.; Thomas, C.; Christos, P.; Vallabhajosula, S.; Jhanwar, Y.S.; Molina, A.M.; Nanus, D.M.; Osborne, J.R.; Bander, N.H.; Tagawa, S.T. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Urol. Oncol. Semin. Orig. Investig., 2020, 38(11), 848.e9-848.e16.
[http://dx.doi.org/10.1016/j.urolonc.2020.05.028] [PMID: 32600929]
[108]
Poli, G.L.; Bianchi, C.; Virotta, G.; Bettini, A.; Moretti, R.; Trachsel, E.; Elia, G.; Giovannoni, L.; Neri, D.; Bruno, A. Radretumab radioimmunotherapy in patients with brain metastasis: A 124I-L19SIP dosimetric PET study. Cancer Immunol. Res., 2013, 1(2), 134-143.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0007] [PMID: 24777501]
[109]
Menrad A and Menssen HD ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin. Ther. Targets, 2005, 491-500.
[110]
Erba, P.A.; Sollini, M.; Orciuolo, E.; Traino, C.; Petrini, M.; Paganelli, G.; Bombardieri, E.; Grana, C.; Giovannoni, L.; Neri, D.; Menssen, H.D.; Mariani, G. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J. Nucl. Med., 2012, 53(6), 922-927.
[http://dx.doi.org/10.2967/jnumed.111.101006] [PMID: 22577235]
[111]
Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; Larson, S.M.; Scheinberg, D.A.; Jurcic, J.G. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res., 2010, 16(21), 5303-5311.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0382] [PMID: 20858843]
[112]
Shen, S.; Forero, A.; Meredith, R.F.; LoBuglio, A.F. Biodistribution and dosimetry of In-111/Y-90-HuCC49ΔCh2 (IDEC-159) in patients with metastatic colorectal adenocarcinoma. Cancer Biother. Radiopharm., 2011, 26(1), 127-133.
[http://dx.doi.org/10.1089/cbr.2010.0864] [PMID: 21355784]
[113]
Kramer, K; Pandit-Taskar, N; Humm, JL; Zanzonico, PB; Haque, S; Dunkel, IJ A phase II study of radioimmunotherapy with intraventricular 131I-3F8 for medulloblastoma. Pediatr Blood Cancer., 2018, 65(1), 1e26754.
[114]
Jain, M.; Venkatraman, G.; Batra, S.K. Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin. Cancer Res., 2007, 13(5), 1374-1382.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2436] [PMID: 17309914]
[115]
Sachpekidis, C.; Jackson, D.B.; Soldatos, T.G. Radioimmunotherapy in Non-Hodgkin’s Lymphoma: Retrospective Adverse Event Profiling of Zevalin and Bexxar. Pharmaceuticals (Basel), 2019, 12(4), 141.
[http://dx.doi.org/10.3390/ph12040141] [PMID: 31546999]
[116]
Datta-Mannan, A.; Lu, J.; Witcher, D.R.; Leung, D.; Tang, Y.; Wroblewski, V.J. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs, 2015, 7(6), 1084-1093.
[http://dx.doi.org/10.1080/19420862.2015.1075109] [PMID: 26337808]
[117]
Covell, D.G.; Barbet, J.; Holton, O.D.; Black, C.D.; Parker, R.J.; Weinstein, J.N. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res., 1986, 46(8), 3969-3978.
[PMID: 3731067]
[118]
Buchegger, F.; Pèlegrin, A.; Hardman, N.; Heusser, C.; Lukas, J.; Dolci, W.; Mach, J.P. Different behaviour of mouse-human chimeric antibody F(ab’)2 fragments of IgG1, IgG2 and IgG4 sub-class in vivo. Int. J. Cancer, 1992, 50(3), 416-422.
[http://dx.doi.org/10.1002/ijc.2910500316] [PMID: 1735611]
[119]
Tolmachev, V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr. Pharm. Des., 2008, 14(28), 2999-3019.
[http://dx.doi.org/10.2174/138161208786404290] [PMID: 18991715]
[120]
Wong, K.J.; Baidoo, K.E.; Nayak, T.K.; Garmestani, K.; Brechbiel, M.W.; Milenic, D.E. In vitro and in vivo pre- clinical analysis of a F(ab’)(2) fragment of panitumumab for molecular imaging and therapy of HER1 positive cancers. EJNMMI Res., 2011, 1(1), 1.
[http://dx.doi.org/10.1186/2191-219X-1-1] [PMID: 21845232]
[121]
Röthlisberger, D.; Honegger, A.; Plückthun, A. Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J. Mol. Biol., 2005, 347(4), 773-789.
[http://dx.doi.org/10.1016/j.jmb.2005.01.053] [PMID: 15769469]
[122]
Kholodenko, R.V.; Kalinovsky, D.V.; Doronin, I.I.; Ponomarev, E.D.; Kholodenko, I.V. Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations. Curr. Med. Chem., 2019, 26(3), 396-426.
[http://dx.doi.org/10.2174/0929867324666170817152554] [PMID: 28820071]
[123]
Li, Z.; Krippendorff, B.F.; Sharma, S.; Walz, A.C.; Lavé, T.; Shah, D.K. Influence of molecular size on tissue distribution of antibody fragments. MAbs, 2016, 8(1), 113-119.
[http://dx.doi.org/10.1080/19420862.2015.1111497] [PMID: 26496429]
[124]
Nelson, A.L. Antibody fragments: hope and hype. MAbs, 2010, 2(1), 77-83.
[http://dx.doi.org/10.4161/mabs.2.1.10786] [PMID: 20093855]
[125]
Nelson, A.L.; Dhimolea, E.; Reichert, J.M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 767-774.
[http://dx.doi.org/10.1038/nrd3229] [PMID: 20811384]
[126]
Lefranc, M.P.; Giudicelli, V.; Ginestoux, C.; Jabado-Michaloud, J.; Folch, G.; Bellahcene, F.; Wu, Y.; Gemrot, E.; Brochet, X.; Lane, J.; Regnier, L.; Ehrenmann, F.; Lefranc, G.; Duroux, P. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res., 2009, 37(Database issue)(Suppl. S1), D1006-D1012.
[http://dx.doi.org/10.1093/nar/gkn838] [PMID: 18978023]
[127]
Luo, H.; Hernandez, R.; Hong, H.; Graves, S.A.; Yang, Y.; England, C.G.; Theuer, C.P.; Nickles, R.J.; Cai, W. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc. Natl. Acad. Sci. USA, 2015, 112(41), 12806-12811.
[http://dx.doi.org/10.1073/pnas.1509667112] [PMID: 26417085]
[128]
Bird, R.E.; Hardman, K.D.; Jacobson, J.W.; Johnson, S.; Kaufman, B.M.; Lee, S.M.; Lee, T.; Pope, S.H.; Riordan, G.S.; Whitlow, M. Single-chain antigen-binding proteins. Science, 1988, 242(4877), 423-426.
[http://dx.doi.org/10.1126/science.3140379] [PMID: 3140379]
[129]
Montoliu-Gaya, L.; Esquerda-Canals, G.; Bronsoms, S.; Villegas, S. Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS One, 2017, 12(8), e0181480.
[http://dx.doi.org/10.1371/journal.pone.0181480] [PMID: 28771492]
[130]
Cuesta, Á.M.; Sainz-Pastor, N.; Bonet, J.; Oliva, B.; Álvarez-Vallina, L. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol., 2010, 28(7), 355-362.
[http://dx.doi.org/10.1016/j.tibtech.2010.03.007] [PMID: 20447706]
[131]
Tijink, B.M.; Perk, L.R.; Budde, M.; Stigter-van Walsum, M.; Visser, G.W.; Kloet, R.W.; Dinkelborg, L.M.; Leemans, C.R.; Neri, D.; van Dongen, G.A. (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(8), 1235-1244.
[http://dx.doi.org/10.1007/s00259-009-1096-y] [PMID: 19259661]
[132]
Holliger, P.; Prospero, T.; Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6444-6448.
[http://dx.doi.org/10.1073/pnas.90.14.6444] [PMID: 8341653]
[133]
Cai, W.; Olafsen, T.; Zhang, X.; Cao, Q.; Gambhir, S.S.; Williams, L.E.; Wu, A.M.; Chen, X. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J. Nucl. Med., 2007, 48(2), 304-310.
[PMID: 17268029]
[134]
Lütje, S.; Franssen, G.M.; Sharkey, R.M.; Laverman, P.; Rossi, E.A.; Goldenberg, D.M.; Oyen, W.J.; Boerman, O.C.; McBride, W.J. Anti-CEA antibody fragments labeled with [(18)F]AlF for PET imaging of CEA-expressing tumors. Bioconjug. Chem., 2014, 25(2), 335-341.
[http://dx.doi.org/10.1021/bc4004926] [PMID: 24382090]
[135]
Eder, M.; Knackmuss, S.; Le Gall, F.; Reusch, U.; Rybin, V.; Little, M.; Haberkorn, U.; Mier, W.; Eisenhut, M. 68Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(7), 1397-1407.
[http://dx.doi.org/10.1007/s00259-010-1392-6] [PMID: 20157706]
[136]
Kampmeier, F.; Williams, J.D.; Maher, J.; Mullen, G.E.; Blower, P.J. Design and preclinical evaluation of a 99mTc-labelled diabody of mAb J591 for SPECT imaging of prostate-specific membrane antigen (PSMA). EJNMMI Res., 2014, 4(1), 13.
[http://dx.doi.org/10.1186/2191-219X-4-13] [PMID: 24602403]
[137]
Viola-Villegas, N.T.; Sevak, K.K.; Carlin, S.D.; Doran, M.G.; Evans, H.W.; Bartlett, D.W.; Wu, A.M.; Lewis, J.S. Noninvasive Imaging of PSMA in prostate tumors with (89)Zr-Labeled huJ591 engineered antibody fragments: the faster alternatives. Mol. Pharm., 2014, 11(11), 3965-3973.
[http://dx.doi.org/10.1021/mp500164r] [PMID: 24779727]
[138]
van Duijnhoven, S.M.; Rossin, R.; van den Bosch, S.M.; Wheatcroft, M.P.; Hudson, P.J.; Robillard, M.S. Diabody pretargeting with click chemistry in vivo. J. Nucl. Med., 2015, 56(9), 1422-1428.
[http://dx.doi.org/10.2967/jnumed.115.159145] [PMID: 26159589]
[139]
Jovčevska, I.; Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1), 11-26.
[http://dx.doi.org/10.1007/s40259-019-00392-z] [PMID: 31686399]
[140]
Debie, P.; Devoogdt, N.; Hernot, S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies (Basel), 2019, 8(1), 12.
[http://dx.doi.org/10.3390/antib8010012] [PMID: 31544818]
[141]
Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol., 2005, 23(9), 1126-1136.
[http://dx.doi.org/10.1038/nbt1142] [PMID: 16151406]
[142]
Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem., 2013, 82(1), 775-797.
[http://dx.doi.org/10.1146/annurev-biochem-063011-092449] [PMID: 23495938]
[143]
Yang, E.Y.; Shah, K. Nanobodies: Next generation of cancer diagnostics and therapeutics. Front. Oncol., 2020, 10, 1182.
[http://dx.doi.org/10.3389/fonc.2020.01182] [PMID: 32793488]
[144]
D’Huyvetter, M.; De Vos, J.; Xavier, C.; Pruszynski, M.; Sterckx, Y.G.J.; Massa, S.; Raes, G.; Caveliers, V.; Zalutsky, M.R.; Lahoutte, T.; Devoogdt, N. 131I-labeled Anti-HER2 Camelid sdAb as a theranostic tool in cancer treatment. Clin. Cancer Res., 2017, 23(21), 6616-6628.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0310] [PMID: 28751451]
[145]
D’Huyvetter, M.; Vincke, C.; Xavier, C.; Aerts, A.; Impens, N.; Baatout, S.; De Raeve, H.; Muyldermans, S.; Caveliers, V.; Devoogdt, N.; Lahoutte, T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics, 2014, 4(7), 708-720.
[http://dx.doi.org/10.7150/thno.8156] [PMID: 24883121]
[146]
Chames, P.; Baty, D. Bispecific antibodies for cancer therapy: The light at the end of the tunnel? MAbs, 2009, 1(6), 539-547.
[http://dx.doi.org/10.4161/mabs.1.6.10015] [PMID: 20073127]
[147]
Altai, M.; Membreno, R.; Cook, B.; Tolmachev, V.; Zeglis, B.M. Pretargeted imaging and therapy. J. Nucl. Med., 2017, 58(10), 1553-1559.
[http://dx.doi.org/10.2967/jnumed.117.189944] [PMID: 28687600]
[148]
Fan, G.; Wang, Z.; Hao, M.; Li, J. Bispecific antibodies and their applications. J. Hematol. Oncol., 2015, 8(1), 130.
[http://dx.doi.org/10.1186/s13045-015-0227-0] [PMID: 26692321]
[149]
Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific antibodies: From research to clinical application. Front. Immunol., 2021, 12, 626616.
[http://dx.doi.org/10.3389/fimmu.2021.626616] [PMID: 34025638]
[150]
Trivedi, A.; Stienen, S.; Zhu, M.; Li, H.; Yuraszeck, T.; Gibbs, J.; Heath, T.; Loberg, R.; Kasichayanula, S. Clinical pharmacology and translational aspects of bispecific antibodies. Clin. Transl. Sci., 2017, 10(3), 147-162.
[http://dx.doi.org/10.1111/cts.12459] [PMID: 28297195]
[151]
Wang, S.; Chen, K.; Lei, Q.; Ma, P.; Yuan, A.Q.; Zhao, Y.; Jiang, Y.; Fang, H.; Xing, S.; Fang, Y.; Jiang, N.; Miao, H.; Zhang, M.; Sun, S.; Yu, Z.; Tao, W.; Zhu, Q.; Nie, Y.; Li, N. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol. Med., 2021, 13(9), e14291.
[http://dx.doi.org/10.15252/emmm.202114291] [PMID: 34431224]
[152]
Owens, B. Faster, deeper, smaller-the rise of antibody-like scaffolds. Nat. Biotechnol., 2017, 35(7), 602-603.
[http://dx.doi.org/10.1038/nbt0717-602] [PMID: 28700554]
[153]
Frejd, F.Y.; Kim, K.T. Affibody molecules as engineered protein drugs. Exp. Mol. Med., 2017, 49(3), e306.
[http://dx.doi.org/10.1038/emm.2017.35] [PMID: 28336959]
[154]
Zorzi, A.; Linciano, S.; Angelini, A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm, 2019, 10(7), 1068-1081.
[http://dx.doi.org/10.1039/C9MD00018F] [PMID: 31391879]
[155]
Orlova, A.; Tran, T.A.; Ekblad, T.; Karlström, A.E.; Tolmachev, V. (186)Re-maSGS-Z (HER2:342), a potential Affibody conjugate for systemic therapy of HER2-expressing tumours. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(2), 260-269.
[http://dx.doi.org/10.1007/s00259-009-1268-9] [PMID: 19771426]
[156]
Burley, T.A.; Da Pieve, C.; Martins, C.D.; Ciobota, D.M.; Allott, L.; Oyen, W.J.G.; Harrington, K.J.; Smith, G.; Kramer-Marek, G. Affibody-based PET imaging to guide EGFR-targeted cancer therapy in head and neck squamous cell cancer models. J. Nucl. Med., 2019, 60(3), 353-361.
[http://dx.doi.org/10.2967/jnumed.118.216069] [PMID: 30213849]
[157]
Garousi, J.; Andersson, K.G.; Mitran, B.; Pichl, M.L.; Ståhl, S.; Orlova, A.; Löfblom, J.; Tolmachev, V. PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. Int. J. Oncol., 2016, 48(4), 1325-1332.
[http://dx.doi.org/10.3892/ijo.2016.3369] [PMID: 26847636]
[158]
Orlova, A.; Wållberg, H.; Stone-Elander, S.; Tolmachev, V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J. Nucl. Med., 2009, 50(3), 417-425.
[http://dx.doi.org/10.2967/jnumed.108.057919] [PMID: 19223403]
[159]
Dammes, N; Peer, D Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics., 2020, 10(2), 938-955.
[http://dx.doi.org/10.7150/thno.37443]
[160]
Sharkey, R.M.; Burton, J.; Goldenberg, D.M. Radioimmunotherapy of non-Hodgkin’s lymphoma: A critical appraisal. Expert Rev. Clin. Immunol., 2005, 1(1), 47-62.
[http://dx.doi.org/10.1586/1744666X.1.1.47] [PMID: 20477654]
[161]
Bander, N.H. Technology insight: monoclonal antibody imaging of prostate cancer. Nat. Clin. Pract. Urol., 2006, 3(4), 216-225.
[http://dx.doi.org/10.1038/ncpuro0452] [PMID: 16607370]
[162]
Maxon, H.R.; Thomas, S.R.; Hertzberg, V.S.; Kereiakes, J.G.; Chen, I.W.; Sperling, M.I.; Saenger, E.L. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N. Engl. J. Med., 1983, 309(16), 937-941.
[http://dx.doi.org/10.1056/NEJM198310203091601] [PMID: 6621620]
[163]
Jones, T.D.; Crompton, L.J.; Carr, F.J.; Baker, M.P. Deimmunization of monoclonal antibodies. Methods Mol. Biol., 2009, 525, 405-423, xiv.
[http://dx.doi.org/10.1007/978-1-59745-554-1_21] [PMID: 19252848]
[164]
Baker, M.P.; Reynolds, H.M.; Lumicisi, B.; Bryson, C.J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself, 2010, 1(4), 314-322.
[http://dx.doi.org/10.4161/self.1.4.13904] [PMID: 21487506]
[165]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap.), 2018, 6(3-4), 79-100.
[http://dx.doi.org/10.1142/S2339547818300020] [PMID: 30713991]
[166]
Walter, R.B.; Press, O.W.; Pagel, J.M. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother. Radiopharm., 2010, 25(2), 125-142.
[http://dx.doi.org/10.1089/cbr.2010.0759] [PMID: 20423225]
[167]
Patra, M.; Zarschler, K.; Pietzsch, H.J.; Stephan, H.; Gasser, G. New insights into the pretargeting approach to image and treat tumours. Chem. Soc. Rev., 2016, 45(23), 6415-6431.
[http://dx.doi.org/10.1039/C5CS00784D] [PMID: 27722526]
[168]
Castoldi, R.; Schanzer, J.; Panke, C.; Jucknischke, U.; Neubert, N.J.; Croasdale, R.; Scheuer, W.; Auer, J.; Klein, C.; Niederfellner, G.; Kobold, S.; Sustmann, C. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations. Protein Eng. Des. Sel., 2016, 29(10), 467-475.
[http://dx.doi.org/10.1093/protein/gzw037] [PMID: 27578890]
[169]
Nazha, B.; Inal, C.; Owonikoko, T.K. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front. Oncol., 2020, 10, 1000.
[http://dx.doi.org/10.3389/fonc.2020.01000] [PMID: 32733795]
[170]
Rondon, A.; Rouanet, J.; Degoul, F. Radioimmunotherapy in oncology: Overview of the last decade clinical trials. Cancers (Basel), 2021, 13(21), 5570.
[http://dx.doi.org/10.3390/cancers13215570] [PMID: 34771732]
[171]
Aerts, A.; Eberlein, U.; Holm, S.; Hustinx, R.; Konijnenberg, M.; Strigari, L.; van Leeuwen, F.W.B.; Glatting, G.; Lassmann, M. EANM position paper on the role of radiobiology in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(11), 3365-3377.
[http://dx.doi.org/10.1007/s00259-021-05345-9] [PMID: 33912987]
[172]
Pouget, J.P.; Constanzo, J. Revisiting the radiobiology of targeted alpha therapy. Front. Med. (Lausanne), 2021, 8, 692436.
[http://dx.doi.org/10.3389/fmed.2021.692436] [PMID: 34386508]
[173]
Mukherjee, S.; Sonanini, D.; Maurer, A.; Daldrup-Link, H.E. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics, 2019, 9(25), 7730-7748.
[http://dx.doi.org/10.7150/thno.37306] [PMID: 31695797]
[174]
Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 89.
[http://dx.doi.org/10.1186/s13046-020-01586-y] [PMID: 32423420]
[175]
Khongorzul, P.; Ling, C.J.; Khan, F.U. Antibody–drug conjugates: A comprehensive review. Mol. Can. Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582]
[176]
Zhao, P.; Zhang, Y.; Li, W.; Jeanty, C.; Xiang, G.; Dong, Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B, 2020, 10(9), 1589-1600.
[http://dx.doi.org/10.1016/j.apsb.2020.04.012] [PMID: 33088681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy