Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Unraveling the Structure-Dependent Inhibitory Effects of Ginsenoside Series Compounds on Human Cytochrome P450 1B1

Author(s): Tingting Zhao, Xiaodong Chen, Hong Yu, Jie Du, Dalong Wang, Changyuan Wang, Qiang Meng, Huijun Sun, Kexin Liu and Jingjing Wu*

Volume 23, Issue 7, 2022

Published on: 27 July, 2022

Page: [553 - 561] Pages: 9

DOI: 10.2174/1389200223666220601102629

Price: $65

Abstract

Background: Cytochrome P450 1B1(CYP1B1) is an extrahepatic P450 isoenzyme that can participate in processes of undermining the effectiveness and safety of anti-cancer therapy. Ginsenosides are the main active ingredients in ginseng, which possesses rich pharmacological activities, including anti-cancer activity and organ protection. However, the effect of ginsenosides on the activity of CYP1B1 remains unclear.

Objective: The present study aimed to investigate the inhibitory effect of ginsenosides on CYP1B1 and reveal the structure-inhibitory activity relationship.

Methods: Firstly, recombinant CYP1B1 and EROD reactions were used to evaluate the inhibitory effect of ginsenosides. Secondly, molecular docking was used to simulate the interactions between ginsenosides and CYP1B1. Finally, the structure-inhibitory activity relationship was analyzed.

Results: The ginsenosides, Rb2, Rd, and Rg3, significantly inhibited CYP1B1; the ginsenoside Rd showed the strongest inhibition effect, with a Ki value of 47.37 μM in non-competitive mode. Notably, ginsenoside Rd formed hydrogen bonds with two key amino acid residues of CYP1B1, and one bond was between the glycosyl in position 20 and ALA330, which also made ginsenoside Rd close to the heme iron of CYP1B1. In contrast, ginsenosides, Rb2 and Rg3, which showed weaker inhibition, interacted with only one CYP1B1 residue by the hydrogen bond, which was far away from the heme iron. Finally, the structure-inhibitory activity relationship analysis demonstrated that the number of glycosyls in position 20 and the type of sapogenins in the ginsenoside structure are the key factors determining inhibitory activity. Meanwhile, ALA330 was a vital amino acid in the potent inhibition of CYP1B1 by ginsenosides.

Conclusion: A structure-dependent inhibitory effect on CYP1B1 was revealed for ginsenosides, among which ginsenoside Rd showed the strongest inhibition due to its mono-glycosyl in position 20 of the ginsenoside parent structure. These findings would provide evidence for the synthesis of novel CYP1B1 inhibitors to augment the anti-cancer therapeutic effect.

Keywords: Ginsenosides, ginseng, CYP1B1, structure-inhibition relationship, cytochrome P450, drug-drug interaction.

Graphical Abstract

[1]
Harnack, L.J.; Rydell, S.A.; Stang, J. Prevalence of use of herbal products by adults in the Minneapolis/St Paul, Minn, metropolitan area. Mayo Clin. Proc., 2001, 76(7), 688-694.
[http://dx.doi.org/10.4065/76.7.688] [PMID: 11444400]
[2]
Chang, T.K.; Chen, J.; Benetton, S.A. In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos., 2002, 30(4), 378-384.
[http://dx.doi.org/10.1124/dmd.30.4.378] [PMID: 11901090]
[3]
Yu, J.S.; Roh, H.S.; Baek, K.H.; Lee, S.; Kim, S.; So, H.M.; Moon, E.; Pang, C.; Jang, T.S.; Kim, K.H. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J. Ginseng Res., 2018, 42(4), 562-570.
[http://dx.doi.org/10.1016/j.jgr.2018.02.004] [PMID: 30337817]
[4]
Wang, Y.; He, X.; Li, C.; Ma, Y.; Xue, W.; Hu, B.; Wang, J.; Zhang, T.; Zhang, F. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur. J. Med. Chem., 2020, 193, 112235.
[http://dx.doi.org/10.1016/j.ejmech.2020.112235] [PMID: 32203789]
[5]
Liu, W.K.; Xu, S.X.; Che, C.T. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci., 2000, 67(11), 1297-1306.
[http://dx.doi.org/10.1016/S0024-3205(00)00720-7] [PMID: 10972198]
[6]
Phi, L.T.H.; Sari, I.N.; Wijaya, Y.T.; Kim, K.S.; Park, K.; Cho, A.E.; Kwon, H.Y. Ginsenoside Rd inhibits the metastasis of colorectal cancer via epidermal growth factor receptor signaling axis. IUBMB Life, 2019, 71(5), 601-610.
[http://dx.doi.org/10.1002/iub.1984] [PMID: 30576064]
[7]
Zhang, Y.; Wang, Y.; Ma, Z.; Liang, Q.; Tang, X.; Tan, H.; Xiao, C.; Gao, Y. Ginsenoside Rb1 inhibits doxorubicin-triggered H9C2 cell apoptosis via Aryl Hydrocarbon receptor. Biomol. Ther. (Seoul), 2017, 25(2), 202-212.
[http://dx.doi.org/10.4062/biomolther.2016.066] [PMID: 27829271]
[8]
Hou, J.; Yun, Y.; Xue, J.; Jeon, B.; Kim, S. Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. Phytother. Res., 2020, 34(7), 1659-1669.
[http://dx.doi.org/10.1002/ptr.6636] [PMID: 32100342]
[9]
Dai, G.; Sun, B.; Gong, T.; Pan, Z.; Meng, Q.; Ju, W. Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling. Phytomedicine, 2019, 56, 126-135.
[http://dx.doi.org/10.1016/j.phymed.2018.10.025] [PMID: 30668333]
[10]
Wang, P.; Du, X.; Xiong, M.; Cui, J.; Yang, Q.; Wang, W.; Chen, Y.; Zhang, T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci. Rep., 2016, 6(1), 33709.
[http://dx.doi.org/10.1038/srep33709] [PMID: 27641158]
[11]
Zhang, E.; Shi, H.; Yang, L.; Wu, X.; Wang, Z. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. Oncol. Rep., 2017, 38(1), 359-367.
[http://dx.doi.org/10.3892/or.2017.5652] [PMID: 28534996]
[12]
Chian, S.; Zhao, Y.; Xu, M.; Yu, X.; Ke, X.; Gao, R.; Yin, L. Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway. Anticancer Drugs, 2019, 30(8), 838-845.
[http://dx.doi.org/10.1097/CAD.0000000000000781] [PMID: 31415285]
[13]
Liu, Y.; Fan, D. The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K. Nutrients, 2020, 12(1), E246.
[http://dx.doi.org/10.3390/nu12010246] [PMID: 31963684]
[14]
Hong, S.; Cai, W.; Huang, Z.; Wang, Y.; Mi, X.; Huang, Y.; Lin, Z.; Chen, X. Ginsenoside Rg3 enhances the anticancer effect of 5 FU in colon cancer cells via the PI3K/AKT pathway. Oncol. Rep., 2020, 44(4), 1333-1342.
[http://dx.doi.org/10.3892/or.2020.7728] [PMID: 32945504]
[15]
Zhou, B.; Xiao, X.; Xu, L.; Zhu, L.; Tan, L.; Tang, H.; Zhang, Y.; Xie, Q.; Yao, S. A dynamic study on reversal of multidrug resistance by ginsenoside Rh2 in adriamycin-resistant human breast cancer MCF-7 cells. Talanta, 2012, 88, 345-351.
[http://dx.doi.org/10.1016/j.talanta.2011.10.051] [PMID: 22265509]
[16]
Wang, X.; Chen, L.; Wang, T.; Jiang, X.; Zhang, H.; Li, P.; Lv, B.; Gao, X. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of AKT. Phytomedicine, 2015, 22(10), 875-884.
[http://dx.doi.org/10.1016/j.phymed.2015.06.010] [PMID: 26321736]
[17]
Xu, Z.M.; Li, C.B.; Liu, Q.L.; Li, P.; Yang, H. Ginsenoside Rg1 prevents doxorubicin-induced cardiotoxicity through the inhibition of autophagy and endoplasmic reticulum stress in Mice. Int. J. Mol. Sci., 2018, 19(11), E3658.
[http://dx.doi.org/10.3390/ijms19113658] [PMID: 30463294]
[18]
Wang, H.; Yu, P.; Gou, H.; Zhang, J.; Zhu, M.; Wang, Z.H.; Tian, J.W.; Jiang, Y.T.; Fu, F.H. Cardioprotective effects of 20(S)-ginsenoside Rh2 against Doxorubicin-Induced cardiotoxicity in vitro and in in vivo. Evid. Based Complement. Alternat. Med., 2012, 2012, 506214.
[http://dx.doi.org/10.1155/2012/506214] [PMID: 23125868]
[19]
Jenkins, C.M.; Cedars, A.; Gross, R.W. Eicosanoid signalling pathways in the heart. Cardiovasc. Res., 2009, 82(2), 240-249.
[http://dx.doi.org/10.1093/cvr/cvn346] [PMID: 19074824]
[20]
Cyrus, T.; Witztum, J.L.; Rader, D.J.; Tangirala, R.; Fazio, S.; Linton, M.F.; Funk, C.D. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest., 1999, 103(11), 1597-1604.
[http://dx.doi.org/10.1172/JCI5897] [PMID: 10359569]
[21]
Maayah, Z.H.; El-Kadi, A.O. 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch. Toxicol., 2016, 90(2), 359-373.
[http://dx.doi.org/10.1007/s00204-014-1419-z] [PMID: 25600587]
[22]
Maayah, Z.H.; El-Kadi, A.O. The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch. Toxicol., 2016, 90(1), 119-136.
[http://dx.doi.org/10.1007/s00204-015-1620-8] [PMID: 26525395]
[23]
Maayah, Z.H.; Abdelhamid, G.; El-Kadi, A.O. Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol. Toxicol., 2015, 31(4-5), 241-259.
[http://dx.doi.org/10.1007/s10565-015-9308-7] [PMID: 26493311]
[24]
Maayah, Z.H.; Althurwi, H.N.; Abdelhamid, G.; Lesyk, G.; Jurasz, P.; El-Kadi, A.O. CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacol. Res., 2016, 105, 28-43.
[http://dx.doi.org/10.1016/j.phrs.2015.12.016] [PMID: 26772815]
[25]
Althurwi, H.N.; Tse, M.M.; Abdelhamid, G.; Zordoky, B.N.; Hammock, B.D.; El-Kadi, A.O. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br. J. Pharmacol., 2013, 168(8), 1794-1807.
[http://dx.doi.org/10.1111/bph.12066] [PMID: 23176298]
[26]
Shiizaki, K.; Kawanishi, M.; Yagi, T. Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ., 2017, 39(1), 14.
[http://dx.doi.org/10.1186/s41021-017-0076-x] [PMID: 28405246]
[27]
D’Uva, G.; Baci, D.; Albini, A.; Noonan, D.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat. Rev., 2018, 63, 1-18.
[http://dx.doi.org/10.1016/j.ctrv.2017.10.013] [PMID: 29197745]
[28]
Nishida, C.R.; Everett, S.; Ortiz de Montellano, P.R. Specificity determinants of CYP1B1 estradiol hydroxylation. Mol. Pharmacol., 2013, 84(3), 451-458.
[http://dx.doi.org/10.1124/mol.113.087700] [PMID: 23821647]
[29]
Bolton, J.L.; Thatcher, G.R. Potential mechanisms of estrogen quinone carcinogenesis. Chem. Res. Toxicol., 2008, 21(1), 93-101.
[http://dx.doi.org/10.1021/tx700191p] [PMID: 18052105]
[30]
Tang, Y.; Scheef, E.A.; Wang, S.; Sorenson, C.M.; Marcus, C.B.; Jefcoate, C.R.; Sheibani, N. CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. Blood, 2009, 113(3), 744-754.
[http://dx.doi.org/10.1182/blood-2008-03-145219] [PMID: 19005183]
[31]
Lin, H.; Hu, B.; He, X.; Mao, J.; Wang, Y.; Wang, J.; Zhang, T.; Zheng, J.; Peng, Y.; Zhang, F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem. Pharmacol., 2020, 171, 113733.
[http://dx.doi.org/10.1016/j.bcp.2019.113733] [PMID: 31783010]
[32]
Zhu, Z.; Mu, Y.; Qi, C.; Wang, J.; Xi, G.; Guo, J.; Mi, R.; Zhao, F. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in in vivo and in vitro. Int. J. Mol. Med., 2015, 35(2), 340-348.
[http://dx.doi.org/10.3892/ijmm.2014.2041] [PMID: 25516145]
[33]
Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00265] [PMID: 25799264]
[34]
Sonawane, V.R.; Siddique, M.U.M.; Gatchie, L.; Williams, I.S.; Bharate, S.B.; Jayaprakash, V.; Sinha, B.N.; Chaudhuri, B. CYP enzymes, expressed within live human suspension cells, are superior to widely-used microsomal enzymes in identifying potent CYP1A1/CYP1B1 inhibitors: Identification of quinazolinones as CYP1A1/CYP1B1 inhibitors that efficiently reverse B[a]P toxicity and cisplatin resistance. Eur. J. Pharm. Sci., 2019, 131, 177-194.
[35]
Chen, P.; Wang, S.; Cao, C.; Ye, W.; Wang, M.; Zhou, C.; Chen, W.; Zhang, X.; Zhang, K.; Zhou, W. α-naphthoflavone-derived cytochrome P450 (CYP)1B1 degraders specific for sensitizing CYP1B1-mediated drug resistance to prostate cancer DU145: Structure activity relationship. Bioorg. Chem., 2021, 116, 105295.
[http://dx.doi.org/10.1016/j.bioorg.2021.105295] [PMID: 34455300]
[36]
Takemura, H.; Itoh, T.; Yamamoto, K.; Sakakibara, H.; Shimoi, K. Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorg. Med. Chem., 2010, 18(17), 6310-6315.
[http://dx.doi.org/10.1016/j.bmc.2010.07.020] [PMID: 20696580]
[37]
Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Spandidos, D.A. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg. Med. Chem., 2011, 19(9), 2842-2849.
[http://dx.doi.org/10.1016/j.bmc.2011.03.042] [PMID: 21482471]
[38]
Zhou, L.; Chen, W.; Cao, C.; Shi, Y.; Ye, W.; Hu, J.; Wang, L.; Zhou, W. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur. J. Med. Chem., 2020, 189, 112028.
[http://dx.doi.org/10.1016/j.ejmech.2019.112028] [PMID: 31945665]
[39]
Zhao, T.; Chen, Y.; Wang, D.; Wang, L.; Dong, P.; Zhao, S.; Wang, C.; Meng, Q.; Sun, H.; Liu, K.; Wu, J. Identifying the dominant contribution of human cytochrome P450 2J2 to the metabolism of rivaroxaban, an oral anticoagulant. Cardiovasc. Drugs Ther., 2021.
[PMID: 33411110]
[40]
Li, W.; Gu, C.; Zhang, H.; Awang, D.V.; Fitzloff, J.F.; Fong, H.H.; van Breemen, R.B. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal. Chem., 2000, 72(21), 5417-5422.
[http://dx.doi.org/10.1021/ac000650l] [PMID: 11080895]
[41]
Yang, L.; Zhang, C.; Chen, J.; Zhang, S.; Pan, G.; Xin, Y.; Lin, L.; You, Z. Shenmai injection suppresses multidrug resistance in MCF-7/ADR cells through the MAPK/NF-κB signalling pathway. Pharm. Biol., 2020, 58(1), 276-285.
[http://dx.doi.org/10.1080/13880209.2020.1742167] [PMID: 32251615]
[42]
Gu, B.; Wang, J.; Song, Y.; Wang, Q.; Wu, Q. The inhibitory effects of ginsenoside Rd on the human glioma U251 cells and its underlying mechanisms. J. Cell. Biochem., 2019, 120(3), 4444-4450.
[http://dx.doi.org/10.1002/jcb.27732] [PMID: 30260020]
[43]
Jin, L.; Xu, M.; Luo, X.H.; Zhu, X.F. Stephania tetrandra and ginseng-containing Chinese herbal formulation nsenl reverses cisplatin resistance in lung cancer xenografts. Am. J. Chin. Med., 2017, 45(2), 385-401.
[http://dx.doi.org/10.1142/S0192415X17500240] [PMID: 28231742]
[44]
Henderson, G.L.; Harkey, M.R.; Gershwin, M.E.; Hackman, R.M.; Stern, J.S.; Stresser, D.M. Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci., 1999, 65(15), PL209-PL214.
[http://dx.doi.org/10.1016/S0024-3205(99)00407-5] [PMID: 10574228]
[45]
He, N.; Edeki, T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am. J. Ther., 2004, 11(3), 206-212.
[http://dx.doi.org/10.1097/00045391-200405000-00009] [PMID: 15133536]
[46]
Liu, Y.; Zhang, J.W.; Li, W.; Ma, H.; Sun, J.; Deng, M.C.; Yang, L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol. Sci., 2006, 91(2), 356-364.
[http://dx.doi.org/10.1093/toxsci/kfj164] [PMID: 16547074]
[47]
Mohd Siddique, M.U.; McCann, G.J.; Sonawane, V.R.; Horley, N.; Gatchie, L.; Joshi, P.; Bharate, S.B.; Jayaprakash, V.; Sinha, B.N.; Chaudhuri, B. Quinazoline derivatives as selective CYP1B1 inhibitors. Eur. J. Med. Chem., 2017, 130, 320-327.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.032] [PMID: 28259840]
[48]
Zhang, N.; An, X.; Lang, P.; Wang, F.; Xie, Y. Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in in vivo and in vitro. Biomed. Pharmacother., 2019, 109, 1016-1023.
[49]
Xue, Y.; Fu, W.; Liu, Y.; Yu, P.; Sun, M.; Li, X.; Yu, X.; Sui, D. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J. Food Sci., 2020, 85(11), 4039-4049.
[http://dx.doi.org/10.1111/1750-3841.15505] [PMID: 33073372]
[50]
Zhao, Y.; Wang, Y.; Zhang, M.; Gao, Y.; Yan, Z. Protective effects of ginsenosides (20R)-Rg3 on H2 O2 -induced myocardial cell injury by activating Keap-1/Nrf2/HO-1 signaling pathway. Chem. Biodivers., 2021, 18(4), e2001007.
[http://dx.doi.org/10.1002/cbdv.202001007] [PMID: 33624427]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy