Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Opinion Article

ORLNC1 Suppresses Cell Growth in HER2-Positive Breast Cancer via miRNA-296 Sponging

Author(s): Xueyuan Cheng, Zhong Huang, Anchao Pan and Di Long*

Volume 23, Issue 4, 2023

Published on: 20 August, 2022

Page: [289 - 299] Pages: 11

DOI: 10.2174/1566524022666220603113550

Price: $65

Abstract

Background: Accumulating research has demonstrated that aberrant levels of long noncoding RNAs (LncRNAs) are related to cancer progression. The effects of ORLNC1 in HER2+ breast cancer have yet to be explored.

Methods: Real-time PCR was used to examine the expression of LncRNA ORLNC1 in HER+ breast cancer. CCK-8, wound healing and cell invasion assays were used to examine the effect of LncRNA ORLNC1 on HER+ breast cancer cells. Luciferase reporter assay was utilized to determine the regulatory relationship between LncRNA ORLNC1 and miR-296. Western blotting was used to measure the expression of PTEN. Xenograft mouse model was used to examine the effect of LncRNA ORLNC1 on tumor progression in vivo.

Results: In this study, our findings revealed downregulation of ORLNC1 in HER2+ breast cancer specimens and cell lines. Low levels of ORLNC1 were related to poor prognosis and advanced cancer stage. Using gain- and loss-of-function assays, the ability of these tumor cells to proliferate was found to be inhibited by ORLNC1 in vitro and in vivo. Further analyses revealed that miR-296/PTEN axis is directly targeted by ORLNC1. Consequently, over-expression of miR-296 efficiently abrogated the upregulation of PTEN induced by ORLNC1, suggesting that ORLNC1 positively regulates PTEN expression by competitively binding to miR-296.

Conclusion: Our results indicate that lncRNA ORLNC1 acts as a tumor suppressor by regulating the miR-296/PTEN axis in HER2+ breast cancer.

Keywords: lncRNAs, ORLNC1, miR-296, PTEN, HER2+ breast cancer, RNAs

[1]
Bhattacharyya GS, Doval DC, Desai CJ, Chaturvedi H, Sharma S, Somashekhar SP. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: An indian perspective. JCO Glob Oncol 2020; 6(6): 789-98.
[http://dx.doi.org/10.1200/GO.20.00033] [PMID: 32511068]
[2]
Asif HM, Sultana S, Ahmed S, Akhtar N, Tariq M. HER-2 positive breast cancer - a mini-review. Asian Pac J Cancer Prev 2016; 17(4): 1609-15.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.1609] [PMID: 27221828]
[3]
Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 2019; 4(1): 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[4]
Costa RLB, Czerniecki BJ. Clinical development of immunotherapies for HER2+ breast cancer: A review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 2020; 6(1): 10.
[http://dx.doi.org/10.1038/s41523-020-0153-3] [PMID: 32195333]
[5]
Zhu X, Verma S. Targeted therapy in her2-positive metastatic breast cancer: A review of the literature. Curr Oncol 2015; 22(11) (Suppl. 1): S19-28.
[http://dx.doi.org/10.3747/co.22.2363] [PMID: 25848336]
[6]
Sussell JA, Sheinson D, Wu N, Shah-Manek B, Seetasith A. HER2-positive metastatic breast cancer: A retrospective cohort study of healthcare costs in the targeted-therapy age. Adv Ther 2020; 37(4): 1632-45.
[http://dx.doi.org/10.1007/s12325-020-01283-4] [PMID: 32172510]
[7]
Erickson AW, Ghodrati F, Habbous S, et al. HER2-targeted therapy prolongs survival in patients with HER2-positive breast cancer and intracranial metastatic disease: A systematic review and meta-analysis. Neurooncol Adv 2020; 2vdaa136
[http://dx.doi.org/10.1093/noajnl/vdaa136]
[8]
Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol 2017; 18(1): 206.
[http://dx.doi.org/10.1186/s13059-017-1348-2] [PMID: 29084573]
[9]
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[10]
Davalos V, Esteller M. Disruption of long noncoding RNAs targets cancer hallmark pathways in lung tumorigenesis. Cancer Res 2019; 79(12): 3028-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0910] [PMID: 31201165]
[11]
Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016; 29(4): 452-63.
[http://dx.doi.org/10.1016/j.ccell.2016.03.010] [PMID: 27070700]
[12]
Vishnubalaji R, Shaath H, Elkord E, Alajez NM. Long non-coding RNA (lncRNA) transcriptional landscape in breast cancer identifies LINC01614 as non-favorable prognostic biomarker regulated by TGFβ and Focal Adhesion Kinase (FAK) signaling. Cell Death Discov 2019; 5(1): 109.
[http://dx.doi.org/10.1038/s41420-019-0190-6] [PMID: 31263577]
[13]
Soudyab M, Iranpour M, Ghafouri-Fard S. The role of long non-coding RNAs in breast cancer. Arch Iran Med 2016; 19(7): 508-17.
[PMID: 27362246]
[14]
Rossbach M. Small non-coding RNAs as novel therapeutics. Curr Mol Med 2010; 10(4): 361-8.
[http://dx.doi.org/10.2174/156652410791317048] [PMID: 20455856]
[15]
Liu L, Zhang Y, Lu J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11(9): 749.
[http://dx.doi.org/10.1038/s41419-020-02954-4] [PMID: 32929060]
[16]
Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 2015; 6(13): 11652-63.
[http://dx.doi.org/10.18632/oncotarget.3457] [PMID: 25871474]
[17]
Yang L, Li Y, Gong R, et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 2019; 27(2): 394-410.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.019] [PMID: 30638773]
[18]
Zhang L, Li S, Li J, Li Y. LncRNA ORLNC1 promotes bone marrow mesenchyml stem cell pyroptosis induced by advanced glycation end production by targeting miR-200b-3p/Foxo3 pathway. Stem Cell Rev Rep 2021; 17(6): 2262-75.
[http://dx.doi.org/10.1007/s12015-021-10247-2] [PMID: 34482528]
[19]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[20]
Ji KB, Ling L, Zhang Q, et al. MicroRNA-296 mediated corneal neovascularization in an animal model of corneal burns after alkali exposures. Exp Ther Med 2018; 15(1): 139-44.
[PMID: 29399058]
[21]
Zhang F, Sang Y, Chen D, et al. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis 2021; 12(5): 467.
[http://dx.doi.org/10.1038/s41419-021-03700-0] [PMID: 33972506]
[22]
Cai F, Fu W, Tang L, et al. Hsa_circ_0000515 is a novel circular RNA implicated in the development of breast cancer through its regulation of the microRNA-296-5p/CXCL10 axis. FEBS J 2021; 288(3): 861-83.
[http://dx.doi.org/10.1111/febs.15373] [PMID: 32446265]
[23]
Fu R, Tong JS. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 2020; 24(13): 7600-8.
[http://dx.doi.org/10.1111/jcmm.15396] [PMID: 32410348]
[24]
Zhang Z, Tan X, Luo J, Yao H, Si Z, Tong JS. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis 2020; 11(10): 902.
[http://dx.doi.org/10.1038/s41419-020-03123-3] [PMID: 33097691]
[25]
Tong J, Zheng X, Tan X, et al. Mcl-1 phosphorylation without degradation mediates sensitivity to HDAC inhibitors by liberating BH3-only proteins. Cancer Res 2018; 78(16): 4704-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0399] [PMID: 29895675]
[26]
Song X, Shen L, Tong J, et al. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics 2020; 10(18): 8098-110.
[http://dx.doi.org/10.7150/thno.45363] [PMID: 32724460]
[27]
Huang X, Wang HL, Qi ST, et al. DYNLT3 is required for chromosome alignment during mouse oocyte meiotic maturation. Reprod Sci 2011; 18(10): 983-9.
[http://dx.doi.org/10.1177/1933719111401664] [PMID: 21693773]
[28]
Sun B, Liu C, Li H, et al. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2020; 19(1): 595-605.
[PMID: 31897175]
[29]
Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, Stathopoulos EN. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 2011; 10(3): 507-17.
[http://dx.doi.org/10.4161/cc.10.3.14754] [PMID: 21270527]
[30]
Dean-Colomb W, Esteva FJ. Her2-positive breast cancer: Herceptin and beyond. Eur J Cancer 2008; 44(18): 2806-12.
[http://dx.doi.org/10.1016/j.ejca.2008.09.013] [PMID: 19022660]
[31]
Campbell MR, Moasser MM. HER targeting in HER2-negative breast cancers: Looking for the HER3 positive. Clin Cancer Res 2015; 21(13): 2886-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3012] [PMID: 25609069]
[32]
Fink MY, Chipuk JE. Survival of HER2-positive breast cancer cells: Receptor signaling to apoptotic control centers. Genes Cancer 2013; 4(5-6): 187-95.
[http://dx.doi.org/10.1177/1947601913488598] [PMID: 24069506]
[33]
Hongisto V, Aure MR, Mäkelä R, Sahlberg KK. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells - A data description. Genom Data 2014; 2: 249-53.
[http://dx.doi.org/10.1016/j.gdata.2014.06.025] [PMID: 26484103]
[34]
Sahlberg KK, Hongisto V, Edgren H, et al. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells. Mol Oncol 2013; 7(3): 392-401.
[http://dx.doi.org/10.1016/j.molonc.2012.10.012] [PMID: 23253899]
[35]
Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int 2014; 2014852748
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[36]
Pernas S, Tolaney SM. HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol 2019; 111758835919833519
[http://dx.doi.org/10.1177/1758835919833519] [PMID: 30911337]
[37]
Vrbic S, Pejcic I, Filipovic S, Kocic B, Vrbic M. Current and future anti-HER2 therapy in breast cancer. J BUON 2013; 18(1): 4-16.
[PMID: 23613383]
[38]
Wilks ST. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast 2015; 24(5): 548-55.
[http://dx.doi.org/10.1016/j.breast.2015.06.002] [PMID: 26187798]
[39]
Elwy F, Helwa R, El Leithy AA. Shehab El din Z, Assem MM, Hassan NH. PIK3CA mutations in HER2-positive breast cancer patients; frequency and clinicopathological perspective in Egyptian patients. Asian Pac J Cancer Prev 2017; 18(1): 57-64.
[PMID: 28240010]
[40]
Goel S, Krop IE. PIK3CA mutations in HER2-positive breast cancer: An ongoing conundrum. Ann Oncol 2016; 27(8): 1368-72.
[http://dx.doi.org/10.1093/annonc/mdw246] [PMID: 27358378]
[41]
Carlevaro-Fita J, Lanzós A, Feuerbach L, et al. Cancer LncRNA census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 2020; 3(1): 56.
[http://dx.doi.org/10.1038/s42003-019-0741-7] [PMID: 32024996]
[42]
Cedro-Tanda A, Ríos-Romero M, Romero-Córdoba S, et al. A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype. Sci Rep 2020; 10(1): 13146.
[http://dx.doi.org/10.1038/s41598-020-69905-z] [PMID: 32753692]
[43]
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk between long non-coding RNAs, Micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol 2019; 9: 669.
[http://dx.doi.org/10.3389/fonc.2019.00669] [PMID: 31404273]
[44]
Jia W, Chen W, Kang J. The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 2013; 11(5): 275-83.
[http://dx.doi.org/10.1016/j.gpb.2013.09.004] [PMID: 24096129]
[45]
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat Rev Mol Cell Biol 2018; 19(9): 547-62.
[http://dx.doi.org/10.1038/s41580-018-0015-0] [PMID: 29858604]
[46]
Chen CY, Chen J, He L, Stiles BL. PTEN: Tumor suppressor and metabolic regulator. Front Endocrinol 2018; 9: 338.
[http://dx.doi.org/10.3389/fendo.2018.00338] [PMID: 30038596]
[47]
Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S. The tumor suppressor PTEN interacts with p53 in hereditary cancer. (Review) Int J Oncol 2014; 44(6): 1813-9.
[http://dx.doi.org/10.3892/ijo.2014.2377] [PMID: 24718924]
[48]
Ferraldeschi R, Nava Rodrigues D, Riisnaes R, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol 2015; 67(4): 795-802.
[http://dx.doi.org/10.1016/j.eururo.2014.10.027] [PMID: 25454616]
[49]
Georgescu MM. PTEN Tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 2010; 1(12): 1170-7.
[http://dx.doi.org/10.1177/1947601911407325] [PMID: 21779440]
[50]
Carnero A, Paramio JM. The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Front Oncol 2014; 4: 252.
[http://dx.doi.org/10.3389/fonc.2014.00252] [PMID: 25295225]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy