Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Reducing Proteoglycan Synthesis and NOX Activity by ROCK Inhibitors: Therapeutic Targets in Atherosclerosis

Author(s): Hossein Babaahmadi-Rezaei, Maryam Rezaei, Hossein Ghaderi-Zefrehi, Masoumeh Azizi, Hasti Beheshti-Nasab and Jawahar Lal Mehta*

Volume 22, Issue 12, 2022

Published on: 05 September, 2022

Page: [1191 - 1200] Pages: 10

DOI: 10.2174/1871530322666220606090801

Price: $65

Abstract

Atherosclerosis is a chronic inflammatory disease of the arteries characterized by the accumulation of inflammatory cells in the arterial wall. Hypertension, dyslipidemia, and hyperglycemia are major risk factors of atherosclerosis. Rho-associated protein kinase (ROCK), a serine/threonine kinase, is a downstream effector of the small GTPase RhoA. ROCK is involved in different stages of atherosclerosis. Accumulating evidence has demonstrated that ROCK signaling plays vital roles in various cellular functions, such as contraction, migration, and proliferation of smooth muscle cells. Dysregulation of the ROCK pathway is associated with atherosclerosis and hypertension. Experimental studies have shown that ROCK inhibitors may have favorable effects in ameliorating atherosclerosis. ROCK signaling has a role in proteoglycan synthesis through transactivation of the TGF-β receptor Type I (TβRI) mediated by G-protein-coupled receptor (GPCR) agonists (endothelin-1, angiotensin II and …), and ROCK inhibitors could decrease proteoglycan synthesis and atherosclerotic plaque formation. Based on the hypothesis that targeting ROCK pathway may be effective in ameliorating atherosclerosis, we suggest that ROCK inhibitors may have a potential therapeutic role in inhibition or slowing atherogenesis. However, for this hypothesis more research is needed.

Keywords: Rock, nadph oxidase, atherosclerosis, proteoglycan, transactivation, endothelin-1.

Graphical Abstract

[1]
Libby, P.; Loscalzo, J.; Ridker, P.M.; Farkouh, M.E.; Hsue, P.Y.; Fuster, V.; Hasan, A.A.; Amar, S. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J. Am. Coll. Cardiol., 2018, 72(17), 2071-2081.
[http://dx.doi.org/10.1016/j.jacc.2018.08.1043] [PMID: 30336831]
[2]
Legein, B.; Temmerman, L.; Biessen, E.A.; Lutgens, E. Inflammation and immune system interactions in atherosclerosis. Cell. Mol. Life Sci., 2013, 70(20), 3847-3869.
[http://dx.doi.org/10.1007/s00018-013-1289-1] [PMID: 23430000]
[3]
Williams, K.J.; Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol., 1995, 15(5), 551-561.
[http://dx.doi.org/10.1161/01.ATV.15.5.551] [PMID: 7749869]
[4]
Williams, K.J.; Tabas, I. The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol., 1998, 9(5), 471-474.
[http://dx.doi.org/10.1097/00041433-199810000-00012] [PMID: 9812202]
[5]
Burch, M.L.; Ballinger, M.L.; Yang, S.N.Y.; Getachew, R.; Itman, C.; Loveland, K.; Osman, N.; Little, P.J. Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by protease-activated receptor-1 transactivation of the transforming growth factor beta type I receptor. J. Biol. Chem., 2010, 285(35), 26798-26805.
[http://dx.doi.org/10.1074/jbc.M109.092767] [PMID: 20571025]
[6]
Kamato, D.; Ta, H.; Afroz, R.; Xu, S.; Osman, N.; Little, P.J. Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. J. Cell Commun. Signal., 2019, 13(4), 539-548.
[http://dx.doi.org/10.1007/s12079-019-00527-5] [PMID: 31290007]
[7]
Kamato, D.; Thach, L.; Getachew, R.; Burch, M.; Hollenberg, M.D.; Zheng, W.; Little, P.J.; Osman, N. Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cell. Signal., 2016, 28(1), 110-119.
[http://dx.doi.org/10.1016/j.cellsig.2015.11.003] [PMID: 26548632]
[8]
Burch, M.L.; Getachew, R.; Osman, N.; Febbraio, M.A.; Little, P.J. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells. J. Biol. Chem., 2013, 288(10), 7410-7419.
[http://dx.doi.org/10.1074/jbc.M112.400259] [PMID: 23335513]
[9]
Seif, F.; Little, P.J.; Niayesh-Mehr, R.; Zamanpour, M.; Babaahmadi-Rezaei, H. Endothelin-1 increases CHSY-1 expression in aortic endothelial cells via transactivation of transforming growth factor β type I receptor induced by type B receptor endothelin-1. J. Pharm. Pharmacol., 2019, 71(6), 988-995.
[http://dx.doi.org/10.1111/jphp.13081] [PMID: 30809816]
[10]
Julian, L.; Olson, M.F. Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions. Small GTPases, 2014, 5(2), e29846.
[http://dx.doi.org/10.4161/sgtp.29846] [PMID: 25010901]
[11]
Shimokawa, H.; Sunamura, S.; Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res., 2016, 118(2), 352-366.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306532] [PMID: 26838319]
[12]
Surma, M.; Wei, L.; Shi, J. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol., 2011, 7(5), 657-671.
[http://dx.doi.org/10.2217/fca.11.51] [PMID: 21929346]
[13]
Rikitake, Y.; Liao, J.K. ROCKs as therapeutic targets in cardiovascular diseases. Expert Rev. Cardiovasc. Ther., 2005, 3(3), 441-451.
[http://dx.doi.org/10.1586/14779072.3.3.441] [PMID: 15889972]
[14]
Mallat, Z.; Gojova, A.; Sauzeau, V.; Brun, V.; Silvestre, J.S.; Esposito, B.; Merval, R.; Groux, H.; Loirand, G.; Tedgui, A. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ. Res., 2003, 93(9), 884-888.
[http://dx.doi.org/10.1161/01.RES.0000099062.55042.9A] [PMID: 14525807]
[15]
Shimokawa, H.; Morishige, K.; Miyata, K.; Kandabashi, T.; Eto, Y.; Ikegaki, I.; Asano, T.; Kaibuchi, K.; Takeshita, A. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc. Res., 2001, 51(1), 169-177.
[http://dx.doi.org/10.1016/S0008-6363(01)00291-7] [PMID: 11399259]
[16]
van der Vorst, E.P.C.; Peters, L.J.F.; Müller, M.; Gencer, S.; Yan, Y.; Weber, C.; Döring, Y. G-Protein coupled receptor targeting on myeloid cells in atherosclerosis. Front. Pharmacol., 2019, 10, 531.
[http://dx.doi.org/10.3389/fphar.2019.00531] [PMID: 31191301]
[17]
Fogelstrand, P.; Borén, J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr. Metab. Cardiovasc. Dis., 2012, 22(1), 1-7.
[http://dx.doi.org/10.1016/j.numecd.2011.09.007] [PMID: 22176921]
[18]
Ny Yang, S.; Osman, N.; Burch, M.; Little, P. Factors affecting proteoglycan synthesis and structure that modify the interaction with lipoproteins. Clin. Lipidol., 2009, 4(4), 479-494.
[http://dx.doi.org/10.2217/clp.09.37]
[19]
Kamato, D.; Rostam, M.A.; Bernard, R.; Piva, T.J.; Mantri, N.; Guidone, D.; Zheng, W.; Osman, N.; Little, P.J. The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell. Mol. Life Sci., 2015, 72(4), 799-808.
[http://dx.doi.org/10.1007/s00018-014-1775-0] [PMID: 25384733]
[20]
Mohamed, R.; Janke, R.; Guo, W.; Cao, Y.; Zhou, Y.; Zheng, W. GPCR transactivation signalling in vascular smooth muscle cells: Role of NADPH oxidases and reactive oxygen species. Vascul. Biol. (Bristol, England), 2019, 1(1), R1-R11.
[http://dx.doi.org/10.1530/VB-18-0004]
[21]
Valdivia, A.; Duran, C.; San Martin, A. The role of Nox-mediated oxidation in the regulation of cytoskeletal dynamics. Curr. Pharm. Des., 2015, 21(41), 6009-6022.
[http://dx.doi.org/10.2174/1381612821666151029112624] [PMID: 26510432]
[22]
Hartmann, S.; Ridley, A.J.; Lutz, S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front. Pharmacol., 2015, 6, 276.
[http://dx.doi.org/10.3389/fphar.2015.00276] [PMID: 26635606]
[23]
Kawano, Y.; Fukata, Y.; Oshiro, N.; Amano, M.; Nakamura, T.; Ito, M.; Matsumura, F.; Inagaki, M.; Kaibuchi, K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol., 1999, 147(5), 1023-1038.
[http://dx.doi.org/10.1083/jcb.147.5.1023] [PMID: 10579722]
[24]
Amano, M.; Nakayama, M.; Kaibuchi, K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 2010, 67(9), 545-554.
[http://dx.doi.org/10.1002/cm.20472] [PMID: 20803696]
[25]
Chuang, H.H.; Yang, C.H.; Tsay, Y.G.; Hsu, C.Y.; Tseng, L.M.; Chang, Z.F.; Lee, H.H. ROCKII Ser1366 phosphorylation reflects the activation status. Biochem. J., 2012, 443(1), 145-151.
[http://dx.doi.org/10.1042/BJ20111839] [PMID: 22273145]
[26]
Ito, M.; Nakano, T.; Erdodi, F.; Hartshorne, D.J. Myosin phosphatase: Structure, regulation and function. Mol. Cell. Biochem., 2004, 259(1-2), 197-209.
[http://dx.doi.org/10.1023/B:MCBI.0000021373.14288.00] [PMID: 15124925]
[27]
Chin, V.T.; Nagrial, A.M.; Chou, A.; Biankin, A.V.; Gill, A.J.; Timpson, P.; Pajic, M. Rho-associated kinase signalling and the cancer microenvironment: Novel biological implications and therapeutic opportunities. Expert Rev. Mol. Med., 2015, 17, e17.
[http://dx.doi.org/10.1017/erm.2015.17] [PMID: 26507949]
[28]
Surks, H.K.; Riddick, N.; Ohtani, K. M-RIP targets myosin phosphatase to stress fibers to regulate myosin light chain phosphorylation in vascular smooth muscle cells. J. Biol. Chem., 2005, 280(52), 42543-42551.
[http://dx.doi.org/10.1074/jbc.M506863200] [PMID: 16257966]
[29]
Dzau, V.J. Atherosclerosis and hypertension: Mechanisms and interrelationships. J. Cardiovasc. Pharmacol., 1990, 15(Suppl. 5), S59-S64.
[http://dx.doi.org/10.1097/00005344-199000005-00009] [PMID: 1694933]
[30]
Wirth, A. Rho kinase and hypertension. Biochim. Biophys. Acta, 2010, 1802(12), 1276-1284.
[http://dx.doi.org/10.1016/j.bbadis.2010.05.002] [PMID: 20460153]
[31]
Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res., 2018, 114(4), 529-539.
[http://dx.doi.org/10.1093/cvr/cvy023] [PMID: 29394331]
[32]
Nakanishi, R.; Baskaran, L.; Gransar, H.; Budoff, M.J.; Achenbach, S.; Al-Mallah, M. Relationship of hypertension to coronary atherosclerosis and cardiac events in patients with coronary computed tomographic angiography. Hypertension (Dallas, Tex : 1979), 2017, 70(2), 293-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09402]
[33]
Ramachandran, C.; Patil, R.V.; Combrink, K.; Sharif, N.A.; Srinivas, S.P. Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork cells. Mol. Vis., 2011, 17, 1877-1890.
[PMID: 21850162]
[34]
Mukai, Y.; Shimokawa, H.; Matoba, T.; Kandabashi, T.; Satoh, S.; Hiroki, J.; Kaibuchi, K.; Takeshita, A. Involvement of Rho-kinase in hypertensive vascular disease: A novel therapeutic target in hypertension. FASEB J., 2001, 15(6), 1062-1064.
[PMID: 11292668]
[35]
Uehata, M.; Ishizaki, T.; Satoh, H.; Ono, T.; Kawahara, T.; Morishita, T.; Tamakawa, H.; Yamagami, K.; Inui, J.; Maekawa, M.; Narumiya, S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 1997, 389(6654), 990-994.
[http://dx.doi.org/10.1038/40187] [PMID: 9353125]
[36]
Amano, M.; Ito, M.; Kimura, K.; Fukata, Y.; Chihara, K.; Nakano, T.; Matsuura, Y.; Kaibuchi, K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem., 1996, 271(34), 20246-20249.
[http://dx.doi.org/10.1074/jbc.271.34.20246] [PMID: 8702756]
[37]
Jahani, V.; Kavousi, A.; Mehri, S.; Karimi, G. Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed. Pharmacother., 2018, 106, 1024-30.
[http://dx.doi.org/10.1016/j.biopha.2018.07.060]
[38]
Liao, J.K.; Seto, M.; Noma, K. Rho kinase (ROCK) inhibitors. J. Cardiovasc. Pharmacol., 2007, 50(1), 17-24.
[http://dx.doi.org/10.1097/FJC.0b013e318070d1bd] [PMID: 17666911]
[39]
Rikitake, Y.; Kim, H.H.; Huang, Z.; Seto, M.; Yano, K.; Asano, T.; Moskowitz, M.A.; Liao, J.K. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke, 2005, 36(10), 2251-2257.
[http://dx.doi.org/10.1161/01.STR.0000181077.84981.11] [PMID: 16141422]
[40]
Chen, H.; Ikeda, U.; Shimpo, M.; Ikeda, M.; Minota, S.; Shimada, K. Fluvastatin upregulates inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells. Hypertension (Dallas, Tex : 1979), 2000, 36(6), 923-8.
[http://dx.doi.org/10.1161/01.HYP.36.6.923]
[41]
Abdali, N.T.; Yaseen, A.H.; Said, E.; Ibrahim, T.M. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(4), 409-422.
[http://dx.doi.org/10.1007/s00210-017-1343-x] [PMID: 28101628]
[42]
Liu, Y.; Huang, C.; Ceng, C.; Zhan, H.; Zheng, D.; Han, W. Metformin enhances nitric oxide production and diminishes Rho kinase activity in rats with hyperlipidemia. Lipids Health Dis., 2014, 13(1), 115.
[http://dx.doi.org/10.1186/1476-511X-13-115] [PMID: 25028180]
[43]
Morikage, N.; Kishi, H.; Sato, M.; Guo, F.; Shirao, S.; Yano, T.; Soma, M.; Hamano, K.; Esato, K.; Kobayashi, S. Cholesterol primes vascular smooth muscle to induce Ca2 sensitization mediated by a sphingosylphosphorylcholine-Rho-kinase pathway: Possible role for membrane raft. Circ. Res., 2006, 99(3), 299-306.
[http://dx.doi.org/10.1161/01.RES.0000235877.33682.e9] [PMID: 16825579]
[44]
Somlyo, A.V. New roads leading to Ca2+ sensitization. Circ. Res., 2002, 91(2), 83-84.
[45]
Gien, J.; Tseng, N.; Seedorf, G.; Roe, G.; Abman, S.H. Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr. Res., 2013, 73(3), 252-262.
[http://dx.doi.org/10.1038/pr.2012.177] [PMID: 23202724]
[46]
Fukumoto, Y.; Matoba, T.; Ito, A.; Tanaka, H.; Kishi, T.; Hayashidani, S.; Abe, K.; Takeshita, A.; Shimokawa, H. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart, 2005, 91(3), 391-392.
[http://dx.doi.org/10.1136/hrt.2003.029470] [PMID: 15710736]
[47]
Ying, H.; Biroc, S.L.; Li, W.W.; Alicke, B.; Xuan, J-A.; Pagila, R.; Ohashi, Y.; Okada, T.; Kamata, Y.; Dinter, H. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol. Cancer Ther., 2006, 5(9), 2158-2164.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0440] [PMID: 16985048]
[48]
Satoh, S.; Utsunomiya, T.; Tsurui, K.; Kobayashi, T.; Ikegaki, I.; Sasaki, Y.; Asano, T. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci., 2001, 69(12), 1441-1453.
[http://dx.doi.org/10.1016/S0024-3205(01)01229-2] [PMID: 11531167]
[49]
Tanna, A.P.; Johnson, M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology, 2018, 125(11), 1741-1756.
[http://dx.doi.org/10.1016/j.ophtha.2018.04.040] [PMID: 30007591]
[50]
Doe, C.; Bentley, R.; Behm, D.J.; Lafferty, R.; Stavenger, R.; Jung, D.; Bamford, M.; Panchal, T.; Grygielko, E.; Wright, L.L.; Smith, G.K.; Chen, Z.; Webb, C.; Khandekar, S.; Yi, T.; Kirkpatrick, R.; Dul, E.; Jolivette, L.; Marino, J.P., Jr; Willette, R.; Lee, D.; Hu, E. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J. Pharmacol. Exp. Ther., 2007, 320(1), 89-98.
[http://dx.doi.org/10.1124/jpet.106.110635] [PMID: 17018693]
[51]
Oh, K.-S.; Oh, B.K.; Park, C.H.; Seo, H.W.; Kang, N.S.; Lee, J.H.; Lee, J.S.; Ho Lee, B. Cardiovascular effects of a novel selective Rho kinase inhibitor, 2-(1H-indazole-5-yl)amino-4-methoxy-6-piperazino triazine (DW1865). Eur. J. Pharmacol., 2013, 702(1-3), 218-226.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.027] [PMID: 23376156]
[52]
Diep, D.T.V.; Duong, K.H.M.; Choi, H.; Jun, H-S.; Chun, K-H. KD025 (SLx-2119) suppresses adipogenesis at intermediate stage in human adipose-derived stem cells. Adipocyte, 2019, 8(1), 114-124.
[http://dx.doi.org/10.1080/21623945.2019.1590929] [PMID: 30860936]
[53]
Yarrow, J.C.; Totsukawa, G.; Charras, G.T.; Mitchison, T.J. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol., 2005, 12(3), 385-395.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.015] [PMID: 15797222]
[54]
Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem., 2007, 40(9-10), 575-584.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.03.016] [PMID: 17467679]
[55]
Wang, C-Y.; Liu, P-Y.; Liao, J.K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends Mol. Med., 2008, 14(1), 37-44.
[http://dx.doi.org/10.1016/j.molmed.2007.11.004] [PMID: 18068482]
[56]
Lin, C-W.; Sherman, B.; Moore, L.A.; Laethem, C.L.; Lu, D-W.; Pattabiraman, P.P.; Rao, P.V.; deLong, M.A.; Kopczynski, C.C. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J. Ocul. Pharmacol. Ther., 2018, 34(1-2), 40-51.
[http://dx.doi.org/10.1089/jop.2017.0023] [PMID: 28609185]
[57]
Inoue, T.; Tanihara, H. Ripasudil hydrochloride hydrate: Targeting Rho kinase in the treatment of glaucoma. Expert Opin. Pharmacother., 2017, 18(15), 1669-1673.
[http://dx.doi.org/10.1080/14656566.2017.1378344] [PMID: 28893104]
[58]
Van de Velde, S.; Van Bergen, T.; Vandewalle, E.; Kindt, N.; Castermans, K.; Moons, L.; Stalmans, I. Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery. Prog. Brain Res., 2015, 220, 283-297.
[http://dx.doi.org/10.1016/bs.pbr.2015.04.014] [PMID: 26497796]
[59]
Sijnave, D.; Hollanders, K.; Van Bergen, T.; Van de Velde, S.; Vandewalle, E.; Moons, L. The effect of local ROCK-inhibition on corneal scarring after alkali burn injury. Invest. Ophthalmol. Vis. Sci., 2013, 54(15), 5225.
[60]
Patel, R.A.; Forinash, K.D.; Pireddu, R.; Sun, Y.; Sun, N.; Martin, M.P.; Schönbrunn, E.; Lawrence, N.J.; Sebti, S.M. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res., 2012, 72(19), 5025-5034.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0954] [PMID: 22846914]
[61]
Dang, Y.; Wang, C.; Shah, P.; Waxman, S.; Loewen, R.T.; Loewen, N.A. RKI-1447, a Rho kinase inhibitor, causes ocular hypotension, actin stress fiber disruption, and increased phagocytosis. Graefes Arch. Clin. Exp. Ophthalmol., 2019, 257(1), 101-109.
[http://dx.doi.org/10.1007/s00417-018-4175-6] [PMID: 30456419]
[62]
Wang, J.; Jiang, W. The effects of RKI-1447 in a mouse model of nonalcoholic fatty liver disease induced by a high-fat diet and in HepG2 human hepatocellular carcinoma cells treated with oleic acid. Med. Sci. Monit., 2020, 26, e919220-e919221.
[http://dx.doi.org/10.12659/MSM.919220] [PMID: 32026851]
[63]
Hollanders, K.; Hove, I.V.; Sergeys, J.; Bergen, T.V.; Lefevere, E.; Kindt, N.; Castermans, K.; Vandewalle, E.; van Pelt, J.; Moons, L.; Stalmans, I. AMA0428, a potent rock inhibitor, attenuates early and late experimental diabetic retinopathy. Curr. Eye Res., 2017, 42(2), 260-272.
[http://dx.doi.org/10.1080/02713683.2016.1183030] [PMID: 27399806]
[64]
Hollanders, K.; Van Bergen, T.; Kindt, N.; Castermans, K.; Leysen, D.; Vandewalle, E.; Moons, L.; Stalmans, I. The effect of AMA0428, a novel and potent ROCK inhibitor, in a model of neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2015, 56(2), 1335-1348.
[http://dx.doi.org/10.1167/iovs.14-15681] [PMID: 25626969]
[65]
Wang, J.; Liu, X.-H.; Yang, Z.-J.; Xie, B.; Zhong, Y.-S. The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC Cancer, 2014, 14(1), 89.
[http://dx.doi.org/10.1186/1471-2407-14-89] [PMID: 24528629]
[66]
Williams, R.D.; Novack, G.D.; van Haarlem, T.; Kopczynski, C. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am. J. Ophthalmol., 2011, 152(5), 834-41.
[67]
Skaat, A.; Jasien, J.V.; Ritch, R. Efficacy of topically administered rho-kinase inhibitor AR-12286 in patients with exfoliation syndrome and ocular hypertension or glaucoma. J. Glaucoma, 2016, 25(9), e807-e814.
[http://dx.doi.org/10.1097/IJG.0000000000000508] [PMID: 27552517]
[68]
Mandell, K.J.; Kudelka, M.R.; Wirostko, B. Rho kinase inhibitors for treatment of glaucoma. Expert Rev. Ophthalmol., 2011, 6(6), 611-622.
[http://dx.doi.org/10.1586/eop.11.65] [PMID: 30613208]
[69]
Kengatharan, M.; Wirostko, B.M.; Umeno, H.; Hsu, H.H. Pharmaceutical profile of a novel rho kinase (rock) inhibitor ats907 for reduction of IOP in glaucoma. Invest. Ophthalmol. Vis. Sci., 2011, 52(14), 3106.
[70]
Cholkar, K.; Trinh, H.M.; Pal, D.; Mitra, A.K. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin. Drug Discov., 2015, 10(3), 293-313.
[http://dx.doi.org/10.1517/17460441.2015.1000857] [PMID: 25575654]
[71]
Löhn, M; Plettenburg, O; Ivashchenko, Y; Kannt, A; Hofmeister, A; Kadereit, D Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension (Dallas, Tex : 1979), 2009, 54(3), 676-83.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.134353]
[72]
Dulak-Lis, M.; Bujak, A.; Gala, K.; Banach, M.; Kędzierska, U.; Miszkiel, J.; Hucz-Kalitowska, J.; Mroczkiewicz, M.; Stypik, B.; Szymczak, K.; Gunerka, P.; Dubiel, K.; Zygmunt, B.M.; Wieczorek, M.; Pieczykolan, J.S. A novel JAK/ROCK inhibitor, CPL409116, demonstrates potent efficacy in the mouse model of systemic lupus erythematosus. J. Pharmacol. Sci., 2021, 145(4), 340-348.
[http://dx.doi.org/10.1016/j.jphs.2021.02.002] [PMID: 33712286]
[73]
Townes-Anderson, E.; Halasz, E.; Sugino, I.; Zarbin, M.A. Inhibition of ROCK activity improves morphological and functional outcomes of reattached retina. Invest. Ophthalmol. Vis. Sci., 2019, 60(9), 2794.
[74]
Wang, S.K.; Chang, R.T. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin. Ophthalmol., 2014, 8, 883-890.
[PMID: 24872673]
[75]
Harrison, B.A.; Almstead, Z.Y.; Burgoon, H.; Gardyan, M.; Goodwin, N.C.; Healy, J.; Liu, Y.; Mabon, R.; Marinelli, B.; Samala, L.; Zhang, Y.; Stouch, T.R.; Whitlock, N.A.; Gopinathan, S.; McKnight, B.; Wang, S.; Patel, N.; Wilson, A.G.; Hamman, B.D.; Rice, D.S.; Rawlins, D.B. Discovery and development of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med. Chem. Lett., 2014, 6(1), 84-88.
[http://dx.doi.org/10.1021/ml500367g] [PMID: 25589936]
[76]
Kast, R.; Schirok, H.; Figueroa-Pérez, S.; Mittendorf, J.; Gnoth, M.J.; Apeler, H.; Lenz, J.; Franz, J.K.; Knorr, A.; Hütter, J.; Lobell, M.; Zimmermann, K.; Münter, K.; Augstein, K.H.; Ehmke, H.; Stasch, J.P. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Br. J. Pharmacol., 2007, 152(7), 1070-1080.
[http://dx.doi.org/10.1038/sj.bjp.0707484] [PMID: 17934515]
[77]
Phrommintikul, A.; Tran, L.; Kompa, A.; Wang, B.; Adrahtas, A.; Cantwell, D.; Kelly, D.J.; Krum, H. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(4), H1804-H1814.
[http://dx.doi.org/10.1152/ajpheart.01078.2007] [PMID: 18245565]
[78]
Van de Velde, S.; Van Bergen, T.; Sijnave, D.; Hollanders, K.; Castermans, K.; Defert, O.; Leysen, D.; Vandewalle, E.; Moons, L.; Stalmans, I. AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest. Ophthalmol. Vis. Sci., 2014, 55(2), 1006-1016.
[http://dx.doi.org/10.1167/iovs.13-13157] [PMID: 24474276]
[79]
Zhou, Q.; Liao, J.K. Rho kinase: An important mediator of atherosclerosis and vascular disease. Curr. Pharm. Des., 2009, 15(27), 3108-3115.
[http://dx.doi.org/10.2174/138161209789057986] [PMID: 19754385]
[80]
Zhao, J.; Zhou, D.; Guo, J.; Ren, Z.; Zhou, L.; Wang, S.; Xu, B.; Wang, R. Effect of fasudil hydrochloride, a protein kinase inhibitor, on cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage. Neurol. Med. Chir. (Tokyo), 2006, 46(9), 421-428.
[http://dx.doi.org/10.2176/nmc.46.421] [PMID: 16998274]
[81]
Shi, J.; Wei, L. Rho kinases in cardiovascular physiology and pathophysiology: The effect of fasudil. J. Cardiovasc. Pharmacol., 2013, 62(4), 341-354.
[http://dx.doi.org/10.1097/FJC.0b013e3182a3718f] [PMID: 23921309]
[82]
Wu, D-J.; Xu, J-Z.; Wu, Y-J.; Jean-Charles, L.; Xiao, B.; Gao, P-J.; Zhu, D.L. Effects of fasudil on early atherosclerotic plaque formation and established lesion progression in apolipoprotein E-knockout mice. Atherosclerosis, 2009, 207(1), 68-73.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.04.025] [PMID: 19473657]
[83]
Li, H.; Peng, W.; Jian, W.; Li, Y.; Li, Q.; Li, W.; Xu, Y. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc. Diabetol., 2012, 11(1), 65.
[http://dx.doi.org/10.1186/1475-2840-11-65] [PMID: 22694757]
[84]
Nohria, A.; Prsic, A.; Liu, P-Y.; Okamoto, R.; Creager, M.A.; Selwyn, A.; Liao, J.K.; Ganz, P. Statins inhibit Rho kinase activity in patients with atherosclerosis. Atherosclerosis, 2009, 205(2), 517-521.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.12.023] [PMID: 19167712]
[85]
Sawada, N.; Liao, J.K. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid. Redox Signal., 2014, 20(8), 1251-1267.
[http://dx.doi.org/10.1089/ars.2013.5524] [PMID: 23919640]
[86]
Margaritis, M.; Channon, K.M.; Antoniades, C. Statins as regulators of redox state in the vascular endothelium: Beyond lipid lowering. Antioxid. Redox Signal., 2014, 20(8), 1198-1215.
[http://dx.doi.org/10.1089/ars.2013.5430] [PMID: 24111702]
[87]
Liu, P-Y.; Liu, Y-W.; Lin, L-J.; Chen, J-H.; Liao, J.K. Evidence for statin pleiotropy in humans: Differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation, 2009, 119(1), 131-138.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.813311] [PMID: 19075102]
[88]
Ishizaki, T.; Uehata, M.; Tamechika, I.; Keel, J.; Nonomura, K.; Maekawa, M.; Narumiya, S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol., 2000, 57(5), 976-983.
[PMID: 10779382]
[89]
Rekhter, M.; Chandrasekhar, K.; Gifford-Moore, D.; Huang, X.D.; Rutherford, P.; Hanson, J.; Kauffman, R. Immunohistochemical analysis of target proteins of Rho-kinase in a mouse model of accelerated atherosclerosis. Exp. Clin. Cardiol., 2007, 12(4), 169-174.
[PMID: 18651000]
[90]
Yan, J.; Huang, C-C.; Lung, S.; Wang, W.; Suo, G.; Lin, Y.; Lai, C.H.; Lin, C.H. ROCK inhibitor Y-27632 attenuated early endothelial dysfunction caused by occupational environmental concentrations of carbon black nanoparticles. Environ. Sci. Nano, 2017, 4(7), 1525-1533.
[http://dx.doi.org/10.1039/C7EN00123A]
[91]
Zhou, Y.; Little, P.J.; Cao, Y.; Ta, H.T.; Kamato, D. Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(12), 118848.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118848] [PMID: 32920014]
[92]
Mehr, R.N.M.; Kheirollah, A.; Seif, F.; Dayati, P.; Babaahmadi-Rezaei, H. Reactive oxygen species and p38MAPK have a role in the Smad2 linker region phosphorylation induced by TGF-β. Iran. J. Med. Sci., 2018, 43(4), 401-408.
[PMID: 30046209]
[93]
Mohamed, R.; Dayati, P.; Mehr, R.N.; Kamato, D.; Seif, F.; Babaahmadi-Rezaei, H.; Little, P.J. Transforming growth factor-β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J. Cell Commun. Signal., 2019, 13(2), 225-233.
[http://dx.doi.org/10.1007/s12079-018-0495-x] [PMID: 30417274]
[94]
Guzik, T.J.; Sadowski, J.; Guzik, B.; Jopek, A.; Kapelak, B.; Przybylowski, P.; Wierzbicki, K.; Korbut, R.; Harrison, D.G.; Channon, K.M. Coronary artery superoxide production and NOx isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2006, 26(2), 333-339.
[http://dx.doi.org/10.1161/01.ATV.0000196651.64776.51] [PMID: 16293794]
[95]
Antonopoulos, A.S.; Margaritis, M.; Shirodaria, C.; Antoniades, C. Translating the effects of statins: From redox regulation to suppression of vascular wall inflammation. Thromb. Haemost., 2012, 108(5), 840-848.
[http://dx.doi.org/10.1160/TH12-05-0337] [PMID: 22872079]
[96]
Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Khotina, V.; Ivanova, E.A.; Orekhov, A.N. NADPH oxidases and their role in atherosclerosis. Biomedicines, 2020, 8(7), E206.
[http://dx.doi.org/10.3390/biomedicines8070206] [PMID: 32664404]
[97]
Bailey, S.R.; Mitra, S.; Flavahan, S.; Flavahan, N.A. Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(1), H243-H250.
[http://dx.doi.org/10.1152/ajpheart.01305.2004] [PMID: 15764673]
[98]
Jin, L.; Ying, Z.; Webb, R.C. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(4), H1495-H1500.
[http://dx.doi.org/10.1152/ajpheart.01006.2003] [PMID: 15371261]
[99]
Manickam, N.; Patel, M.; Griendling, K.K.; Gorin, Y.; Barnes, J.L. RhoA/Rho kinase mediates TGF-β1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am. J. Physiol. Renal Physiol., 2014, 307(2), F159-F171.
[http://dx.doi.org/10.1152/ajprenal.00546.2013] [PMID: 24872317]
[100]
Shimizu, Y.; Dobashi, K.; Sano, T.; Yamada, M. ROCK activation in lung of idiopathic pulmonary fibrosis with oxidative stress. Int. J. Immunopathol. Pharmacol., 2014, 27(1), 37-44.
[http://dx.doi.org/10.1177/039463201402700106] [PMID: 24674677]
[101]
Ma, Z.; Zhang, J.; Ji, E.; Cao, G.; Li, G.; Chu, L. Rho kinase inhibition by fasudil exerts antioxidant effects in hypercholesterolemic rats. Clin. Exp. Pharmacol. Physiol., 2011, 38(10), 688-694.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05561.x] [PMID: 21711379]
[102]
Profumo, E.; Buttari, B.; Saso, L.; Rigano, R. Pleiotropic effects of statins in atherosclerotic disease: Focus on the antioxidant activity of atorvastatin. Curr. Top. Med. Chem., 2014, 14(22), 2542-2551.
[http://dx.doi.org/10.2174/1568026614666141203130324] [PMID: 25478882]
[103]
Zhou, Q.; Liao, J.K. Statins and cardiovascular diseases: From cholesterol lowering to pleiotropy. Curr. Pharm. Des., 2009, 15(5), 467-478.
[http://dx.doi.org/10.2174/138161209787315684] [PMID: 19199975]
[104]
Margaritis, M.; Sanna, F.; Antoniades, C. Statins and oxidative stress in the cardiovascular system. Curr. Pharm. Des., 2017.
[PMID: 28950822]
[105]
Pignatelli, P.; Carnevale, R.; Cangemi, R.; Loffredo, L.; Sanguigni, V.; Stefanutti, C.; Basili, S.; Violi, F. Atorvastatin inhibits gp91phox circulating levels in patients with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2010, 30(2), 360-367.
[http://dx.doi.org/10.1161/ATVBAHA.109.198622] [PMID: 19965781]
[106]
Mitani, H.; Egashira, K.; Ohashi, N.; Yoshikawa, M.; Niwa, S.; Nonomura, K.; Nakashima, A.; Kimura, M. Preservation of endothelial function by the HMG-CoA reductase inhibitor fluvastatin through its lipid-lowering independent antioxidant properties in atherosclerotic rabbits. Pharmacology, 2003, 68(3), 121-130.
[http://dx.doi.org/10.1159/000070169] [PMID: 12784083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy