Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

A Comprehensive Literature Review of Lipids Used in the Formulation of Lipid Nanoparticles

Author(s): Iti Chauhan* and Lubhan Singh

Volume 8, Issue 2, 2023

Published on: 04 August, 2022

Page: [126 - 152] Pages: 27

DOI: 10.2174/2405461507666220606164446

Price: $65

Abstract

Lipid nanocarriers are reaching new heights in the field of drug delivery. The core of this technology resides in simple molecules, i.e., lipids. Solid and liquid lipids of biocompatible and generally recognized as safe (GRAS) status are employed for the development of lipid nanoparticles along with surfactant(s), solvents, and drug molecules. Researchers have practiced a variety of solid and liquid lipids with acceptable profiles in the formulation of lipid nanoparticles. Solid lipids like triglycerides, fatty acids, fatty alcohols, waxes, and butter have been used in designing lipid nanocarriers. The potential of various plant-based oils has also been tested in designing nanostructured lipid carriers (NLC). With the exponential advancement in lipid-based delivery systems, there exists a need for an appropriate lipid system to obtain an effective product. This review gives a brief insight into lipids, which have been exploited by researchers for designing solid lipid nanoparticles (SLN) and nanostructured lipid carriers. A tabular presentation of important key points of past studies exploiting these lipids for preparing SLN/NLC is the highlight of the article.

Keywords: Lipid nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, solid lipid, liquid lipid, nanocarriers.

Graphical Abstract

[1]
Shah R, Eldridge D, Palombo E, Harding I. Lipid Nanoparticles: Production, characterization and stability. (1st ed London: Springer.). 2015; pp. 11-22.
[http://dx.doi.org/10.1007/978-3-319-10711-0_2]
[2]
Severino P, Andreani T, Macedo AS, et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv 2012; 2012: 750891.
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[3]
Yasir M, Sara UVS, Som I, Gaur P, Singh M, Zafar A. Nose to brain drug delivery: A novel approach through solid lipid nanoparticles. Curr Nanomed 2016; 6: 105-32.
[http://dx.doi.org/10.2174/2468187306666160603120318]
[4]
Müller RH, Radtke M, Wissing SA. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[5]
Nimesh S, Gupta N, Chandra R. Nanomaterials: Evolution and advancement towards therapeutic drug delivery (Part II). In: In: Borges GS, Oliveira MS, Santos DCM, Antonio L, Ferreira M, Carneiro G, Solid lipid nanoparticles and nanostructured lipid carriers for drug delivery applications UAE Bentham Science Publisher. 2021; pp. 1-56.
[http://dx.doi.org/10.2174/97816810882351210101]
[6]
Grumezescu AM. Drug targeting and stimuli sensitive drug delivery systems Lipid nanoparticles: In vitro and in vivo approaches in drug delivery and targeting UK:; William Andrew Publishing. 2018; pp. 749-83.
[http://dx.doi.org/10.1016/C2016-0-04190-6]
[7]
Attama AA, Schicke BC, Paepenmüller T, Müller-Goymann CC. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: Characterization. Eur J Pharm Biopharm 2007; 67(1): 48-57.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.004] [PMID: 17276663]
[8]
Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured Lipid Carriers (NLCs) as a bioavailability enhancement tool for oral administration. Drug Deliv 2015; 22(6): 691-700.
[http://dx.doi.org/10.3109/10717544.2014.898110] [PMID: 24670099]
[9]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[10]
Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 411-8.
[http://dx.doi.org/10.1016/j.addr.2007.04.004] [PMID: 17553589]
[11]
Grumezescu AM. Lipid nanocarriers for drug targeting UK:; William Andrew Publishing: . 2018; pp. 1-47.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00001-3]
[12]
Lichtenstein AH. Fats and oils: An overview Encyclopedia of Human Nutrition. (3rd ed Waltham, MA:; Academic Press. Elsevier,Ltd.). 2014; pp. 201-8.
[http://dx.doi.org/10.1016/B978-0-12-375083-9.00097-0]
[13]
Khatak S, Dureja H. Structural composition of solid lipid nanoparticles for invasive and noninvasive drug delivery. Curr Nanomater 2017; 2: 129-53.
[http://dx.doi.org/10.2174/2405461503666180413160954]
[14]
Parrish CR. The use of medium-chain triglycerides in gastrointestinal disorders. Nutr Iss Gastroenterol 2017; 160: 20-8.
[15]
Gao LY, Liu XY, Chen CJ, et al. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 2014; 35(6): 2066-78.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.046] [PMID: 24315577]
[16]
Gao N, Sebben DA, Gillies G, Krasowska M, Beattie DA. Revealing the nanostructure of glyceryl tristearate crystals by atomic force microscopy. Cryst Growth Des 2019; 19: 513-9.
[http://dx.doi.org/10.1021/acs.cgd.8b01699]
[17]
PubChem. PubChem Compound Summary for CID 11148, Trimyristin. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Trimyristin(Accessed May 14, 2022).
[18]
Seetapan N, Bejrapha P, Srinuanchai W, Puttipipatkhachorn S, Ruktanonchai U. Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: Effects of lipid types and concentrations on dispersion consistency. Drug Dev Ind Pharm 2010; 36(9): 1005-15.
[http://dx.doi.org/10.3109/03639040903586273] [PMID: 20184417]
[19]
Wei L, Yang Y, Shi K, Wu J, Zhao W, Mo J. Preparation and characterization of Loperamide-loaded dynasan 114 solid lipid nanoparticles for increased oral absorption in the treatment of diarrhea. Front Pharmacol 2016; 7: 332.
[http://dx.doi.org/10.3389/fphar.2016.00332] [PMID: 27708583]
[20]
Severino P, Pinho SC, Souto EB, Santana MH. Crystallinity of dynasan®114 and dynasan®118 matrices for the production of stable miglyol®-loaded nanoparticles. J Therm Anal Calorim 2011; 108: 101-8.
[http://dx.doi.org/10.1007/s10973-011-1613-7]
[21]
Kipriye Z, Senel B, Yenilmez E. Preparation and evaluation of carvedilol-loaded solid lipid nanoparticles for targeted drug delivery. Trop J Pharm Res 2017; 16: 2057-68.
[http://dx.doi.org/10.4314/tjpr.v16i9.4]
[22]
Marslin G, Siram K, Liu X, et al. Solid lipid nanoparticles of albendazole for enhancing cellular uptake and cytotoxicity against u-87 mg glioma cell lines. Molecules 2017; 22(11): 2040.
[http://dx.doi.org/10.3390/molecules22112040] [PMID: 29165384]
[23]
Aditya NP, Patankar S, Madhusudhan B, Murthy RS, Souto EB. Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci 2010; 40(5): 448-55.
[http://dx.doi.org/10.1016/j.ejps.2010.05.007] [PMID: 20493255]
[24]
PubChem. PubChem Compound Summary for CID 11147, Tripalmitin 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tripalmitin(Accessed May 14, 2022).
[25]
Glyceryl tripalmitate. Available from: https://www.sigmaaldrich. com/IN/en/product/sigma/t5888(Accessed May 14, 2022).
[26]
Hommoss A. Nanostructured Lipid Carriers (NLC) in dermal and personal care formulations 2008.
[27]
Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 2004; 6(3): e23.
[http://dx.doi.org/10.1208/aapsj060323] [PMID: 15760108]
[28]
Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 2017; 18(3): 875-83.
[http://dx.doi.org/10.1208/s12249-016-0573-4] [PMID: 27368922]
[29]
Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci 2012; 77(1): N8-N13.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02517.x] [PMID: 22260120]
[30]
Leiva MC, Ortiz R, Contreras-Cáceres R, et al. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Sci Rep 2017; 7(1): 13506.
[http://dx.doi.org/10.1038/s41598-017-13816-z] [PMID: 29044153]
[31]
Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: Characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv 2016; 23(2): 395-404.
[http://dx.doi.org/10.3109/10717544.2014.914986] [PMID: 24865287]
[32]
PubChem. PubChem Compound Summary for CID 11146, Tristearin 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tristearin(Accessed May 14, 2022).
[33]
Dora CL, Putaux J, Pignot-Paintrand I, et al. Physicochemical and morphological characterizations of glyceryl tristearate/castor oil nanocarriers prepared by the solvent diffusion method. J Braz Chem Soc 2012; 23: 1972-81.
[http://dx.doi.org/10.1590/S0103-50532012005000066]
[34]
Sanchez-Vazquez B, Lee JB, Strimaite M, et al. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int J Pharm 2019; 572: 118784.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118784] [PMID: 31676339]
[35]
Yassin AE, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA. Optimization of 5-flurouracil solid-lipid nanoparticles: A preliminary study to treat colon cancer. Int J Med Sci 2010; 7(6): 398-408.
[http://dx.doi.org/10.7150/ijms.7.398] [PMID: 21103076]
[36]
Albekery MA, Alharbi KT, Alarifi S, et al. Optimization of a nanostructured lipid carriers system for enhancing the biopharmaceutical properties of valsartan. Dig J Nanomater Biostruct 2017; 12: 381-9.
[37]
Feng J, Huang M, Chai Z, et al. The influence of oil composition on the transformation, bioaccessibility, and intestinal absorption of curcumin in nanostructured lipid carriers. Food Funct 2020; 11(6): 5223-39.
[http://dx.doi.org/10.1039/D0FO00473A] [PMID: 32458895]
[38]
Glycerol dibehenate. Available from: https://www.gattefosse.com/pharmaceuticals-products/compritol-888-ato(Accessed May 14, 2022).
[39]
Chawla V, Saraf SA. Glyceryl behenate and its suitability for production of aceclofenac solid lipid nanoparticles. J Am Oil Chem Soc 2011; 88: 119-26.
[http://dx.doi.org/10.1007/s11746-010-1618-6]
[40]
Choi WS, Cho HI, Lee HY, Lee SH, Choi YW. Enhanced occlusiveness of Nanostructured Lipid Carrier (NLC)-based carbogel as a skin moisturizing vehicle. J Pharm Investig 2010; 40: 373-8.
[http://dx.doi.org/10.4333/KPS.2010.40.6.373]
[41]
Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development and evaluation of glyceryl behenate based Solid Lipid Nanoparticles (SLNs) using hot Self-Nano Emulsification (SNE) technique. Arch Pharm Res 2014; 37(3): 361-70.
[http://dx.doi.org/10.1007/s12272-013-0154-y] [PMID: 23695866]
[42]
Yasir M, Chauhan I, Haji MJ, Tura AJ, Saxena PK. Formulation and evaluation of glyceryl behenate based solid lipid nanoparticles for the delivery of donepezil to brain through nasal route. Res J Pharm Tech 2018; 11: 2836-44.
[http://dx.doi.org/10.5958/0974-360X.2018.00523.1]
[43]
Murthy A, Ravi PR, Kathuria H, Malekar S. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials 2020; 10(6): 1085.
[http://dx.doi.org/10.3390/nano10061085] [PMID: 32486508]
[44]
Varia JK, Dodiya SS, Sawant KK. Cyclosporine-A loaded solid lipid nanoparticles: Optimization of formulation, process variable and characterization. Curr Drug Deliv 2008; 5: 64-9.
[http://dx.doi.org/10.2174/156720108783331069]
[45]
Mohammadi M, Assadpour E, Jafari SM. Encapsulation of food ingredients by nanostructured Lipid Carriers (NLCs). In Lipidbased nanostructures for food encapsulation purposes 2019; pp. 217-70.
[http://dx.doi.org/10.1016/B978-0-12-815673-5.00007-6]
[46]
Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid Lipid Nanoparticles (SLN) versus Nanostructured Lipid Carriers (NLC). Eur J Pharm Biopharm 2008; 70(2): 633-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[47]
Rajinikanth PS, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine 2016; 11: 5067-77.
[http://dx.doi.org/10.2147/IJN.S117511] [PMID: 27785014]
[48]
Almoussalam M, Zhu H. Encapsulation of cancer therapeutic agent dacarbazine using nanostructured lipid carrier. J Vis Exp 2016; 110(110): 53760.
[http://dx.doi.org/10.3791/53760] [PMID: 27168058]
[49]
Shenoy VS, Gude RP, Murthy RS. Paclitaxel-loaded glyceryl palmitostearate nanoparticles: In vitro release and cytotoxic activity. J Drug Target 2009; 17(4): 304-10.
[http://dx.doi.org/10.1080/10611860902737938] [PMID: 19255897]
[50]
PubChem. PubChem Compound Summary for CID 24699, Glyceryl monostearate. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Glyceryl-monostearate(Accessed May 14, 2022)
[51]
Talele P, Sahu S, Mishra AK. Physicochemical characterization of solid lipid nanoparticles comprised of glycerol monostearate and bile salts. Colloids Surf B Biointerfaces 2018; 172: 517-25.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.067] [PMID: 30212689]
[52]
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm 2011; 3(3): 216-20.
[http://dx.doi.org/10.4103/0975-1483.83765] [PMID: 21897661]
[53]
Sahu AK, Kumar T, Jain V. Formulation optimization of erythromycin solid lipid nanocarrier using response surface methodology. BioMed Res Int 2014; 2014: 689391.
[http://dx.doi.org/10.1155/2014/689391] [PMID: 25045692]
[54]
Soma D, Attari Z, Reddy MS, Damodaram A, Koteshwara KBG. Solid lipid nanoparticles of irbesartan: Preparation, characterization, optimization and pharmacokinetic studies. Braz J Pharm Sci 2017; 53: e15012.
[http://dx.doi.org/10.1590/s2175-97902017000115012]
[55]
Hanna PA, Ghorab MM, Gad S. Development of betamethasone dipropionate-loaded nanostructured lipid carriers for topical and transdermal delivery. Antiinflamm Antiallergy Agents Med Chem 2019; 18(1): 26-44.
[http://dx.doi.org/10.2174/1871523017666181115104159] [PMID: 30430947]
[56]
Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ 2015; 53: 147-59.
[http://dx.doi.org/10.1016/j.bfopcu.2015.10.001]
[57]
Luan J, Zhang D, Hao L, et al. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release. Drug Deliv 2013; 20(8): 324-30.
[http://dx.doi.org/10.3109/10717544.2013.835007] [PMID: 24032657]
[58]
Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. (6th ed.). London: Pharmaceutical Press 2009; pp. 288-9.
[59]
National Center for Biotechnology Information. PubChem Compound Summary for CID 5283468, Glyceryl monooleate. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Glyceryl-monooleate(Accessed May 14, 2022).
[60]
Gagliardi A, Cosco D, Udongo BP, Dini L, Viglietto G, Paolino D. Design and characterization of glyceryl monooleate nanostructures containing doxorubicin hydrochloride. Pharmaceutics 2020; 12(11): 1017.
[http://dx.doi.org/10.3390/pharmaceutics12111017] [PMID: 33114287]
[61]
Velmurugan R, Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci 2016; 6: 159-73.
[http://dx.doi.org/10.1007/s13204-015-0434-6]
[62]
Chauhan H, Mohapatra S, Munt DJ, Chandratre S, Dash A. Physical-Chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech 2016; 17(3): 640-51.
[http://dx.doi.org/10.1208/s12249-015-0394-x] [PMID: 26292931]
[63]
Maurya L, Singh S, Rajamanickam VM, Narayan G. Vitamin E TPGS emulsified vinorelbine bitartrate loaded Solid Lipid Nanoparticles (SLN): Formulation development, optimization and in vitro characterization. Curr Drug Deliv 2018; 15(8): 1135-45.
[http://dx.doi.org/10.2174/1567201815666180409105410] [PMID: 29629662]
[64]
Barua S, Lee DI, Kim H, et al. Solid lipid nanoparticles of serine designed by evaluating affinity of solid lipids to stratum corneum for enhanced skin hydration in combination with reed root extract. Bull Korean Chem Soc 2018; 39: 220-6.
[http://dx.doi.org/10.1002/bkcs.11371]
[65]
PubChem. PubChem Compound Summary for CID 5281, Stearic acid. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid(Accessed May 14, 2022).
[66]
Kim MJ, Doh HJ, Choi MK, et al. Skin permeation enhancement of diclofenac by fatty acids. Drug Deliv 2008; 15(6): 373-9.
[http://dx.doi.org/10.1080/10717540802006898] [PMID: 18686081]
[67]
PubChem. PubChem Compound Summary for CID 3893, Lauric acid 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Lauric-acid(Accessed May 14, 2022).
[68]
Xie S, Zhu L, Dong Z, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: Influences of fatty acids. Colloids Surf B Biointerfaces 2011; 83(2): 382-7.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.014] [PMID: 21215599]
[69]
Shrestha SC, Ghebremeskel K, White K, et al. Formulation and characterization of phytostanol ester solid lipid nanoparticles for the management of hypercholesterolemia: An ex vivo Study. Int J Nanomedicine 2021; 16: 1977-92.
[http://dx.doi.org/10.2147/IJN.S276301] [PMID: 33727810]
[70]
Babazadeh A, Ghanbarzadeh B, Hamishehkar H. Formulation of food grade Nanostructured Lipid Carrier (NLC) for potential applications in medicinal-functional foods. J Drug Deliv Sci Technol 2017; 39: 50-8.
[http://dx.doi.org/10.1016/j.jddst.2017.03.001]
[71]
CHEBI- 24026 Fatty alcohol. Available from: https://www.ebi. ac.uk/chebi/searchId.do?chebiId=24026(Accessed May 14, 2022).
[72]
Dastidar DG, Das A, Datta S, et al. Paclitaxel-encapsulated core-shell nanoparticle of cetyl alcohol for active targeted delivery through oral route. Nanomedicine 2019; 14(16): 2121-50.
[http://dx.doi.org/10.2217/nnm-2018-0419] [PMID: 31411540]
[73]
Cetyl alcohol. Available from: https://go.drugbank.com/drugs/DB09494 (Accessed May 14, 2022).
[74]
PubChem. PubChem Compound Summary for CID 2682, 1- Hexadecanol 2004. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/1-Hexadecanol (Accessed May 14, 2022).
[75]
PubChem. PubChem Compound Summary for CID 62238, Cetostearyl alcohol 2004. Available from: https://pubchem.ncbi.nlm. nih.gov/compound/Cetostearyl-alcohol (Accessed May 14, 2022).
[76]
Cetostearyl alcohol. Available from: https://www.drugs.com/inactive/cetostearyl-alcohol-17.html (Accessed May 14, 2022).
[77]
Flavia D, Conrado M, Carvalho BT, et al. Polymorphism, crystallinity and Hydrophilic-Lipophilic Balance (HLB) of cetearyl alcohol and cetyl alcohol as raw materials for Solid Lipid Nanoparticles (SLN). Aspects Nanotechnol 2018; 1: 52-60.
[http://dx.doi.org/10.36959/758/540]
[78]
Rahmawan T, Rosita N, Erawati T. Characterization of solid lipid nanoparticle P- Methoxy Cinnamic Acid (PMCA) formulated with different lipid component stearic acid and cetyl alcohol. PharmaScientia 2012; 1: 16-20.
[79]
Aqilah S, Hendradi E, Rosita N. Effect of Solid Lipid Nanoparticle (SLN) and Nanostructure Lipid Carrier (NLC) system on antioxidant stability of tomato extract (lipid: Cetyl alcohol and isopropyl myristate). UNEJ E-Proceeding 2017; pp. 55-8.
[80]
Final report on the safety assessment of stearyl alcohol, oleyl alcohol, and octyl dodecanol. J Am Coll Toxicol 1985; 4(5): 1-29.
[http://dx.doi.org/10.3109/10915818509078685]
[81]
PubChem. PubChem Compound Summary for CID 8221, Stearyl alcohol 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Stearyl-alcohol (Accessed May 14, 2022).
[82]
Stearyl alcohol Available from: https://www.drugs.com/inactive/stearyl-alcohol-265.html (Accessed May 14, 2022).
[83]
Işcan Y, Wissing SA, Hekimoğlu S, Müller RH. Solid Lipid Nanoparticles (SLN) for topical drug delivery: Incorporation of the lipophilic drugs N, N-diethyl-m-toluamide and vitamin K. Pharmazie 2005; 60(12): 905-9.
[PMID: 16398266]
[84]
Souto EB, Gohla SH, Müller RH. Rheology of Nanostructured Lipid Carriers (NLC) suspended in a viscoelastic medium. Pharmazie 2005; 60(9): 671-3.
[PMID: 16222866]
[85]
Aldayel AM, O’Mary HL, Valdes SA, et al. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J Control Release 2018; 283: 280-9.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.035] [PMID: 29859232]
[86]
Soleimanian Y, Goli SAH, Varshosaz J, Sahafi SM. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem 2018; 244: 83-92.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.010] [PMID: 29120809]
[87]
Beeswax. Available from: https://www.chemeurope.com/en/encyclopedia/Beeswax.html (Accessed May 14, 2022).
[88]
Fratini F, Cilia G, Turchi B, Felicioli A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac J Trop Med 2016; 9(9): 839-43.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.003] [PMID: 27633295]
[89]
Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 2010; 6(6): 753-9.
[http://dx.doi.org/10.1016/j.nano.2010.06.003] [PMID: 20599527]
[90]
Tinto WF, Elufioye TO, Roach JS. Waxes Pharmacognosy fundamentals, applications and strategies Amsterdam: Elsevier. 2017; pp. 443-55.
[91]
Helmenstine AM. Helmenstine AM. What Is Carnauba Wax? 2020. Available from: https://www.thoughtco.com/what-is-carnauba-wax-607371 (Accessed May 14, 2022).
[92]
Galvão JG, Santos RL, Lira AAM, et al. Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers. Appl Sci 2020; 10: 6267.
[http://dx.doi.org/10.3390/app10186267]
[93]
de Meneses AC, Marques EB, Leimann FV, et al. Encapsulation of clove oil in nanostructured lipid carriers from natural waxes: Preparation, characterization and in vitro evaluation of the cholinesterase enzymes. Colloids Surf A Physicochem Eng Asp 2019; 583: 123879.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123879]
[94]
Teeranachaideekul V, Souto EB, Junyaprasert VB, Müller RH. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm 2007; 67(1): 141-8.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.015] [PMID: 17346953]
[95]
Chen PC, Huang JW, Pang J. An investigation of optimum NLC-sunscreen formulation using taguchi analysis. J Nanomater 2013; 2013: 463732.
[http://dx.doi.org/10.1155/2013/463732]
[96]
Montenegro L, Campisi A, Sarpietro MG, et al. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm 2011; 37(6): 737-46.
[http://dx.doi.org/10.3109/03639045.2010.539231] [PMID: 21204752]
[97]
Ruktanonchai U, Limpakdee S, Meejoo S, et al. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles. Nanotechnology 2008; 19(9): 095701.
[http://dx.doi.org/10.1088/0957-4484/19/9/095701] [PMID: 21817683]
[98]
Khongkaew P, Chaemsawang W. Development and characterization of stingless bee propolis properties for the development of solid lipid nanoparticles for loading lipophilic substances. Int J Biomater 2021; 2021: 6662867.
[http://dx.doi.org/10.1155/2021/6662867] [PMID: 34135970]
[99]
Soleimanian Y, Goli SAH, Shirvani A, Elmizadeh A, Marangoni AG. Wax-based delivery systems: Preparation, characterization, and food applications. Compr Rev Food Sci Food Saf 2020; 19(6): 2994-3030.
[http://dx.doi.org/10.1111/1541-4337.12614] [PMID: 33337056]
[100]
Correa YX, Valenzuela AL, Ardila AM, Rojas MA, Mora CE. Colombian propolis as starting material for the preparation of nanostructured lipid carriers. Rev Bras Farmacogn 2019; 29: 381-8.
[http://dx.doi.org/10.1016/j.bjp.2019.03.001]
[101]
Rosseto HC, Toledo LAS, Francisco LMB, et al. Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2017; 158: 441-52.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.029] [PMID: 28728086]
[102]
Luan L, Chi Z, Liu C. Chinese white wax solid lipid nanoparticles as a novel nanocarrier of curcumin for inhibiting the formation of Staphylococcus aureus biofilms. Nanomaterials 2019; 9(5): 763.
[http://dx.doi.org/10.3390/nano9050763] [PMID: 31109013]
[103]
Tangkhajornchaisak P, Rojsitthisak P, Tiyaboonchai W, Wattanaarsakit P. The effect of rice bran wax on physicochemical properties of curcuminoid-loaded solid lipid nanoparticles. Thai J Pharm Sci 2016; 40: 49-52.
[104]
Sislioglu K, Gumus CE, Koo CKW, Karabulut I, McClements DJ. In vitro digestion of edible nanostructured lipid carriers: Impact of a Candelilla wax gelator on performance. Food Res Int 2021; 140: 110060.
[http://dx.doi.org/10.1016/j.foodres.2020.110060] [PMID: 33648283]
[105]
Praphanwittaya P, Chomto P, Phaechamud T. Silymarin solid lipid nanoparticle containing shellac wax fabricated with hot melt emulsification. Res J Pharm Biol Chem 2013; 4: 784-801.
[106]
Raffin RP, Lima A, Lorenzoni R, et al. Natural lipid nanoparticles containing nimesulide: Synthesis, characterization and in vivo antiedematogenic and antinociceptive activities. J Biomed Nanotechnol 2012; 8(2): 309-15.
[http://dx.doi.org/10.1166/jbn.2012.1377] [PMID: 22515082]
[107]
Dieng S, Séne M, Fall ABK, et al. Formulation of shea butter nanoparticle containing griseofulvin: A combination of antifungal and anti-inflammatory treatments. J Drug Deliv Ther 2021; 11: 59-65.
[http://dx.doi.org/10.22270/jddt.v11i2-S.4796]
[108]
Hajjali H, Michaux F, Bouelet I, Pierrick D, Jasniewski J, Michel L. Shea butter solid nanoparticles for curcumin encapsulation: Influence of nanoparticles size on drug loading. Eur J Lipid Sci Technol 2016; 118: 1168-78.
[http://dx.doi.org/10.1002/ejlt.201500348]
[109]
Kim MH, Jeon YE, Kang S, et al. Lipid nanoparticles for enhancing the physicochemical stability and topical skin delivery of Orobol Pharmaceutics 2020; 12(9): 845.
[http://dx.doi.org/10.3390/pharmaceutics12090845] [PMID: 32899309]
[110]
Ribeiro LNM, Breitkreitz MC, Guilherme VA, et al. Natural lipids-based NLC containing lidocaine: From pre-formulation to in vio studies. Eur J Pharm Sci 2017; 106: 102-12.
[http://dx.doi.org/10.1016/j.ejps.2017.05.060] [PMID: 28558981]
[111]
Cortial A, Vocanson M, Loubry E, Briançon S. Hot homogenization process optimization for fragrance encapsulation in solid lipid nanoparticles: Fragrance encapsulation in SLN by hot homogenization process. Flavour Fragrance J 2015; 30: 467-77.
[http://dx.doi.org/10.1002/ffj.3259]
[112]
Salminen H, Stübler A, Weiss J. Preparation, characterization, and physical stability of cocoa butter and tristearin nanoparticles containing -carotene. Eur Food Res Technol 2020; 246: 599-608.
[http://dx.doi.org/10.1007/s00217-020-03431-0]
[113]
Naik B, Kumar V. Cocoa butter and its alternatives: A review. J Biores Eng Technol 2014; 1: 7-17.
[114]
Qian C, Decker E, Xiao H, Mcclements D. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res Int 2013; 52: 342-9.
[http://dx.doi.org/10.1016/j.foodres.2013.03.035]
[115]
Shtay R, Schwarz K, Tan C. Development and characterization of Solid Lipid Nanoparticles (SLNs) made of cocoa butter: A factorial design study. J Food Eng 2018; 231: 30-41.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.03.006]
[116]
Bratu A, Ott C, Balanuca B, Badea N, Lacatusu I. The association effect of cocoa butter with vegetable oils on the obtaining of lipid nanocarriers loaded with antidepressant and antipsychotic drugs. Rev Roum Chim 2020; 65: 57-67.
[http://dx.doi.org/10.33224/rrch/2020.65.1.06]
[117]
Kim BD, Na K, Choi HK. Preparation and characterization of Solid Lipid Nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci 2005; 24(2-3): 199-205.
[http://dx.doi.org/10.1016/j.ejps.2004.10.008] [PMID: 15661491]
[118]
Manzar MK, Pirouzifard MK, Hamishehkar H, Pirsa S. Cocoa butter and cocoa butter substitute as a lipid carrier of Cuminum cyminum L. essential oil; physicochemical properties, physical stability and controlled release study. J Mol Liq 2020; 314: 113638.
[http://dx.doi.org/10.1016/j.molliq.2020.113638]
[119]
Shtay R, Keppler JK, Schrader K, Schwarz K. Encapsulation of (–)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. J Food Eng 2019; 244: 91-100.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.09.008]
[120]
Gaur PK, Mishra S, Purohit S. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. BioMed Res Int 2013; 2013: 750690.
[http://dx.doi.org/10.1155/2013/750690] [PMID: 24058913]
[121]
Pereira RR, Testi M, Rossi F, et al. Ucuùba (Virola surinamensis) fat-based nanostructured lipid carriers for nail drug delivery of Ketoconazole: Development and optimization using Box-Behnken design. Pharmaceutics 2019; 11(6): 284.
[http://dx.doi.org/10.3390/pharmaceutics11060284] [PMID: 31212993]
[122]
Bashiri S, Ghanbarzadeh B, Ayaseh A, Dehghannya J, Ehsani A, Ozyurt H. Essential oil-loaded nanostructured lipid carriers: The effects of liquid lipid type on the physicochemical properties in beverage models. Food Biosci 2020; 35: 100526.
[http://dx.doi.org/10.1016/j.fbio.2020.100526]
[123]
Beloqui A, Solinís MA, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[124]
Purohit DK. Nano-lipid carriers for topical application: Current scenario. Asian J Pharm 2016; 10: S1-9.
[http://dx.doi.org/10.22377/ajp.v10i1.544]
[125]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[126]
Charrouf Z, Guillaume D. Argan oil: Occurrence, composition and impact on human health. Eur J Lipid Sci Technol 2008; 110: 632-6.
[http://dx.doi.org/10.1002/ejlt.200700220]
[127]
Tichota DM, Silva AC, Sousa Lobo JM, Amaral MH. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int J Nanomedicine 2014; 9: 3855-64.
[http://dx.doi.org/10.2147/IJN.S64008] [PMID: 25143733]
[128]
Azmi NAN, Hasham R, Ariffin FD, Elgharbawy AAM, Salleh HM. Characterization, stability assessment, antioxidant evaluation and cell proliferation activity of virgin coconut oil-based nanostructured lipid carrier loaded with Ficus deltoidea extract. Cosmetics 2020; 7: 83.
[http://dx.doi.org/10.3390/cosmetics7040083]
[129]
Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr Res Rev 2005; 18(1): 98-112.
[http://dx.doi.org/10.1079/NRR200495] [PMID: 19079898]
[130]
Saporito F, Sandri G, Bonferoni MC, et al. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 2017; 13: 175-86.
[http://dx.doi.org/10.2147/IJN.S152529] [PMID: 29343956]
[131]
How CW, Rasedee A, Abbasalipourkabir R. Characterization and cytotoxicity of nanostructured lipid carriers formulated with olive oil, hydrogenated palm oil, and polysorbate 80. IEEE Trans Nanobiosci 2013; 12(2): 72-8.
[http://dx.doi.org/10.1109/TNB.2012.2232937] [PMID: 23268387]
[132]
Abourehab MAS, Khames A, Genedy S, et al. Sesame oil-based nanostructured lipid carriers of nicergoline, intranasal delivery system for brain targeting of synergistic cerebrovascular protection. Pharmaceutics 2021; 13(4): 581.
[http://dx.doi.org/10.3390/pharmaceutics13040581] [PMID: 33921796]
[133]
Puglia C, Lauro MR, Offerta A, et al. Nanostructured Lipid Carriers (NLC) as vehicles for topical administration of sesamol: In vitro percutaneous absorption study and evaluation of antioxidant activity. Planta Med 2017; 83(5): 398-404.
[http://dx.doi.org/10.1055/s-0042-105293] [PMID: 27124246]
[134]
Fahmy UA, Ahmed OAA, Badr-Eldin SM, et al. Optimized nanostructured lipid carriers integrated into in situ nasal gel for enhancing brain delivery of Flibanserin. Int J Nanomedicine 2020; 15: 5253-64.
[http://dx.doi.org/10.2147/IJN.S258791] [PMID: 32801690]
[135]
Nguyen HM, Hwang IC, Park JW, Park HJ. Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J Microencapsul 2012; 29(6): 596-604.
[http://dx.doi.org/10.3109/02652048.2012.668960] [PMID: 22424134]
[136]
Berenji RH, Pezeshki A, Ghanbarzadeh B, et al. Resveratrol entrapped food grade lipid nanocarriers as a potential antioxidant in a mayonnaise. Food Biosci 2021; 41: 101041.
[http://dx.doi.org/10.1016/j.fbio.2021.101041]
[137]
Bayrak A, Kiralan M, Ipek A, Arslan N, Cosge B, Khawar KM. Fatty Acid compositions of Linseed (Linum Usitatissimum L.) genotypes of different origin cultivated in Turkey. Biotechnol Biotechnol Equip 2010; 24: 1836-42.
[http://dx.doi.org/10.2478/V10133-010-0034-2]
[138]
Coc LM, Lacatusu I, Badea N, Barbinta-Patrascu ME, Meghea A. Effective lipid nanocarriers based on linseed oil for delivery of natural polyphenolic active. J Nanomater 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/8853941]
[139]
Saedi A, Rostamizadeh K, Parsa M, Dalali N, Ahmadi N. Preparation and characterization of nanostructured lipid carriers as drug delivery system: Influence of liquid lipid types on loading and cytotoxicity. Chem Phys Lipids 2018; 216: 65-72.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.09.007] [PMID: 30219661]
[140]
Santos VS, Miyasaki EK, Cardoso LP, Ribeiro APB, Santana MHA. Crystallization, polymorphism and stability of nanostructured lipid carriers developed with soybean oil, fully hydrogenated soybean oil and free phytosterols for food applications. J Nano Res 2019. 2: 001-21.
[http://dx.doi.org/10.26502/jnr.2688-8521001]
[141]
Kraisit P, Sarisuta N. Development of triamcinolone acetonideloaded Nanostructured Lipid Carriers (NLCS) for buccal drug delivery using the box-behnken design. Molecules 2018; 23(4): 982.
[http://dx.doi.org/10.3390/molecules23040982] [PMID: 29690622]
[142]
Singh AP, Sharma SK, Gaur PK, Gupta DK. Fabrication of mupirocin-loaded nanostructured lipid carrier and its in vitro characterization. Assay Drug Dev Technol 2021; 19(4): 216-25.
[http://dx.doi.org/10.1089/adt.2020.1070] [PMID: 33781090]
[143]
Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape seed oil compounds: Biological and chemical actions for health. Nutr Metab Insights 2016; 9: 59-64.
[http://dx.doi.org/10.4137/NMI.S32910] [PMID: 27559299]
[144]
Sirikhet J, Chanmahasathien W, Raiwa A, Kiattisin K. Stability enhancement of lycopene in Citrullus lanatus extract via nanostructured lipid carriers. Food Sci Nutr 2021; 9(3): 1750-60.
[http://dx.doi.org/10.1002/fsn3.2156] [PMID: 33747486]
[145]
Jawahar N, Hingarh PK, Arun R, et al. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int J Biol Macromol 2018; 110: 269-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.121] [PMID: 29402457]
[146]
Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. Braz J Pharm Sci 2020; 56: e18069.
[http://dx.doi.org/10.1590/s2175-97902019000318069]
[147]
Uraiwan K, Satirapipathkul C. The entrapment of Vitamin E in Nanostructured lipid carriers of Rambutan seed fat for cosmeceutical uses. Key Eng Mater 2016; 673: 77-80.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.675-676.77]
[148]
Witayaudom P, Klinkesorn U. Influence of lipid content and dilution on properties and stability of nanostructured Lipid Carriers (NLCs) prepared from rambutan (Nephelium lappaceum L.) kernel fat and evaluation of their β-carotene loading capacity. J Dispers Sci Technol 2019; 40: 1600-10.
[http://dx.doi.org/10.1080/01932691.2018.1523011]
[149]
[150]
Azar F, Pezeshki A, Ghanbarzadeh B, Hamishehkar H, Mohammadi M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J Agric Food Res 2020; 2: 100084.
[http://dx.doi.org/10.1016/j.jafr.2020.100084]
[151]
Tofani RP, Sumirtapura YC, Darijanto ST. Formulation, characterisation, and in vitro skin diffusion of nanostructured lipid carriers for deoxyarbutin compared to a nanoemulsion and conventional cream. Sci Pharm 2016; 84(4): 634-45.
[http://dx.doi.org/10.3390/scipharm84040634] [PMID: 28656942]
[152]
Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006; 314(1): 83-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.040] [PMID: 16563671]
[153]
do Prado AH, Araújo VHS, Eloy JO, et al. Synthesis and characterization of nanostructured lipid nanocarriers for enhanced sun protection factor of octyl p-methoxycinnamate. AAPS PharmSciTech 2020; 21(4): 125.
[http://dx.doi.org/10.1208/s12249-019-1547-0] [PMID: 32350635]
[154]
Guilherme VA, Ribeiro LNM, Alcântara ACS, et al. Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration. Sci Rep 2019; 9(1): 11160.
[http://dx.doi.org/10.1038/s41598-019-47486-w] [PMID: 31371737]
[155]
Pantub K, Wongtrakul P, Janwitayanuchit W. Preparation of salicylic acid loaded nanostructured lipid carriers using box-behnken design: Optimization, characterization and physicochemical stability. J Oleo Sci 2017; 66(12): 1311-9.
[http://dx.doi.org/10.5650/jos.ess17051] [PMID: 29199206]
[156]
Wu PS, Lin CH, Kuo YC, Lin CC. Formulation and characterization of hydroquinone nanostructured lipid carriers by homogenization emulsification method. J Nanomater 2017; 2017: 3282693.
[http://dx.doi.org/10.1155/2017/3282693]
[157]
Alcantara KP, Zulfakar MH, Castillo AL. Development, characterization and pharmacokinetics of mupirocin-loaded Nanostructured Lipid Carriers (NLCs) for intravascular administration. Int J Pharm 2019; 571: 118705.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118705] [PMID: 31536765]
[158]
Chen CY, Lee YH, Chang SH, Tsai YF, Fang JY, Hwang TL. Oleic acid-loaded nanostructured lipid carrier inhibit neutrophil activities in the presence of albumin and alleviates skin inflammation. Int J Nanomedicine 2019; 14: 6539-53.
[http://dx.doi.org/10.2147/IJN.S208489] [PMID: 31496699]
[159]
Hendradi E, Rosita N, Rahmadhanniar E. Effect of lipid ratio of stearic acid and oleic acid on characteristics of Nanostructure Lipid Carrier (NLC) system of diethylammonium diclofenac. Indones J Pharm 2017; 28: 198.
[http://dx.doi.org/10.14499/indonesianjpharm28iss4pp198]
[160]
Lin YK, Al-Suwayeh SA, Leu YL, Shen FM, Fang JY. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharm Res 2013; 30(2): 435-46.
[http://dx.doi.org/10.1007/s11095-012-0888-0] [PMID: 23070602]
[161]
Chen CC, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 2010; 74(3): 474-82.
[http://dx.doi.org/10.1016/j.ejpb.2009.12.008] [PMID: 20060469]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy