Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Piezoelectric Energy Harvesting at Circuit Resonance with Active Inductor (CRAI)

Author(s): Jitendra B. Zalke*, Sandeepkumar R. Pandey and Radhika T. Kavishwar

Volume 15, Issue 6, 2022

Published on: 29 August, 2022

Page: [455 - 464] Pages: 10

DOI: 10.2174/2352096515666220603163301

Price: $65

Abstract

Background: Most of the proposed interface circuits use bulky inductors to enhance the key performance parameter, i.e., power transfer efficiency. This sets constraints on designing power conditioning circuitry for constrained IoT applications.

Objective: To replace the bulky physical inductor with area-optimized components suitable for integrated circuit realization with reduced silicon footprint for constrained applications like Internet-of- Things (IoT).

Methods: This paper presents the implementation of Circuit Resonance with Active Inductor (CRAI) technique based interface circuit design to deliver the maximum power generated from the Piezoelectric Energy Harvesting (PEH) source to the load.

Results: Compared to the conventional FWBR technique, the proposed CRAI technique improves ≈2X power delivered to the load.

Conclusion: The proposed work presents an inductor-less interface circuit for PEH. An active inductor (gyrator) is used to induce ‘IP’ rejection at the PEH circuit resonant frequency to enhance the performance parameters. Since the proposed technique is based on active inductor, it can be easily fabricated in small Integrated Circuit (IC) packages, allowing integration with state-of-the-art constrained IoT applications. CRAI technique based on the rejection of ‘IP’ at the resonance using active inductor as first reported here. The proposed concept is non-adiabatic, but it could be used for constrained self-powered autonomous IoT applications and could be important in guiding the design of new interface circuits for PEH.

Keywords: Active inductor, Circuit Resonance, Energy Harvesting, Piezoelectric, Gyrator, Maximum power.

Graphical Abstract

[1]
P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, "Energy harvesting from human and machine motion for wireless electronic devices", Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, 2008.
[http://dx.doi.org/10.1109/JPROC.2008.927494]
[2]
M. Belleville, H. Fanet, P. Fiorini, P. Nicole, M.J.M. Pelgrom, C. Piguet, R. Hahn, C. Van Hoof, R. Vullers, M. Tartagni, and E. Cantatore, "Energy autonomous sensor systems: Towards a ubiquitous sensor technology", Microelectronics, vol. 41, no. 11, pp. 740-745, 2010.
[http://dx.doi.org/10.1016/j.mejo.2010.01.009]
[3]
N. Elvin, and A. Erturk, Advances in Energy Harvesting Methods., Springer: New York, NY, USA, 2013.
[http://dx.doi.org/10.1007/978-1-4614-5705-3]
[4]
H.S. Kim, J.H. Kim, and J. Kim, "A review of piezoelectric energy harvesting based on vibration", Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129-1141, 2011.
[http://dx.doi.org/10.1007/s12541-011-0151-3]
[5]
S. Roundy, P. Wright, and J. Rabaey, Energy Scavenging for Wireless Sensor Networks With Special Focus on Vibrations., Kluwer Academic: Boston, MA, 2003.
[6]
P. Mercorelli, and N. Werner, "An adaptive resonance regulator design for motion control of intake valves in camless engine systems", IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3413-3422, 2017.
[http://dx.doi.org/10.1109/TIE.2016.2606091]
[7]
P. Mercorelli, and N. Werner, "A hybrid actuator modeling and hysteresis effect identification in camless internal combustion engines control", Int. J. Model. Identif. Control, vol. 21, no. 3, pp. 253-263, 2014.
[8]
P. Mercorelli, and N. Werner, "Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines", Mech. Syst. Signal Process., vol. 78, pp. 55-70, 2016.
[http://dx.doi.org/10.1016/j.ymssp.2015.12.038]
[9]
P. Mercorelli, "A servo piezo mechanical hydraulic actuator and its control for camless internal combustion engines", Int. J. Model. Identif. Control, vol. 25, no. 3, pp. 227-238, 2016.
[10]
S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, and R.G. Polcawich, "A review on Piezoelectric energy harvesting: Materials, methods, and circuits", Energy Harvest. Syst., vol. 4, no. 1, pp. 3-39, 2019.
[http://dx.doi.org/10.1515/ehs-2016-0028]
[11]
N. Krihely, and S. Ben-Yaakov, "Self-Contained resonant rectifier for Piezoelectric sources under variable mechanical excitation", IEEE Trans. Power Electron., vol. 26, no. 2, pp. 612-621, 2011.
[http://dx.doi.org/10.1109/TPEL.2010.2050336]
[12]
M. Lallart, C. Richard, L. Garbuio, L. Petit, and D. Guyomar, "High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach", Sens. Actuators A Phys., vol. 165, no. 2, pp. 294-302, 2011.
[13]
G.D. Szarka, B.H. Stark, and S.G. Burrow, "Review of power conditioning for kinetic energy harvesting systems", IEEE Trans. Power Electron., vol. 27, no. 2, pp. 803-815, 2012.
[http://dx.doi.org/10.1109/TPEL.2011.2161675]
[14]
J. Brufau-Penella, and M. Puig-Vidal, "Piezoelectric energy harvesting improvement with complex conjugate impedance matching", J. Intell. Mater. Syst. Struct., vol. 20, no. 5, pp. 597-608, 2009.
[http://dx.doi.org/10.1177/1045389X08096051]
[15]
M. Lallart, L. Garbuio, L. Petit, C. Richard, and D. Guyomar, "Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 10, pp. 2119-2130, 2008.
[http://dx.doi.org/10.1109/TUFFC.912] [PMID: 18986861]
[16]
L. Garbuio, M. Lallart, D. Guyomar, C. Richard, and D. Audigier, "Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique", IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1048-1056, 2009.
[http://dx.doi.org/10.1109/TIE.2009.2014673]
[17]
Junrui Liang, and Wei-Hsin Liao, "Impedance matching for improving piezoelectric energy harvesting systems", Proc. SPIE 7643, Active and Passive Smart Structures and Integrated Systems, 2010.
[http://dx.doi.org/10.1117/12.847524]
[18]
J. Liang, and W.H. Liao, "Improved design and analysis of self-powered synchronized switch interface circuit for Piezoelectric energy harvesting systems", IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1950-1960, 2012.
[http://dx.doi.org/10.1109/TIE.2011.2167116]
[19]
Y. Kushino, and H. Koizumi, “Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor,” 2014 IEEE Energy Conversion Congress and Exposition., ECCE, 2014, pp. 2310-2315.
[http://dx.doi.org/10.1109/ECCE.2014.6953711]
[20]
S. Lu, and F. Boussaid, "A highly efficient P-SSHI rectifier for Piezoelectric energy harvesting", IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5364-5369, 2015.
[http://dx.doi.org/10.1109/TPEL.2015.2422717]
[21]
M. Dini, A. Romani, M. Filippi, and M. Tartagni, "A nanopower synchronous charge extractor IC for low-voltage Piezoelectric energy harvesting with residual charge inversion", IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1263-1274, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2417352]
[22]
H. Jabbar, H.J. Jung, N. Chen, D.H. Cho, and T.H. Sung, "Piezoelectric energy harvester impedance matching using a piezoelectric transformer", Sens. Actuators A Phys., vol. 264, pp. 141-150, 2017.
[http://dx.doi.org/10.1016/j.sna.2017.07.036]
[23]
F. Dell’Anna, T. Dong, P. Li, Y. Wen, Z. Yang, M.R. Casu, M. Azadmehr, and Y. Berg, "State-of-the-Art power management circuits for piezoelectric energy harvesters", IEEE Circuits Syst. Mag., vol. 18, no. 3, pp. 27-48, 2018.
[http://dx.doi.org/10.1109/MCAS.2018.2849262]
[24]
V.T. Rathod, "A review of electric impedance matching techniques for Piezoelectric sensors, actuators and transducers", Electronics (Basel), vol. 8, no. 2, p. 169, 2019.
[http://dx.doi.org/10.3390/electronics8020169]
[25]
Y.K. Ramadass, and A.P. Chandrakasan, "An efficient Piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor", IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 189-204, 2010.
[http://dx.doi.org/10.1109/JSSC.2009.2034442]
[26]
S. Pandey, J. Zalke, R. Nandanwar, and A. Verma, "Design and analysis of Piezoelectric energy harvesting circuit for rechargeable ultra - low weight lithium - ion batteries", J. Eng. Sci. Technol. Rev., vol. 11, no. 4, pp. 77-83, 2018.
[http://dx.doi.org/10.25103/jestr.114.10]
[27]
J.B. Zalke, S.R. Pandey, R.V. Nandanwar, A.S. Pande, and P.B. Nikam, "An inductorless piezoelectric energy harvesting interface circuit using gyrator induced voltage flip technique", In: Circuit World., 2021.
[http://dx.doi.org/10.1108/CW-08-2020-0188]
[28]
B.D.H. Tellegen, "The gyrator, a new electric network element", Philips Res. Rep, vol. 3, pp. 81-101, 2010.
[29]
D.F. Berndt, and S.C.D. Roy, "Inductor simulation using a single unity gain amplifier", IEEE J. Solid-State Circuits, vol. 4, no. 3, pp. 161-162, 1969.
[http://dx.doi.org/10.1109/JSSC.1969.1049979]
[30]
"Circuit design, Manufacture and development of electronics, DIY, electronicd for beginners, March 2021", https://habr.com/en/post/548160/
[31]
R. Senani, Bhaskar Data Ram, Singh, Vinod Kumar, Singh. Abdhesh Kumar, and R. Senani, Simulated inductors and related immittances: Realizations and applications”, IET digital library., Book, 2020.
[http://dx.doi.org/10.1049/PBCS048E]
[32]
N. Kong, D.S. Ha, A. Erturk, and D.J. Inman, "Resistive impedance matching circuit for Piezoelectric energy harvesting", J. Intell. Mater. Syst. Struct., vol. 21, no. 13, pp. 1293-1302, 2010.
[http://dx.doi.org/10.1177/1045389X09357971]
[33]
D.A. Sanchez, J. Leicht, E. Jodka, E. Fazel, and Y. Manoli, "21.2 A 4µW-to-1mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement", In 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 366-367
[http://dx.doi.org/10.1109/ISSCC.2016.7418059]
[34]
S. Li, A. Roy, and B.H. Calhoun, "A piezoelectric energy-harvesting system with Parallel-SSHI rectifier and integrated maximum-power-point tracking", IEEE Solid-State Circuits Lett., vol. 2, pp. 301-304, 2019.
[http://dx.doi.org/10.1109/LSSC.2019.2951394]
[35]
S. Chamanian, A. Muhtaroğlu, and H. Külah, "A self-adapting synchronized-switch interface circuit for piezoelectric energy harvesters", IEEE Trans. Power Electron., vol. 35, no. 1, pp. 901-912, 2020.
[http://dx.doi.org/10.1109/TPEL.2019.2910410]
[36]
B. Çiftci, S. Chamanian, A. Koyuncuoglu, A. Muhtaroglu, and H. Kulah, "A low-profile autonomous interface circuit for Piezoelectric micro-power generators", IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 4, pp. 1458-1471, 2021.
[http://dx.doi.org/10.1109/TCSI.2021.3053503]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy