Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

An Explicative Review on the Progress of Quinazoline Scaffold as Bioactive Agents in the Past Decade

Author(s): Naman Jain, Tanvi Goel, Snehal Thakar, Madhav Jadhav and Deepali Bansode*

Volume 19, Issue 3, 2023

Published on: 03 October, 2022

Page: [211 - 245] Pages: 35

DOI: 10.2174/1573406418666220606093202

Price: $65

Abstract

In the last decade, quinazoline has been one of the most explored scaffolds by researchers around the globe in medicinal chemistry. Its unique structural features provide a wide range of substitutions for nitrogen and carbonyl groups. In the current situation of COVID-19, hydroxychloroquine, an antimalarial drug of the quinoline category, was used for the treatment of severe infections. Various substitution patterns, hybrids, and conjugates of quinazoline have been developed and studied for various pharmacological activities like anticancer, anti-inflammatory, antimalarial, antitubercular, etc. The scaffold can be considered a potential molecule for various pharmacological activities, especially antimicrobial and anti-hypertensive. This review article aims to study the physicochemical properties, chemistry, and pharmacological profile of quinazoline.

Keywords: Quinazoline, infectious diseases, medicinal agents, marketed drugs, COVID-19, cancer.

Next »
[1]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947.
[2]
Gribble, G.W.; Joule, J. Progress in Heterocyclic Chemistry; Elsevier: Amsterdam, 2009.
[3]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[4]
Quinazoline. Available at: https://en.wikipedia.org/wiki/Quinazoline
[5]
Acharya, P.T.; Bhavsar, Z.A.; Jethava, D.J.; Patel, D.B.; Patel, H.D. A review on development of bio-active thiosemicarbazide derivatives: Recent advances. J. Mol. Struct., 2021, 1226, 129268.
[http://dx.doi.org/10.1016/j.molstruc.2020.129268]
[6]
Zhu, X.; Van Horn, K.S.; Barber, M.M.; Yang, S.; Wang, M.Z.; Manetsch, R.; Werbovetz, K.A. SAR refinement of antileishmanial N(2),N(4)-disubstituted quinazoline-2,4-diamines. Bioorg. Med. Chem., 2015, 23(16), 5182-5189.
[http://dx.doi.org/10.1016/j.bmc.2015.02.020] [PMID: 25749014]
[7]
Amrutkar, R.D.; Amrutkar, S.V.; Ranawat, M.S. Quinazolin-4-one: A varsatile molecule. Curr. Bioact. Compd., 2020, 16(4), 370-382.
[http://dx.doi.org/10.2174/1573407215666181120115313]
[8]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-Activity Relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[9]
Qureshi, S.I.; Chaudhari, H.K. Design, synthesis, in-silico studies and biological screening of quinazolinone analogues as potential antibacterial agents against MRSA. Bioorg. Med. Chem., 2019, 27(12), 2676-2688.
[http://dx.doi.org/10.1016/j.bmc.2019.05.012] [PMID: 31103406]
[10]
Ghorab, M.M.; Ismail, Z.H.; Abdalla, M.; Radwan, A.A. Synthesis, antimicrobial evaluation and molecular modelling of novel sulfonamides carrying a biologically active quinazoline nucleus. Arch. Pharm. Res., 2013, 36(6), 660-670.
[http://dx.doi.org/10.1007/s12272-013-0094-6] [PMID: 23529860]
[11]
Guda, R.; Narsimha, S.; Babu, R.; Muthadi, S.; Lingabathula, H.; Palabindela, R.; Yellu, N.R.; Kumar, G.; Kasula, M. Novel substituted hydrazono indolo[2,1-b]quinazoline-6,12-dione analogues as cytostatic agents: Synthesis, crystal structure, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2016, 26(22), 5517-5523.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.006] [PMID: 27769618]
[12]
Modh, R.P.; De Clercq, E.; Pannecouque, C.; Chikhalia, K.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline-triazine derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 100-108.
[http://dx.doi.org/10.3109/14756366.2012.755622] [PMID: 23327639]
[13]
Ukrainets, I.V.; Kravtsova, V.V.; Tkach, A.A.; Mamchur, V.I.; Kovalenko, E.Y. 4-Hydroxy-2-quinolones 173*. 1-r-3-(2-diethylamino-ethyl)-1h-quinazoline-2, 4-dione hydrochlorides as potential local anesthetic agents. Chem. Heterocycl. Compd., 2010, 46(1), 96-105.
[http://dx.doi.org/10.1007/s10593-010-0475-4]
[14]
Patil, A.; Ganguly, S.; Surana, S. Synthesis and antiulcer activity of 2-[5-substituted-1-h-benzo (d) imidazol-2-yl sulfinyl] methyl-3-substituted quinazoline-4-(3H). Ones. J. Chem. Sci., 2010, 122(3), 443-450.
[http://dx.doi.org/10.1007/s12039-010-0052-5]
[15]
Van Horn, K.S.; Zhu, X.; Pandharkar, T.; Yang, S.; Vesely, B.; Vanaerschot, M.; Dujardin, J-C.; Rijal, S.; Kyle, D.E.; Wang, M.Z.; Werbovetz, K.A.; Manetsch, R. Antileishmanial activity of a series of N2,N-disubstituted quinazoline-2,4-diamines. J. Med. Chem., 2014, 57(12), 5141-5156.
[http://dx.doi.org/10.1021/jm5000408] [PMID: 24874647]
[16]
Bhattacharjee, A.K.; Hartell, M.G.; Nichols, D.A.; Hicks, R.P.; Stanton, B.; van Hamont, J.E.; Milhous, W.K. Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. Eur. J. Med. Chem., 2004, 39(1), 59-67.
[http://dx.doi.org/10.1016/j.ejmech.2003.10.004] [PMID: 14987834]
[17]
Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Adam Willardsen, J.; Anderson, M.B.; Mather, G.; Pleiman, C.M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of N-methyl-4-(4-methoxyanilino)quinazolines as potent apoptosis inducers. Structure-activity relationship of the quinazoline ring. Bioorg. Med. Chem. Lett., 2010, 20(7), 2330-2334.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.155] [PMID: 20188546]
[18]
Iino, T.; Sasaki, Y.; Bamba, M.; Mitsuya, M.; Ohno, A.; Kamata, K.; Hosaka, H.; Maruki, H.; Futamura, M.; Yoshimoto, R.; Ohyama, S.; Sasaki, K.; Chiba, M.; Ohtake, N.; Nagata, Y.; Eiki, J.; Nishimura, T. Discovery and structure-activity relationships of a novel class of quinazoline glucokinase activators. Bioorg. Med. Chem. Lett., 2009, 19(19), 5531-5538.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.064] [PMID: 19726182]
[19]
Mokrosz, J.L. Duszyńska, B.; Charakchieva-Minol, S.; Bojarski, A.J.; Mokrosz, M.J.; Wydra, R.L.; Janda, L.; Strekowski, L. Structure-Activity relationship studies of CNS agents. Part 29. N-Methylpiperazino-Substituted derivatives of quinazoline, phthalazine and quinoline as novel A1, 5-HT1A and 5-HT2A receptor ligands. Eur. J. Med. Chem., 1996, 31(12), 973-980.
[http://dx.doi.org/10.1016/S0223-5234(97)86176-4]
[20]
Bahekar, R.H.; Rao, A.R.R. Bronchodilation and structure-activity relationship studies on new 6-substituted benzimidazo[1,2-c]quinazolines. Arzneimittelforschung, 2000, 50(8), 712-716.
[PMID: 10994154]
[21]
GLOBOCAN 2020 In: New Global Cancer Data. ; Available at https://www.uicc.org/news/globocan-2020-new-global-cancer-data
[22]
McNamara, D.J.; Berman, E.M.; Fry, D.W.; Werbel, L.M. Potent inhibition of thymidylate synthase by two series of nonclassical quinazolines. J. Med. Chem., 1990, 33(7), 2045-2051.
[http://dx.doi.org/10.1021/jm00169a040] [PMID: 2362285]
[23]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015] [PMID: 21458891]
[24]
Manasa, K.; Sidhaye, R.V.; Radhika, G.; Nalini, C.N. Synthesis, antioxidant and anticancer activity of quinazoline derivatives. J. Curr. Pharma. Res., 2011, 1(2), 101.
[http://dx.doi.org/10.33786/JCPR.2011.v01i02.002]
[25]
Sharma, A.; Luxami, V.; Paul, K. Synthesis, single crystal and antitumor activities of benzimidazole-quinazoline hybrids. Bioorg. Med. Chem. Lett., 2013, 23(11), 3288-3294.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.107] [PMID: 23611732]
[26]
Faraj, F.L.; Zahedifard, M.; Paydar, M.; Looi, C.Y.; Abdul Majid, N.; Ali, H.M.; Ahmad, N.; Gwaram, N.S.; Abdulla, M.A. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. Sci. World J., 2014, 2014, 212096.
[27]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of Triazole-Substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[28]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[29]
Ghorab, M.M.; Alsaid, M.S.; Al-Dosari, M.S.; El-Gazzar, M.G.; Parvez, M.K. Design, synthesis and anticancer evaluation of novel quinazoline-sulfonamide hybrids. Molecules, 2016, 21(2), 189.
[http://dx.doi.org/10.3390/molecules21020189] [PMID: 26861266]
[30]
Rakesh, K.P.; Kumara, H.K.; Manukumar, H.M.; Channe Gowda, D. Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking. Bioorg. Chem., 2019, 87, 252-264.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.038] [PMID: 30908968]
[31]
Ashok, U.P.; Kollur, S.P.; Arun, B.P.; Sanjay, C.; Suresh, K.S.; Anil, N.; Baburao, H.V.; Markad, D.; Castro, J.O.; Frau, J. In vitro anticancer activity of 4 (3H)-Quinazolinone derived schiff base and its Cu (II), Zn (II) and Cd (II) complexes: Preparation, X-Ray structural, spectral characterization and theoretical investigations. Inorg. Chim. Acta, 2020, 511, 119846.
[http://dx.doi.org/10.1016/j.ica.2020.119846]
[32]
El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A-M.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline-isatin conjugates: Epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 935-944.
[http://dx.doi.org/10.1080/14756366.2017.1344981] [PMID: 28718672]
[33]
Yong, J.-P.; Lu, C.-Z.; Wu, X. Potential anticancer agents. I. Synthesis of Isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents) 2015, 15(1), 131-136.
[35]
Amin, K.M.; Kamel, M.M.; Anwar, M.M.; Khedr, M.; Syam, Y.M. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1- cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2117-2131.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.078] [PMID: 20137837]
[36]
Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.H.; Al-Jaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.067] [PMID: 20817329]
[37]
Balakumar, C.; Lamba, P.; Kishore, D.P.; Narayana, B.L.; Rao, K.V.; Rajwinder, K.; Rao, A.R.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.063] [PMID: 20800934]
[38]
Smits, R.A.; Adami, M.; Istyastono, E.P.; Zuiderveld, O.P.; van Dam, C.M.E.; de Kanter, F.J.J.; Jongejan, A.; Coruzzi, G.; Leurs, R.; de Esch, I.J.P. Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists. J. Med. Chem., 2010, 53(6), 2390-2400.
[http://dx.doi.org/10.1021/jm901379s] [PMID: 20192225]
[39]
Mohamed, M.S.; Kamel, M.M.; Kassem, E.M.M.; Abotaleb, N.; Khedr, M.; Ahmed, M.F. Synthesis, biological evaluation and molecular docking of quinazoline-4(1H)-one derivatives as anti-inflammatory and analgesic agents. Acta Pol. Pharm., 2011, 68(5), 665-675.
[PMID: 21928711]
[40]
Farag, A.A.; Khalifa, E.M.; Sadik, N.A.; Abbas, S.Y.; Al-Sehemi, A.G.; Ammar, Y.A. Synthesis, characterization, and evaluation of some novel 4 (3 H)-Quinazolinone derivatives as anti-inflammatory and analgesic agents. Med. Chem. Res., 2013, 22(1), 440-452.
[http://dx.doi.org/10.1007/s00044-012-0046-6]
[41]
Abbas, S.E.; Awadallah, F.M.; Ibrahin, N.A.; Said, E.G.; Kamel, G.M. New quinazolinone-pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. Eur. J. Med. Chem., 2012, 53, 141-149.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.050] [PMID: 22551678]
[42]
Zayed, F.M.; Hassan, M. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm. J., 2014, 22(2), 157-162.
[http://dx.doi.org/10.1016/j.jsps.2013.03.004] [PMID: 24648828]
[43]
El-Feky, S.A.; Imran, M.; Nayeem, N. Design, synthesis, and anti-inflammatory activity of novel quinazolines. Orient. J. Chem., 2017, 33(2), 707.
[http://dx.doi.org/10.13005/ojc/330217]
[44]
Abuelizz, H.A.; Hassane, A.E.; Marzouk, M.; Ezzeldin, E.; Ali, A.A.; Al-Salahi, R. Molecular modeling, enzyme activity, anti-inflammatory and antiarthritic activities of newly synthesized quinazoline derivatives. Future Med. Chem., 2017, 9(17), 1995-2009.
[http://dx.doi.org/10.4155/fmc-2017-0157] [PMID: 28789563]
[45]
Milner, D.A., Jr Malaria Pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), a025569.
[http://dx.doi.org/10.1101/cshperspect.a025569] [PMID: 28533315]
[47]
Ajima, U.; Onah, J.O.; Wannang, N.N. Synthesis and antiplasmodial evaluation of a ciprofloxacin-dihydroartemisinin conjugate. J. Appl. Pharm. Sci., 2019, 9(10), 61-67.
[http://dx.doi.org/10.7324/JAPS.2019.91008]
[48]
Bouchut, A.; Rotili, D.; Pierrot, C.; Valente, S.; Lafitte, S.; Schultz, J.; Hoglund, U.; Mazzone, R.; Lucidi, A.; Fabrizi, G.; Pechalrieu, D.; Arimondo, P.B.; Skinner-Adams, T.S.; Chua, M.J.; Andrews, K.T.; Mai, A.; Khalife, J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur. J. Med. Chem., 2019, 161, 277-291.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.041] [PMID: 30366254]
[49]
Gilson, P.R.; Tan, C.; Jarman, K.E.; Lowes, K.N.; Curtis, J.M.; Nguyen, W.; Di Rago, A.E.; Bullen, H.E.; Prinz, B.; Duffy, S.; Baell, J.B.; Hutton, C.A.; Jousset Subroux, H.; Crabb, B.S.; Avery, V.M.; Cowman, A.F.; Sleebs, B.E. Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J. Med. Chem., 2017, 60(3), 1171-1188.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01673] [PMID: 28080063]
[50]
Guillon, J.; Cohen, A.; Boudot, C.; Valle, A.; Milano, V.; Das, R.N.; Guédin, A.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Demourgues, M.; Reviriego, E.; Rubio, S.; Ferriez, S.; Agnamey, P.; Pauc, C.; Moukha, S.; Dozolme, P.; Nascimento, S.D.; Laumaillé, P.; Bouchut, A.; Azas, N.; Mergny, J.L.; Mullié, C.; Sonnet, P.; Courtioux, B. Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 432-459.
[http://dx.doi.org/10.1080/14756366.2019.1706502] [PMID: 31899980]
[51]
Amrane, D.; Gellis, A.; Hutter, S.; Prieri, M.; Verhaeghe, P.; Azas, N.; Vanelle, P.; Primas, N. Synthesis and antiplasmodial evaluation of 4-Carboxamido- and 4-Alkoxy-2-Trichloromethyl quinazolines. Molecules, 2020, 25(17), 3929.
[http://dx.doi.org/10.3390/molecules25173929] [PMID: 32867402]
[52]
Patel, T.S.; Vanparia, S.F.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Novel 2,3-disubstituted quinazoline-4(3H)-one molecules derived from amino acid linked sulphonamide as a potent malarial antifolates for DHFR inhibition. Eur. J. Med. Chem., 2017, 129, 251-265.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.012] [PMID: 28231522]
[53]
Birhan, Y.S.; Bekhit, A.A.; Hymete, A. In vivo antimalarial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives. BMC Res. Notes, 2015, 8(1), 589.
[http://dx.doi.org/10.1186/s13104-015-1578-x] [PMID: 26486987]
[54]
Gemma, S.; Camodeca, C.; Brindisi, M.; Brogi, S.; Kukreja, G.; Kunjir, S.; Gabellieri, E.; Lucantoni, L.; Habluetzel, A.; Taramelli, D.; Basilico, N.; Gualdani, R.; Tadini-Buoninsegni, F.; Bartolommei, G.; Moncelli, M.R.; Martin, R.E.; Summers, R.L.; Lamponi, S.; Savini, L.; Fiorini, I.; Valoti, M.; Novellino, E.; Campiani, G.; Butini, S. Mimicking the intramolecular hydrogen bond: Synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents. J. Med. Chem., 2012, 55(23), 10387-10404.
[http://dx.doi.org/10.1021/jm300831b] [PMID: 23145816]
[55]
Fröhlich, T.; Reiter, C.; Ibrahim, M.M.; Beutel, J.; Hutterer, C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Efferth, T.; Marschall, M.; Tsogoeva, S.B. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against Plasmodium falciparum, human cytomegalovirus, and leukemia cells. ACS Omega, 2017, 2(6), 2422-2431.
[http://dx.doi.org/10.1021/acsomega.7b00310] [PMID: 30023664]
[56]
Rojas-Aguirre, Y.; Hernández-Luis, F.; Mendoza-Martínez, C.; Sotomayor, C.P.; Aguilar, L.F.; Villena, F.; Castillo, I.; Hernández, D.J.; Suwalsky, M. Effects of an antimalarial quinazoline derivative on human erythrocytes and on cell membrane molecular models. Biochim. Biophys. Acta, 2012, 1818(3), 738-746.
[http://dx.doi.org/10.1016/j.bbamem.2011.11.026] [PMID: 22155684]
[57]
Kabri, Y.; Azas, N.; Dumètre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Original quinazoline derivatives displaying antiplasmodial properties. Eur. J. Med. Chem., 2010, 45(2), 616-622.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.005] [PMID: 19926173]
[58]
Mishra, M.; Mishra, V.K.; Senger, P.; Pathak, A.K.; Kashaw, S.K. Exploring QSAR studies on 4-substituted quinazoline derivatives as antimalarial compounds for the development of predictive models. Med. Chem. Res., 2014, 23(3), 1397-1405.
[http://dx.doi.org/10.1007/s00044-013-0744-8]
[59]
Harding, E. WHO global progress report on tuberculosis elimination. Lancet Respir. Med., 2020, 8(1), 19.
[http://dx.doi.org/10.1016/S2213-2600(19)30418-7] [PMID: 31706931]
[60]
Zumla, A.; George, A.; Sharma, V.; Herbert, R.H.N.; Oxley, A.; Oliver, M. The WHO 2014 global tuberculosis report--further to go. Lancet Glob. Health, 2015, 3(1), e10-e12.
[http://dx.doi.org/10.1016/S2214-109X(14)70361-4] [PMID: 25539957]
[61]
Dutta, A.; Sarma, D. Recent advances in the synthesis of quinazoline analogues as Anti-TB agents. Tuberculosis (Edinb.), 2020, 124, 101986.
[http://dx.doi.org/10.1016/j.tube.2020.101986] [PMID: 32942187]
[62]
Srivastav, M.K.; Shantakumar, S.M. Design and synthesis of novel 2-trichloromethyl-4-substituted quinazoline derivatives as anti-tubercular agents. Chem. Sci. Trans., 2013, 2(3), 1056-1062.
[63]
Anand, R.V.; Narasimhan, B.; Chandran, R.V.P.; Jayaveera, K.N. 7-Chloro-3-(substituted benzylidene/phenyl ethylidene amino)-2-phenylquinazolin-4 (3 H)-Ones: Synthesis, antimicrobial and antitubercular evaluation. Med. Chem. Res., 2012, 21(10), 2831-2836.
[http://dx.doi.org/10.1007/s00044-011-9813-z]
[64]
Babu, R.R.; Naresh, K.; Ravi, A.; Reddy, B.M.; Babu, V.H. Synthesis of novel isoniazid incorporated styryl quinazolinones as anti-tubercular agents against INH sensitive and MDR M. tuberculosis strains. Med. Chem. Res., 2014, 23(10), 4414-4419.
[http://dx.doi.org/10.1007/s00044-014-1020-2]
[65]
Pandit, U.; Dodiya, A. Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogs. Med. Chem. Res., 2013, 22(7), 3364-3371.
[http://dx.doi.org/10.1007/s00044-012-0351-0]
[66]
Lu, W.; Baig, I.A.; Sun, H-J.; Cui, C-J.; Guo, R.; Jung, I-P.; Wang, D.; Dong, M.; Yoon, M-Y.; Wang, J-G. Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Eur. J. Med. Chem., 2015, 94, 298-305.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.014] [PMID: 25771108]
[67]
Kessler, R.C. The costs of depression. Psychiatr. Clin. North Am., 2012, 35(1), 1-14.
[http://dx.doi.org/10.1016/j.psc.2011.11.005] [PMID: 22370487]
[68]
Richards, D. Prevalence and clinical course of depression: A review. Clin. Psychol. Rev., 2011, 31(7), 1117-1125.
[http://dx.doi.org/10.1016/j.cpr.2011.07.004] [PMID: 21820991]
[69]
Ibrahim, A.K.; Kelly, S.J.; Adams, C.E.; Glazebrook, C. A systematic review of studies of depression prevalence in university students. J. Psychiatr. Res., 2013, 47(3), 391-400.
[http://dx.doi.org/10.1016/j.jpsychires.2012.11.015] [PMID: 23260171]
[71]
Wang, H.J.; Wei, C.X.; Deng, X.Q.; Li, F.L.; Quan, Z.S. Synthesis and evaluation on anticonvulsant and antidepressant activities of 5-Alkoxy-tetrazolo[1,5-a]quinazolines. Arch. Pharm. (Weinheim), 2009, 342(11), 671-675.
[http://dx.doi.org/10.1002/ardp.200900119] [PMID: 19856330]
[72]
Tyurenkov, I.N.; Ozerov, A.A.; Solodunova, E.A.; Archakova, Y.V.; Shmatova, E.N.; Sampieva, K.T. Synthesis and anxiosedative and antidepressant properties of α-[4-Oxoquinazolin-3 (4H)-Yl] carboxylic acid anilides. Pharm. Chem. J., 2013, 47(5), 239-242.
[http://dx.doi.org/10.1007/s11094-013-0936-z]
[73]
Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Amer, A.; Abdel-Rahman, H.M.; El-Faham, A. Synthesis and evaluation of quinazoline amino acid derivatives as mono amine oxidase (MAO) inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3574-3585.
[http://dx.doi.org/10.1016/j.bmc.2015.04.021] [PMID: 25922182]
[74]
Srivastav, M.K.; Shamshuddin, M.; Shantakumar, S. Design, synthesis and characterization of novel 6, 7-Dimethoxy-N 2-(Substituted Benzyl)-N 2-Propylquinazoline-2, 4-Diamine derivatives as anxiolytic and antidepressant agents. Am. J. Chem., 2013, 3(1), 14-22.
[75]
Joshi, N.; Goyal, A. Antidepressant activity of some novel 1, 2, 4 triazole substituted quinazoline derivatives. Int. J. Pharm. Chem. Anal., 2016, 3(3), 162-167.
[76]
Joshi, N.; Goyal, A. Synthesis and anti-depressant activity of 2-Aminothiazoles substituted quinazoline derivatives. Int. J. Pharm. Res., 2016, 8(4), 1-5.
[77]
Bilous, R.; Donnelly, R.; Idris, I. Handbook of Diabetes; John Wiley & Sons: Hoboken, New Jersey, USA, 2021.
[http://dx.doi.org/10.1002/9781118976074]
[78]
WHO. Diabetes. Available at: https://www.who.int/health-topics/diabetes
[79]
Ali, Z.; Akhtar, M.J.; Haider, M.R.; Khan, A.A.; Siddiqui, A.A.; Yar, M.S. Design and synthesis of quinazoline-3,4-(4H)-diamine endowed with thiazoline moiety as new class for DPP-4 and DPPH inhibitor. Bioorg. Chem., 2017, 71, 181-191.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.004] [PMID: 28215601]
[80]
Wei, M.; Chai, W-M.; Wang, R.; Yang, Q.; Deng, Z.; Peng, Y. Quinazolinone derivatives: Synthesis and comparison of inhibitory mechanisms on α-glucosidase. Bioorg. Med. Chem., 2017, 25(4), 1303-1308.
[http://dx.doi.org/10.1016/j.bmc.2016.09.042] [PMID: 28110817]
[81]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[82]
Mittapelli, V.; Padala, S.R. Synthesis and anti-diabetic activity of some 3-Methylquinazolin-4 (3H)-One derivatives. Int. J. Chemtech Res., 2014, 6(14), 5647-5652.
[83]
WHO. Hypertension. Available at: https://www.who.int/health-topics/hypertension
[84]
Laurent, S. Antihypertensive drugs. Pharmacol. Res., 2017, 124, 116-125.
[http://dx.doi.org/10.1016/j.phrs.2017.07.026] [PMID: 28780421]
[85]
Patel, H.U.; Patel, R.S.; Patel, C.N. Synthesis and antihypertensive activity of some quinazoline derivatives. J. Appl. Pharm. Sci., 2013, 3(3), 171.
[86]
Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Shahar Yar, M. Synthesis and antihypertensive screening of new derivatives of quinazolines linked with isoxazole. BioMed Res. Int., 2014, 2014, 739056.
[http://dx.doi.org/10.1155/2014/739056]
[87]
Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 733-743.
[http://dx.doi.org/10.3109/14756366.2013.845820] [PMID: 24156743]
[88]
Al-Salahi, R.; El-Tahir, K-E.; Alswaidan, I.; Lolak, N.; Hamidaddin, M.; Marzouk, M. Biological effects of a new set 1,2,4-triazolo[1,5-a]quinazolines on heart rate and blood pressure. Chem. Cent. J., 2014, 8(1), 3.
[http://dx.doi.org/10.1186/1752-153X-8-3] [PMID: 24428932]
[89]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[90]
Nicola, A.M.; Albuquerque, P.; Paes, H.C.; Fernandes, L.; Costa, F.F.; Kioshima, E.S.; Abadio, A.K.R.; Bocca, A.L.; Felipe, M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther., 2019, 195, 21-38.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.008] [PMID: 30347212]
[91]
Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg. Med. Chem., 2014, 22(13), 3405-3413.
[http://dx.doi.org/10.1016/j.bmc.2014.04.042] [PMID: 24856180]
[92]
Liu, F.; Huang, Y. Antifungal bioactivity of 6-Bromo-4-Ethoxyethylthio quinazoline. Pestic. Biochem. Physiol., 2011, 101(3), 248-255.
[http://dx.doi.org/10.1016/j.pestbp.2011.10.002]
[93]
Noureldin, N.A.; Kothayer, H.; Lashine, E.M.; Baraka, M.M.; Huang, Y.; Li, B.; Ji, Q. Design, synthesis and biological evaluation of novel quinazoline-2,4-diones conjugated with different amino acids as potential chitin synthase inhibitors. Eur. J. Med. Chem., 2018, 152, 560-569.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.001] [PMID: 29763805]
[94]
Ryu, C-K.; Kim, Y.H. Im, H.A.; Kim, J.Y.; Yoon, J.H.; Kim, A. Synthesis and antifungal activity of 6,7-bis(arylthio)-quinazoline-5,8-diones and furo[2,3-f]quinazolin-5-ols. Bioorg. Med. Chem. Lett., 2012, 22(1), 500-503.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.099] [PMID: 22113112]
[95]
Ganguli, S.; Panigrahi, M.K.; Singh, P.; Shukla, P.K. One-Pot synthesis of novel quinazoline derivatives and their antimicrobial activity. Int. J. Pharm. Pharm. Sci., 2012, 4(4), 434-440.
[96]
Krishnan, S.K.; Ganguly, S.; Veerasamy, R.; Vijayapandi, P. Synthesis, antiviral and antimicrobial activities of quinazoline urea analogues. Int J. Drug Des. Discov., 2013, 4(4), 1215-1230.
[97]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem., 2012, 53, 275-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.010] [PMID: 22546200]
[98]
Kang, D.; Zhang, H.; Zhou, Z.; Huang, B.; Naesens, L.; Zhan, P.; Liu, X. First discovery of novel 3-hydroxy-quinazoline-2,4(1H,3H)-diones as specific anti-vaccinia and adenovirus agents via ‘privileged scaffold’ refining approach. Bioorg. Med. Chem. Lett., 2016, 26(21), 5182-5186.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.071] [PMID: 27742238]
[99]
Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem., 2010, 45(11), 5474-5479.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.058] [PMID: 20724039]
[100]
Wang, M.; Zhang, G.; Wang, Y.; Wang, J.; Zhu, M.; Cen, S.; Wang, Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg. Med. Chem. Lett., 2020, 30(11), 127143.
[http://dx.doi.org/10.1016/j.bmcl.2020.127143] [PMID: 32273213]
[101]
Wang, X.; Yan, J.; Wang, M.; Liu, M.; Zhang, J.; Chen, L.; Xue, W. Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol. Divers., 2018, 22(4), 791-802.
[http://dx.doi.org/10.1007/s11030-018-9837-0] [PMID: 29808346]
[102]
Xiao, H.; Li, P.; Hu, D.; Song, B-A. Synthesis and anti-TMV activity of novel β-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett., 2014, 24(15), 3452-3454.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.073] [PMID: 24934508]
[103]
Xie, D.; Shi, J.; Zhang, A.; Lei, Z.; Zu, G.; Fu, Y.; Gan, X.; Yin, L.; Song, B.; Hu, D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg. Chem., 2018, 80, 433-443.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.026] [PMID: 29986188]
[104]
Zhang, G.; Pan, J.; Zhang, J.; Wu, Z.; Liu, D.; Zhao, L. Design, synthesis, antiviral activities of novel phosphonate derivatives containing quinazoline based on chalone motif. J. Heterocycl. Chem., 2017, 54(4), 2548-2555.
[http://dx.doi.org/10.1002/jhet.2849]
[105]
Zhang, G.; Wang, M.; Zhao, J.; Wang, Y.; Zhu, M.; Wang, J.; Cen, S.; Wang, Y. Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4. Eur. J. Med. Chem., 2020, 206, 112706.
[http://dx.doi.org/10.1016/j.ejmech.2020.112706] [PMID: 32805550]
[106]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Res. Pharm., 2015, 1(1), 1-21.https://updatepublishing.com/journal/index.php/rip/article/view/204

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy