Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Targeting Glioma Cells with Nutraceuticals: Therapeutic Effects Based on Molecular Mechanisms, New Evidence and Perspectives

Author(s): Marziyeh Salami, Raziyeh Salami, Mohammad-Hossein Aarabi, Alireza Mafi, Seyedeh Sara Ghorbanhosseini, Rana Shafabakhsh and Zatollah Asemi*

Volume 23, Issue 11, 2023

Published on: 01 September, 2022

Page: [1167 - 1192] Pages: 26

DOI: 10.2174/1389557522666220531151137

Price: $65

Abstract

Gliomas are the most common malignant cancers of the brain that have unregulated proliferation and are known as highly invasive tumors. Hence, their relapse rate is high, and the prognosis is low. Despite remarkable advances in neuroimaging, neurosurgery, and radiation therapy, they, especially glioblastoma, are highly resistant to treatments, including radiotherapy, surgery, and temozolomide chemotherapy. The average survival rate for patients with malignant glioma is still less than two years. Accordingly, the search for new treatment options has recently become an urgent need. Today, a number of nutraceuticals have been considered because of their special role in inhibiting the angiogenic process, metastasis, and apoptosis, resulting in the inhibition of tumor growth, including glioma. Nutraceuticals can disrupt cancer cells by affecting different pathways. In fact, these compounds can reduce the growth of cancer cells, inhibit their proliferation and angiogenesis, as well as induce apoptosis in these cells and play an important role in various stages of treatment. One of the key targets of nutraceuticals may be to regulate cellular signaling pathways, such as PI3K/Akt/mTORC1, JAK/STAT, and GSK-3, or to exert their effects through other mechanisms, such as cytokine receptors and inflammatory pathways, reactive oxygen species, and miRNAs. This review refers to the results of recent studies and target molecules as well as signaling pathways affected by some nutraceuticals in glioma cells. These studies indicated that clinical trials are imminent and new approaches can be beneficial for patients.

Keywords: Glioma, nutraceutical, anti-cancer, inflammation, apoptosis, signaling pathway.

Graphical Abstract

[1]
Lin, J.; Bytnar, J.A.; Theeler, B.J.; McGlynn, K.A.; Shriver, C.D.; Zhu, K. Survival among patients with glioma in the US Military Health System: A comparison with patients in the Surveillance, Epidemiology, and End Results program. Cancer, 2020, 126(13), 3053-3060.
[http://dx.doi.org/10.1002/cncr.32884] [PMID: 32286688]
[2]
Goodenberger, M.L.; Jenkins, R.B. Genetics of adult glioma. Cancer Genet., 2012, 205(12), 613-621.
[http://dx.doi.org/10.1016/j.cancergen.2012.10.009] [PMID: 23238284]
[3]
Miguel-Hidalgo, J.J. Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front. Mol. Neurosci., 2018, 11, 78.
[http://dx.doi.org/10.3389/fnmol.2018.00078] [PMID: 29615864]
[4]
Jovčevska, I.; Kočevar, N.; Komel, R. Glioma and glioblastoma - how much do we (not) know? Mol. Clin. Oncol., 2013, 1(6), 935-941.
[http://dx.doi.org/10.3892/mco.2013.172] [PMID: 24649273]
[5]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. APJCP, 2017, 18(1), 3-9.
[PMID: 28239999]
[6]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[http://dx.doi.org/10.1093/neuonc/nos218] [PMID: 23095881]
[7]
Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol., 2021, 23(8), 1231-1251.
[http://dx.doi.org/10.1093/neuonc/noab106] [PMID: 34185076]
[8]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[9]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[10]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-oncol., 2017, 19(Suppl. 5), v1-v88.
[http://dx.doi.org/10.1093/neuonc/nox158] [PMID: 29117289]
[11]
Le, C.T.; Leenders, W.P.J.; Molenaar, R.J.; van Noorden, C.J.F. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr. Cancer, 2018, 70(3), 317-333.
[http://dx.doi.org/10.1080/01635581.2018.1446090] [PMID: 29570984]
[12]
Zhao, M.; van Straten, D.; Broekman, M.L.D.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics, 2020, 10(3), 1355-1372.
[http://dx.doi.org/10.7150/thno.38147] [PMID: 31938069]
[13]
Quezada, C.; Peigñan, L.; Segura, R.; Riquelme, F.; Melo, R.; Rojas Z, D.; Ayach, F.; San Martín, R.; Cárcamo, J.G. Study of resistance to chemotherapy mediated by ABC transporters in biopsies of glioblastoma multiforme. Rev. Med. Chil., 2011, 139(4), 415-424.
[http://dx.doi.org/10.4067/S0034-98872011000400001] [PMID: 21879178]
[14]
Griguer, C.E.; Oliva, C.R. Bioenergetics pathways and therapeutic resistance in gliomas: Emerging role of mitochondria. Curr. Pharm. Des., 2011, 17(23), 2421-2427.
[http://dx.doi.org/10.2174/138161211797249251] [PMID: 21827418]
[15]
Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy. Codon Publications: Brisbane (AU), 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch11]
[16]
Santini, A.; Tenore, G. C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci., 2017, 96, 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003]
[17]
Calvani, M.; Pasha, A.; Favre, C. nutraceutical boom in cancer: inside the labyrinth of reactive oxygen species. Int. J. Mol. Sci., 2020, 21(6), E1936.
[http://dx.doi.org/10.3390/ijms21061936] [PMID: 32178382]
[18]
DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol., 1995, 6(2), 59-61.
[http://dx.doi.org/10.1016/S0924-2244(00)88944-X]
[19]
Cusimano, A.; Balasus, D.; Azzolina, A.; Augello, G.; Emma, M.R.; Di Sano, C.; Gramignoli, R.; Strom, S.C.; McCubrey, J.A.; Montalto, G.; Cervello, M. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int. J. Oncol., 2017, 51(2), 533-544.
[http://dx.doi.org/10.3892/ijo.2017.4049] [PMID: 28656311]
[20]
Zhang, R.; Qiao, H.; Chen, S.; Chen, X.; Dou, K.; Wei, L.; Zhang, J. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS. Cancer Biol. Ther., 2016, 17(9), 925-934.
[http://dx.doi.org/10.1080/15384047.2016.1210728] [PMID: 27416292]
[21]
Vergara, D.; Simeone, P.; Toraldo, D.; Del Boccio, P.; Vergaro, V.; Leporatti, S.; Pieragostino, D.; Tinelli, A.; De Domenico, S.; Alberti, S.; Urbani, A.; Salzet, M.; Santino, A.; Maffia, M. Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol. Biosyst., 2012, 8(4), 1078-1087.
[http://dx.doi.org/10.1039/c2mb05486h] [PMID: 22234583]
[22]
McCubrey, J.A.; Abrams, S.L.; Lertpiriyapong, K.; Cocco, L.; Ratti, S.; Martelli, A.M.; Candido, S.; Libra, M.; Murata, R.M.; Rosalen, P.L.; Lombardi, P.; Montalto, G.; Cervello, M.; Gizak, A.; Rakus, D.; Steelman, L.S. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-power of nutraceuticals. Adv. Biol. Regul., 2018, 67, 190-211.
[http://dx.doi.org/10.1016/j.jbior.2017.09.012] [PMID: 28988970]
[23]
McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Cocco, L.; Ratti, S.; Martelli, A.M.; Candido, S.; Libra, M.; Montalto, G.; Cervello, M.; Gizak, A.; Rakus, D. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Adv. Biol. Regul., 2017, 65, 77-88.
[http://dx.doi.org/10.1016/j.jbior.2017.05.005] [PMID: 28579298]
[24]
Chen, H.; Jin, Z-L.; Xu, H. MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol. Asian Pac. J. Trop. Med., 2016, 9(1), 49-53.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.010] [PMID: 26851786]
[25]
Patiño-Morales, C.C.; Soto-Reyes, E.; Arechaga-Ocampo, E.; Ortiz-Sánchez, E.; Antonio-Véjar, V.; Pedraza-Chaverri, J.; García-Carrancá, A. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor-derived cell lines. Redox Biol., 2020, 28, 101320.
[http://dx.doi.org/10.1016/j.redox.2019.101320] [PMID: 31526948]
[26]
Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; D’Assoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650.
[http://dx.doi.org/10.18632/oncotarget.2209] [PMID: 25051360]
[27]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[28]
Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch. Biochem. Biophys., 2020, 689, 108412.
[http://dx.doi.org/10.1016/j.abb.2020.108412] [PMID: 32445778]
[29]
Afzal, S.; Garg, S.; Ishida, Y.; Terao, K.; Kaul, S.C.; Wadhwa, R. Rat glioma cell-based functional characterization of anti-stress and protein deaggregation activities in the marine carotenoids, astaxanthin and fucoxanthin. Mar. Drugs, 2019, 17(3), E189.
[http://dx.doi.org/10.3390/md17030189] [PMID: 30909572]
[30]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol impairs glioma stem cells proliferation and motility by modulating the WNT signaling pathway. PLoS One, 2017, 12(1), e0169854.
[http://dx.doi.org/10.1371/journal.pone.0169854] [PMID: 28081224]
[31]
Tsai, Y.-M.; Chien, C.-F.; Lin, L.-C.; Tsai, T.-H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[32]
Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M.K.; Nakamura, T.; Kato, Y.; Ito, M.; Miyamoto, K.; Tsuji, A.; Kawai, Y.; Terao, J. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med., 2011, 51(7), 1329-1336.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.017] [PMID: 21741473]
[33]
Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound Resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161.
[http://dx.doi.org/10.3390/biom10010161] [PMID: 31963897]
[34]
Shabaninejad, Z.; Pourhanifeh, M.H.; Movahedpour, A.; Mottaghi, R.; Nickdasti, A.; Mortezapour, E.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Sadeghian, M.; Mousavi, S.M.; Mirzaei, H. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur. J. Med. Chem., 2020, 188, 112040.
[http://dx.doi.org/10.1016/j.ejmech.2020.112040] [PMID: 31927312]
[35]
Chkheidze, R.; Raisanen, J.; Gagan, J.; Richardson, T.E.; Pinho, M.C.; Raj, K.; Achilleos, M.; Slepicka, C.; White, C.L.; Evers, B.M.; Patel, T.R.; Malter, J.S.; Hatanpaa, K.J. Alterations in the RB pathway with inactivation of RB1 characterize glioblastomas with a primitive neuronal component. J. Neuropathol. Exp. Neurol., 2021, 80(12), 1092-1098.
[http://dx.doi.org/10.1093/jnen/nlab109] [PMID: 34850045]
[36]
Baeza, N.; Weller, M.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. PTEN methylation and expression in glioblastomas. Acta Neuropathol., 2003, 106(5), 479-485.
[http://dx.doi.org/10.1007/s00401-003-0748-4] [PMID: 12904991]
[37]
Dunn, G.P.; Rinne, M.L.; Wykosky, J.; Genovese, G.; Quayle, S.N.; Dunn, I.F.; Agarwalla, P.K.; Chheda, M.G.; Campos, B.; Wang, A.; Brennan, C.; Ligon, K.L.; Furnari, F.; Cavenee, W.K.; Depinho, R.A.; Chin, L.; Hahn, W.C. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev., 2012, 26(8), 756-784.
[http://dx.doi.org/10.1101/gad.187922.112] [PMID: 22508724]
[38]
SongTao, Q.; Lei, Y.; Si, G.; YanQing, D.; HuiXia, H.; XueLin, Z.; LanXiao, W.; Fei, Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci., 2012, 103(2), 269-273.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02134.x] [PMID: 22034964]
[39]
Tu, Y.; Zhong, Y.; Fu, J.; Cao, Y.; Fu, G.; Tian, X.; Wang, B. Activation of JAK/STAT signal pathway predicts poor prognosis of patients with gliomas. Med. Oncol., 2011, 28(1), 15-23.
[http://dx.doi.org/10.1007/s12032-010-9435-1] [PMID: 20135364]
[40]
Lin, G-S.; Chen, Y-P.; Lin, Z-X.; Wang, X-F.; Zheng, Z-Q.; Chen, L. STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma. Int. J. Clin. Exp. Pathol., 2014, 7(6), 3141-3149.
[PMID: 25031733]
[41]
Piperi, C.; Papavassiliou, K.A.; Papavassiliou, A.G. Pivotal role of STAT3 in shaping glioblastoma immune microenvironment. Cells, 2019, 8(11), 1398.
[http://dx.doi.org/10.3390/cells8111398] [PMID: 31698775]
[42]
Luwor, R.B.; Stylli, S.S.; Kaye, A.H. The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci., 2013, 20(7), 907-911.
[http://dx.doi.org/10.1016/j.jocn.2013.03.006] [PMID: 23688441]
[43]
Puram, S.V.; Yeung, C.M.; Jahani-Asl, A.; Lin, C.; de la Iglesia, N.; Konopka, G.; Jackson-Grusby, L.; Bonni, A. STAT3-iNOS signaling mediates EGFRvIII-induced glial proliferation and transformation. J. Neurosci., 2012, 32(23), 7806-7818.
[http://dx.doi.org/10.1523/JNEUROSCI.3243-11.2012] [PMID: 22674257]
[44]
Gan, H.K.; Cvrljevic, A.N.; Johns, T.G. The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. FEBS J., 2013, 280(21), 5350-5370.
[http://dx.doi.org/10.1111/febs.12393] [PMID: 23777544]
[45]
Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450.
[http://dx.doi.org/10.18632/oncotarget.7961] [PMID: 26967052]
[46]
Nan, Y.; Guo, H.; Guo, L.; Wang, L.; Ren, B.; Yu, K.; Huang, Q.; Zhong, Y. MiRNA-451 inhibits Glioma cell proliferation and invasion through the mTOR/HIF-1α/VEGF signaling pathway by targeting CAB39. Hum. Gene Ther. Clin. Dev., 2018, 29(3), 156-166.
[http://dx.doi.org/10.1089/humc.2018.133] [PMID: 30180756]
[47]
Jiao, M.; Nan, K-J. Activation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma. Int. J. Oncol., 2012, 40(2), 461-468.
[PMID: 21922131]
[48]
Chen, J.; Bai, M.; Ning, C.; Xie, B.; Zhang, J.; Liao, H.; Xiong, J.; Tao, X.; Yan, D.; Xi, X.; Chen, X.; Yu, Y.; Bast, R.C.; Zhang, Z.; Feng, Y.; Zheng, W. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene, 2016, 35(19), 2506-2517.
[http://dx.doi.org/10.1038/onc.2015.316] [PMID: 26364616]
[49]
Lhomond, S.; Pallares, N.; Barroso, K.; Schmit, K.; Dejeans, N.; Fazli, H.; Taouji, S.; Patterson, J.B.; Chevet, E. Adaptation of the secretory pathway in cancer through IRE1 signaling. In: Stress Responses; Oslowski, C., Ed.; Humana Press: New York, NY, 2015; pp. 177-194.
[http://dx.doi.org/10.1007/978-1-4939-2522-3_13]
[50]
Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[51]
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Lek Listy, 2017, 118(2), 123-128.
[http://dx.doi.org/10.4149/BLL_2017_025] [PMID: 28814095]
[52]
Wu, H.; Chen, L.; Zhu, F.; Han, X.; Sun, L.; Chen, K. The cytotoxicity effect of resveratrol: cell cycle arrest and induced apoptosis of breast cancer 4T1 cells. Toxins (Basel), 2019, 11(12), E731.
[http://dx.doi.org/10.3390/toxins11120731] [PMID: 31847250]
[53]
Steed, K.L.; Jordan, H.R.; Tollefsbol, T.O. SAHA and EGCG promote apoptosis in triple-negative breast cancer cells, possibly through the modulation of cIAP2. Anticancer Res., 2020, 40(1), 9-26.
[http://dx.doi.org/10.21873/anticanres.13922] [PMID: 31892549]
[54]
Xiong, H.; Chen, Z.; Lin, B.; Xie, B.; Liu, X.; Chen, C.; Li, Z.; Jia, Y.; Wu, Z.; Yang, M.; Jia, Y.; Wang, L.; Zhou, J.; Meng, X. Naringenin regulates FKBP4/NR3C1/NRF2 axis in autophagy and proliferation of breast cancer and differentiation and maturation of dendritic cell. Front. Immunol., 2022, 12, 745111.
[http://dx.doi.org/10.3389/fimmu.2021.745111] [PMID: 35087512]
[55]
Chen, M.; Xiao, C.; Jiang, W.; Yang, W.; Qin, Q.; Tan, Q.; Lian, B.; Liang, Z.; Wei, C. Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-mediated NF-κB pathway. Drug Des. Devel. Ther., 2021, 15, 125-140.
[http://dx.doi.org/10.2147/DDDT.S269901] [PMID: 33469265]
[56]
He, Y.C.; He, L.; Khoshaba, R.; Lu, F.G.; Cai, C.; Zhou, F.L.; Liao, D.F.; Cao, D. Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism. Molecules, 2019, 24(22), E4179.
[http://dx.doi.org/10.3390/molecules24224179] [PMID: 31752145]
[57]
Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126.
[http://dx.doi.org/10.1016/j.phrs.2018.08.002] [PMID: 30081177]
[58]
Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory action of green tea. Antiinflamm. Antiallergy Agents Med. Chem., 2016, 15(2), 74-90.
[http://dx.doi.org/10.2174/1871523015666160915154443] [PMID: 27634207]
[59]
Deguchi, A. Curcumin targets in inflammation and cancer. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(2), 88-96.
[http://dx.doi.org/10.2174/1871530315666150316120458] [PMID: 25772169]
[60]
Lin, R.; Piao, M.; Song, Y.; Liu, C. Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice. J. Immunol. Res., 2020, 2020, 9242601.
[http://dx.doi.org/10.1155/2020/9242601] [PMID: 32537472]
[61]
Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455.
[http://dx.doi.org/10.1016/j.prp.2021.153455] [PMID: 33962176]
[62]
Calibasi-Kocal, G.; Pakdemirli, A.; Bayrak, S.; Ozupek, N. M.; Sever, T.; Basbinar, Y.; Ellidokuz, H.; Yigitbasi, T. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer. J. BUON, 2019, 24(4), 1482-1487.
[63]
Sudha, T.; El-Far, A.H.; Mousa, D.S.; Mousa, S.A. Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models. Molecules, 2020, 25(6), E1412.
[http://dx.doi.org/10.3390/molecules25061412] [PMID: 32244860]
[64]
Ma, Q.; Reiter, R.J.; Chen, Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 2020, 23(2), 91-104.
[http://dx.doi.org/10.1007/s10456-019-09689-7] [PMID: 31650428]
[65]
Rashidi, B.; Malekzadeh, M.; Goodarzi, M.; Masoudifar, A.; Mirzaei, H. Green tea and its anti-angiogenesis effects. Biomed. Pharmacother., 2017, 89, 949-956.
[http://dx.doi.org/10.1016/j.biopha.2017.01.161]
[66]
Friedman, J.R.; Richbart, S.D.; Merritt, J.C.; Brown, K.C.; Denning, K.L.; Tirona, M.T.; Valentovic, M.A.; Miles, S.L.; Dasgupta, P. Capsaicinoids: Multiple effects on angiogenesis, invasion and metastasis in human cancers. Biomed. Pharmacother., 2019, 118, 109317.
[67]
Cucciolla, V.; Borriello, A.; Oliva, A.; Galletti, P.; Zappia, V.; Della Ragione, F. Resveratrol: From basic science to the clinic. Cell Cycle, 2007, 6(20), 2495-2510.
[http://dx.doi.org/10.4161/cc.6.20.4815] [PMID: 17726376]
[68]
Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm. Res., 2010, 27(6), 1042-1048.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[69]
Yang, X.; Li, X.; Ren, J. From French Paradox to cancer treatment: Anti-Cancer activities and mechanisms of resveratrol. Anticancer. Agents Med. Chem., 2014, 14(6), 806-825.
[http://dx.doi.org/10.2174/1871520614666140521121722]
[70]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer Cell Int., 2019, 19(1), 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[71]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[72]
Ko, J-H.; Sethi, G.; Um, J-Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[73]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[74]
Wang, H.; Feng, H.; Zhang, Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis. Neoplasma, 2016, 63(4), 532-539.
[http://dx.doi.org/10.4149/neo_2016_406] [PMID: 27268916]
[75]
Yang, H.C.; Wang, J.Y.; Bu, X.Y.; Yang, B.; Wang, B.Q.; Hu, S.; Yan, Z.Y.; Gao, Y.S.; Han, S.Y.; Qu, M.Q. Resveratrol restores sensitivity of glioma cells to temozolamide through inhibiting the activation of Wnt signaling pathway. J. Cell. Physiol., 2019, 234(5), 6783-6800.
[http://dx.doi.org/10.1002/jcp.27409] [PMID: 30317578]
[76]
Sánchez-Melgar, A.; Muñoz-López, S.; Albasanz, JL.; Martín, M. antitumoral action of resveratrol through adenosinergic signaling in c6 glioma cells. Front. Neurosci., 2021, 15, 702817.
[http://dx.doi.org/10.3389/fnins.2021.702817] [http://dx.doi.org/10.3892/mmr.2020.11486] [PMID: 32901868]
[77]
Lin, C.-J.; Lee, C.-C.; Shih, Y.-L.; Lin, T.-Y.; Wang, S.-H.; Lin, Y.-F.; Shih, C.-M. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic. Biol. Med., 2012, 52(2), 377-391.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.487] [PMID: 22094224]
[78]
Wang, Q.; Xu, J.; Rottinghaus, G.E.; Simonyi, A.; Lubahn, D.; Sun, G.Y.; Sun, A.Y. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res., 2002, 958(2), 439-447.
[http://dx.doi.org/10.1016/S0006-8993(02)03543-6] [PMID: 12470882]
[79]
Tseng, S.H.; Lin, S.M.; Chen, J.C.; Su, Y.H.; Huang, H.Y.; Chen, C.K.; Lin, P.Y.; Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res., 2004, 10(6), 2190-2202.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0105] [PMID: 15041740]
[80]
Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int. J. Oncol., 2015, 46(4), 1739-1747.
[http://dx.doi.org/10.3892/ijo.2015.2863] [PMID: 25646654]
[81]
Park, J.; Lee, W.; Yun, S.; Kim, S.P.; Kim, K.H.; Kim, J.I.; Kim, S.K.; Wang, K.C.; Lee, J.Y. STAT3 is a key molecule in the oncogenic behavior of diffuse intrinsic pontine glioma. Oncol. Lett., 2020, 20(2), 1989-1998.
[http://dx.doi.org/10.3892/ol.2020.11699] [PMID: 32724445]
[82]
Womeldorff, M.; Gillespie, D.; Jensen, R.L. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg. Focus, 2014, 37(6), E8.
[http://dx.doi.org/10.3171/2014.9.FOCUS14496] [PMID: 25581937]
[83]
Suvà, M.L.; Tirosh, I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell, 2020, 37(5), 630-636.
[http://dx.doi.org/10.1016/j.ccell.2020.04.001] [PMID: 32396858]
[84]
Iser, I.C.; Pereira, M.B.; Lenz, G.; Wink, M.R. The epithelial‐to‐mesenchymal transition‐like process in glioblastoma: An updated systematic review and in silico investigation. Med. Res. Rev., 2017, 37(2), 271-313.
[http://dx.doi.org/10.1002/med.21408] [PMID: 27617697]
[85]
Yang, S.; Chen, Y.; Li, Y.; Lyu, X.; Cui, J.; Cheng, Y.; Zheng, T.; Zhao, L.; Zhao, G. Resveratrol suppresses epithelial-mesenchymal transition in GBM by regulating smad-dependent signaling. Bio-Med Res. Int., 2019, 2019, 1321973.
[86]
Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg., 2017, 126(5), 1448-1460.
[http://dx.doi.org/10.3171/2016.1.JNS152077] [PMID: 27419830]
[87]
Wang, L.; Long, L.; Wang, W.; Liang, Z. Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo. J. Pharmacol. Sci., 2015, 129(4), 216-225.
[http://dx.doi.org/10.1016/j.jphs.2015.11.001] [PMID: 26698406]
[88]
Kelly, G.S. Quercetin. Monograph. Altern. Med. Rev., 2011, 16(2), 172-194.
[PMID: 21649459]
[89]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[90]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[91]
Iacopetta, D.; Grande, F.; Caruso, A.; Mordocco, R.A.; Plutino, M.R.; Scrivano, L.; Ceramella, J.; Muià, N.; Saturnino, C.; Puoci, F.; Rosano, C.; Sinicropi, M.S. New insights for the use of quercetin analogs in cancer treatment. Future Med. Chem., 2017, 9(17), 2011-2028.
[http://dx.doi.org/10.4155/fmc-2017-0118] [PMID: 29076772]
[92]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[93]
Johari, J.; Kianmehr, A.; Mustafa, M.R.; Abubakar, S.; Zandi, K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int. J. Mol. Sci., 2012, 13(12), 16785-16795.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[94]
Kundur, S.; Prayag, A.; Selvakumar, P.; Nguyen, H.; McKee, L.; Cruz, C.; Srinivasan, A.; Shoyele, S.; Lakshmikuttyamma, A. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J. Cell. Physiol., 2019, 234(7), 11103-11118.
[http://dx.doi.org/10.1002/jcp.27761] [PMID: 30478904]
[95]
Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130.
[http://dx.doi.org/10.1016/j.lfs.2018.07.027] [PMID: 30025823]
[96]
Sun, S.; Gong, F.; Liu, P.; Miao, Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene, 2018, 664, 50-57.
[http://dx.doi.org/10.1016/j.gene.2018.04.045] [PMID: 29678660]
[97]
Lei, C.-S.; Hou, Y.-C.; Pai, M.-H.; Lin, M.-T.; Yeh, S.-L. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: In vitro and in vivo studies. J. Nutr. Biochem., 2018, 51, 105-113.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.011] [PMID: 29125991]
[98]
Lee, S.H.; Lee, E.J.; Min, K.H.; Hur, G.Y.; Lee, S.H.; Lee, S.Y.; Kim, J.H.; Shin, C.; Shim, J.J.; In, K.H.; Kang, K.H.; Lee, S.Y. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin. Lung Cancer, 2015, 16(6), e235-e243.
[http://dx.doi.org/10.1016/j.cllc.2015.05.006] [PMID: 26050647]
[99]
Youdim, K.A.; Shukitt-Hale, B.; Joseph, J.A. Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic. Biol. Med., 2004, 37(11), 1683-1693.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.002] [PMID: 15528027]
[100]
de Boer, V.C.; Dihal, A.A.; van der Woude, H.; Arts, I.C.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.; Keijer, J.; Hollman, P.C. Tissue distribution of quercetin in rats and pigs. J. Nutr., 2005, 135(7), 1718-1725.
[http://dx.doi.org/10.1093/jn/135.7.1718] [PMID: 15987855]
[101]
Pan, H.-C.; Jiang, Q.; Yu, Y.; Mei, J.-P.; Cui, Y.-K.; Zhao, W.-J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem. Int., 2015, 80, 60-71.
[http://dx.doi.org/10.1016/j.neuint.2014.12.001] [PMID: 25481090]
[102]
Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560.
[http://dx.doi.org/10.1007/s13277-015-4125-4] [PMID: 26454746]
[103]
Vitucci, M.; Karpinich, N.O.; Bash, R.E.; Werneke, A.M.; Schmid, R.S.; White, K.K.; McNeill, R.S.; Huff, B.; Wang, S.; Van Dyke, T.; Miller, C.R. Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis. Neuro-oncol., 2013, 15(10), 1317-1329.
[http://dx.doi.org/10.1093/neuonc/not084] [PMID: 23814263]
[104]
Lou, M.; Zhang, L. N.; Ji, P. G.; Feng, F. Q.; Liu, J. H.; Yang, C.; Li, B. F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomedicine & Pharmacotherapy, 2016, 84, 1-9.
[105]
Zanotto-Filho, A.; Braganhol, E.; Schröder, R.; de Souza, L.H.T.; Dalmolin, R.J.; Pasquali, M.A.B.; Gelain, D.P.; Battastini, A.M.O.; Moreira, J.C.F. NFκB inhibitors induce cell death in glioblastomas. Biochem. Pharmacol., 2011, 81(3), 412-424.
[http://dx.doi.org/10.1016/j.bcp.2010.10.014] [PMID: 21040711]
[106]
Kiekow, C.J.; Figueiró, F.; Dietrich, F.; Vechia, L.D.; Pires, E.N.; Jandrey, E.H.; Gnoatto, S.C.; Salbego, C.G.; Battastini, A.M.; Gosmann, G. Quercetin derivative induces cell death in glioma cells by modulating NF-κB nuclear translocation and caspase-3 activation. Eur. J. Pharm. Sci., 2016, 84, 116-122.
[107]
Pozsgai, E.; Bellyei, S.; Cseh, A.; Boronkai, A.; Racz, B.; Szabo, A.; Sumegi, B.; Hocsak, E. Quercetin increases the efficacy of glioblastoma treatment compared to standard chemoradiotherapy by the suppression of PI-3-kinase-Akt pathway. Nutr. Cancer, 2013, 65(7), 1059-1066.
[http://dx.doi.org/10.1080/01635581.2013.810291] [PMID: 24032376]
[108]
Wang, B.; Zhao, C.-H.; Sun, G.; Zhang, Z.-W.; Qian, B.-M.; Zhu, Y.-F.; Cai, M.-Y.; Pandey, S.; Zhao, D.; Wang, Y.-W.; Qiu, W.; Shi, L. IL-17 induces the proliferation and migration of glioma cells through the activation of PI3K/Akt1/NF-κB-p65. Cancer Lett., 2019, 447, 93-104.
[http://dx.doi.org/10.1016/j.canlet.2019.01.008] [PMID: 30660646]
[109]
Park, M.H.; Min, S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun., 2011, 412(4), 710-715.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.037] [PMID: 21867678]
[110]
Kang, D.W.; Park, M.H.; Lee, Y.J.; Kim, H.S.; Kwon, T.K.; Park, W-S.; Min, S. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J. Biol. Chem., 2008, 283(7), 4094-4104.
[http://dx.doi.org/10.1074/jbc.M707416200] [PMID: 18084005]
[111]
Li, J.; Hu, W.; Lan, Q. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27. J. Neurooncol., 2012, 110(2), 187-194.
[http://dx.doi.org/10.1007/s11060-012-0963-8] [PMID: 22903412]
[112]
Lasa, M.; Mahtani, K.R.; Finch, A.; Brewer, G.; Saklatvala, J.; Clark, A.R. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol., 2000, 20(12), 4265-4274.
[http://dx.doi.org/10.1128/MCB.20.12.4265-4274.2000] [PMID: 10825190]
[113]
Zhang, G.; Panigrahy, D.; Hwang, S.H.; Yang, J.; Mahakian, L.M.; Wettersten, H.I.; Liu, J-Y.; Wang, Y.; Ingham, E.S.; Tam, S.; Kieran, M.W.; Weiss, R.H.; Ferrara, K.W.; Hammock, B.D. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 11127-11132.
[http://dx.doi.org/10.1073/pnas.1410432111] [PMID: 25024195]
[114]
Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. J. Exp. Clin. Cancer Res., 2016, 35(1), 61.
[http://dx.doi.org/10.1186/s13046-016-0331-1] [PMID: 27039073]
[115]
Kim, B.; Jung, N.; Lee, S.; Sohng, J.K.; Jung, H.J. Apigenin inhibits cancer stem cell‐like phenotypes in human glioblastoma cells via suppression of c‐met signaling. Phytother. Res., 2016, 30(11), 1833-1840.
[http://dx.doi.org/10.1002/ptr.5689] [PMID: 27468969]
[116]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[117]
Shakeel, S.; Rehman, M.U.; Tabassum, N.; Amin, U.; Mir, M.U.R. Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn. Mag., 2017, 13(49)(Suppl. 1), S154-S160.
[http://dx.doi.org/10.4103/0973-1296.203977] [PMID: 28479741]
[118]
Mir, I.A.; Tiku, A.B. Chemopreventive and therapeutic potential of “naringenin,” a flavanone present in citrus fruits. Nutr. Cancer, 2015, 67(1), 27-42.
[http://dx.doi.org/10.1080/01635581.2015.976320] [PMID: 25514618]
[119]
Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S.; Almatroudi, N.M. Multi-therapeutic potential of naringenin (4′5,7-trihydroxyflavonone): experimental evidence and mechanisms. Plants, 2020, 9(12), 1784.
[http://dx.doi.org/10.3390/plants9121784] [PMID: 33339267]
[120]
Tsai, T.-H. Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin a, a p-glycoprotein modulator. J. Agric. Food Chem., 2002, 50(23), 6669-6674.
[http://dx.doi.org/10.1021/jf020603p] [PMID: 12405759]
[121]
Youdim, K.A.; Dobbie, M.S.; Kuhnle, G.; Proteggente, A.R.; Abbott, N.J.; Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J. Neurochem., 2003, 85(1), 180-192.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01652.x] [PMID: 12641740]
[122]
Sabarinathan, D.; Mahalakshmi, P.; Vanisree, A.J. Naringenin promote apoptosis in cerebrally implanted C6 glioma cells. Mol. Cell. Biochem., 2010, 345(1-2), 215-222.
[http://dx.doi.org/10.1007/s11010-010-0575-6] [PMID: 20717707]
[123]
Sabarinathan, D.; Vanisree, A.J. Plausible role of naringenin against cerebrally implanted C6 glioma cells in rats. Mol. Cell. Biochem., 2013, 375(1-2), 171-178.
[PMID: 23263903]
[124]
Kazaana, A.; Sano, E.; Yoshimura, S.; Makita, K.; Hara, H.; Yoshino, A.; Ueda, T. Promotion of TRAIL/Apo2L-induced apoptosis by low-dose interferon-β in human malignant melanoma cells. J. Cell. Physiol., 2019, 234(8), 13510-13524.
[http://dx.doi.org/10.1002/jcp.28029] [PMID: 30613977]
[125]
Wong, S.H.M.; Kong, W.Y.; Fang, C.-M.; Loh, H.-S.; Chuah, L.-H.; Abdullah, S.; Ngai, S.C. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit. Rev. Oncol. Hematol., 2019, 143, 81-94.
[http://dx.doi.org/10.1016/j.critrevonc.2019.08.008] [PMID: 31561055]
[126]
Han, H.R.; Park, S.A.; Ahn, S.; Jeun, S-S.; Ryu, C.H. Evaluation of combination treatment effect with TRAIL-secreting mesenchymal stem cells and compound C against glioblastoma. Anticancer Res., 2019, 39(12), 6635-6643.
[http://dx.doi.org/10.21873/anticanres.13878] [PMID: 31810928]
[127]
Song, T.; Zhang, M.; Wu, J.; Chen, F.; Wang, Y.; Ma, Y.; Dai, Z. Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest. New Drugs, 2020, 38(6), 1743-1754.
[http://dx.doi.org/10.1007/s10637-020-00979-2] [PMID: 32767162]
[128]
Tsai, W.S.; Yeow, W.-S.; Chua, A.; Reddy, R.M.; Nguyen, D.M.; Schrump, D.S.; Nguyen, D.M. Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol. Cancer Ther., 2006, 5(12), 2977-2990.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0514] [PMID: 17172403]
[129]
Gonzalvez, F.; Ashkenazi, A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 2010, 29(34), 4752-4765.
[http://dx.doi.org/10.1038/onc.2010.221] [PMID: 20531300]
[130]
Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin--from molecule to biological function. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5308-5332.
[http://dx.doi.org/10.1002/anie.201107724] [PMID: 22566109]
[131]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[132]
Priyadarsini, K.I. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des., 2013, 19(11), 2093-2100.
[PMID: 23116315]
[133]
Shen, L.; Liu, C.-C.; An, C.-Y.; Ji, H.-F. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci. Rep., 2016, 6(1), 20872.
[http://dx.doi.org/10.1038/srep20872] [PMID: 26887346]
[134]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[135]
Nagahama, K.; Utsumi, T.; Kumano, T.; Maekawa, S.; Oyama, N.; Kawakami, J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci. Rep., 2016, 6(1), 30962.
[http://dx.doi.org/10.1038/srep30962] [PMID: 27476814]
[136]
da Silva, A.C.; de Freitas Santos, P.D.; do Prado Silva, J.T.; Leimann, F.V.; Bracht, L.; Gonçalves, O.H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol., 2018, 72, 74-82.
[http://dx.doi.org/10.1016/j.tifs.2017.12.004]
[137]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[138]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[139]
Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201.
[http://dx.doi.org/10.1002/mnfr.200900277] [PMID: 20087857]
[140]
Seo, S.U.; Kim, T.H.; Kim, D.E.; Min, K.J.; Kwon, T.K. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. Redox Biol., 2017, 13, 608-622.
[http://dx.doi.org/10.1016/j.redox.2017.07.017] [PMID: 28806703]
[141]
Zhang, Z.; Li, C.; Tan, Q.; Xie, C.; Yang, Y.; Zhan, W.; Han, F.; Shanker Sharma, H.; Sharma, A. Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/angiopoietin-2/thrombospondin-1 signaling. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 346-350.
[142]
Cheng, C.; Jiao, J.T.; Qian, Y.; Guo, X.Y.; Huang, J.; Dai, M.C.; Zhang, L.; Ding, X.P.; Zong, D.; Shao, J.F. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol. Med. Rep., 2016, 13(5), 3763-3770.
[http://dx.doi.org/10.3892/mmr.2016.5037] [PMID: 27035875]
[143]
Park, K.-S.; Yoon, S.-Y.; Park, S.-H.; Hwang, J.-H. Anti-migration and anti-invasion effects of curcumin via suppression of fascin expression in glioblastoma cells. Brain Tumor Res. Treat., 2019, 7(1), 16-24.
[http://dx.doi.org/10.14791/btrt.2019.7.e28] [PMID: 31062527]
[144]
Maiti, P.; Scott, J.; Sengupta, D.; Al-Gharaibeh, A.; Dunbar, G.L. Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int. J. Mol. Sci., 2019, 20(2), 399.
[http://dx.doi.org/10.3390/ijms20020399] [PMID: 30669284]
[145]
Maiti, P.; Plemmons, A.; Dunbar, G.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One, 2019, 14(12), e0225660.
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[146]
Zhang, E.-B.; Han, L.; Yin, D.-D.; Kong, R.; De, W.; Chen, J. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med. Oncol., 2014, 31(5), 914.
[http://dx.doi.org/10.1007/s12032-014-0914-7] [PMID: 24671855]
[147]
Zhang, T.; Wang, Y.R.; Zeng, F.; Cao, H.Y.; Zhou, H.D.; Wang, Y.J. LncRNA H19 is overexpressed in glioma tissue, is negatively associated with patient survival, and promotes tumor growth through its derivative miR-675. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(23), 4891-4897.
[PMID: 27981546]
[148]
Pan, J.X.; Chen, T.N.; Ma, K.; Wang, S.; Yang, C.Y.; Cui, G.Y. A negative feedback loop of H19/miR-675/VDR mediates therapeutic effect of cucurmin in the treatment of glioma. J. Cell. Physiol., 2020, 235(3), 2171-2182.
[http://dx.doi.org/10.1002/jcp.29127] [PMID: 31468534]
[149]
Bi, F.; Wang, J.; Zheng, X.; Xiao, J.; Zhi, C.; Gu, J.; Zhang, Y.; Li, J.; Miao, Z.; Wang, Y.; Li, Y. HSP60 participates in the anti-glioma effects of curcumin. Exp. Ther. Med., 2021, 21(3), 204.
[http://dx.doi.org/10.3892/etm.2021.9637] [PMID: 33574907]
[150]
Huang, Y-H.; Yeh, C-T. Functional compartmentalization of HSP60-survivin interaction between mitochondria and cytosol in cancer cells. Cells, 2019, 9(1), 23.
[http://dx.doi.org/10.3390/cells9010023] [PMID: 31861751]
[151]
Ding, F.; Li, Y.; Hou, X.; Zhang, R.; Hu, S.; Wang, Y. Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling. Biomed. Rep., 2016, 5(5), 623-628.
[http://dx.doi.org/10.3892/br.2016.776] [PMID: 27882228]
[152]
Tang, H.; Li, J.; Liu, X.; Wang, G.; Luo, M.; Deng, H. Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway. Sci. Rep., 2016, 6(1), 28388.
[http://dx.doi.org/10.1038/srep28388] [PMID: 27325206]
[153]
Meng, X.; Cai, J.; Liu, J.; Han, B.; Gao, F.; Gao, W.; Zhang, Y.; Zhang, J.; Zhao, Z.; Jiang, C. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle, 2017, 16(12), 1181-1192.
[http://dx.doi.org/10.1080/15384101.2017.1320000] [PMID: 28463091]
[154]
Zanotto-Filho, A.; Braganhol, E.; Klafke, K.; Figueiró, F.; Terra, S.R.; Paludo, F.J.; Morrone, M.; Bristot, I.J.; Battastini, A.M.; Forcelini, C.M.; Bishop, A.J.R.; Gelain, D.P.; Moreira, J.C.F. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett., 2015, 358(2), 220-231.
[http://dx.doi.org/10.1016/j.canlet.2014.12.044] [PMID: 25542083]
[155]
Karim, A.J.; Dalai, D.R. Green tea: A review on its natural anti-oxidant therapy and cariostatic benefits. Issues Biol. Sci. Pharm. Res., 2014, 2350, 1588.
[156]
Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci., 2020, 21(5), 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[157]
Afzal, M.; Safer, A.M.; Menon, M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology, 2015, 23(4), 151-161.
[http://dx.doi.org/10.1007/s10787-015-0236-1] [PMID: 26164000]
[158]
Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073.
[http://dx.doi.org/10.1111/bph.12009] [PMID: 23072320]
[159]
Arts, I.C.; van de Putte, B.; Hollman, P.C. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem., 2000, 48(5), 1746-1751.
[http://dx.doi.org/10.1021/jf000025h] [PMID: 10820089]
[160]
Du, G.-J.; Zhang, Z.; Wen, X.-D.; Yu, C.; Calway, T.; Yuan, C.-S.; Wang, C.-Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[161]
Dai, W.; Ruan, C.; Zhang, Y.; Wang, J.; Han, J.; Shao, Z.; Sun, Y.; Liang, J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods, 2020, 65, 103732.
[http://dx.doi.org/10.1016/j.jff.2019.103732]
[162]
Komatsu, Y.; Suematsu, S.; Hisanobu, Y.; Saigo, H.; Matsuda, R.; Hara, K. Effects of pH and temperature on reaction kinetics of catechins in green tea infusion. Biosci. Biotechnol. Biochem., 1993, 57(6), 907-910.
[http://dx.doi.org/10.1271/bbb.57.907]
[163]
Abd El-Aziz, T.A.; Mohamed, R.H.; Pasha, H.F.; Abdel-Aziz, H.R. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin. Exp. Med., 2012, 12(4), 233-240.
[http://dx.doi.org/10.1007/s10238-011-0165-2] [PMID: 22080234]
[164]
Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol., 2020, 4(1), 1-10.
[http://dx.doi.org/10.1186/s41702-020-0057-8]
[165]
Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring), 2009, 17(2), 310-317.
[http://dx.doi.org/10.1038/oby.2008.505] [PMID: 19008868]
[166]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[167]
Batta, A. Green tea treats and prevents infectious diseases. Sch. Int J. Biochem., 2020, 3(10), 211-214.
[http://dx.doi.org/10.36348/sijb.2020.v03i10.002]
[168]
Dos Santos, A.N.; de L Nascimento, T.R.; Gondim, B.L.C.; Velo, M.M.A.C.; de A Rêgo, R.I.; do C Neto, J.R.; Machado, J.R.; da Silva, M.V.; de Araújo, H.W.C.; Fonseca, M.G.; Castellano, L.R.C. Catechins as model bioactive compounds for biomedical applications. Curr. Pharm. Des., 2020, 26(33), 4032-4047.
[http://dx.doi.org/10.2174/1381612826666200603124418] [PMID: 32493187]
[169]
Xie, C.-R.; You, C.-G.; Zhang, N.; Sheng, H.-S.; Zheng, X.-S. Epigallocatechin Gallate Preferentially Inhibits O6-Methylguanine DNA-Methyltransferase Expression in Glioblastoma Cells Rather than in Nontumor Glial Cells. Nutr. Cancer, 2018, 70(8), 1339-1347.
[http://dx.doi.org/10.1080/01635581.2018.1539189] [PMID: 30558449]
[170]
Pervin, M.; Unno, K.; Nakagawa, A.; Takahashi, Y.; Iguchi, K.; Yamamoto, H.; Hoshino, M.; Hara, A.; Takagaki, A.; Nanjo, F.; Minami, A.; Imai, S.; Nakamura, Y. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem. Biophys. Rep., 2017, 9, 180-186.
[http://dx.doi.org/10.1016/j.bbrep.2016.12.012] [PMID: 28956003]
[171]
Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir. (Tokyo), 2018, 58(10), 405-421.
[http://dx.doi.org/10.2176/nmc.ra.2018-0141] [PMID: 30249919]
[172]
Zhang, J.; Stevens, M.F.; Bradshaw, T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol., 2012, 5(1), 102-114.
[http://dx.doi.org/10.2174/1874467211205010102] [PMID: 22122467]
[173]
Chen, X.; Zhang, M.; Gan, H.; Wang, H.; Lee, J-H.; Fang, D.; Kitange, G.J.; He, L.; Hu, Z.; Parney, I.F.; Meyer, F.B.; Giannini, C.; Sarkaria, J.N.; Zhang, Z. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat. Commun., 2018, 9(1), 2949.
[http://dx.doi.org/10.1038/s41467-018-05373-4] [PMID: 30054476]
[174]
Tsai, C.K.; Huang, L.C.; Wu, Y.P.; Kan, I.Y.; Hueng, D.Y. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT. FASEB J., 2019, 33(12), 14171-14184.
[http://dx.doi.org/10.1096/fj.201901021RR] [PMID: 31725331]
[175]
Bhattacharjee, R.; Devi, A.; Mishra, S. Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma. J. Mol. Model., 2015, 21(10), 272.
[http://dx.doi.org/10.1007/s00894-015-2801-3] [PMID: 26419972]
[176]
Lee, A.S. GRP78 induction in cancer: Therapeutic and prognostic implications. Cancer Res., 2007, 67(8), 3496-3499.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0325] [PMID: 17440054]
[177]
Lee, H.K.; Xiang, C.; Cazacu, S.; Finniss, S.; Kazimirsky, G.; Lemke, N.; Lehman, N.L.; Rempel, S.A.; Mikkelsen, T.; Brodie, C. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro-oncol., 2008, 10(3), 236-243.
[http://dx.doi.org/10.1215/15228517-2008-006] [PMID: 18403493]
[178]
Chen, T.C.; Wang, W.; Golden, E.B.; Thomas, S.; Sivakumar, W.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett., 2011, 302(2), 100-108.
[http://dx.doi.org/10.1016/j.canlet.2010.11.008] [PMID: 21257259]
[179]
Li, H.; Li, Z.; Xu, Y.-M.; Wu, Y.; Yu, K.-K.; Zhang, C.; Ji, Y.-H.; Ding, G.; Chen, F.-X. Epigallocatechin-3-gallate induces apoptosis, inhibits proliferation and decreases invasion of glioma cell. Neurosci. Bull., 2014, 30(1), 67-73.
[http://dx.doi.org/10.1007/s12264-013-1394-z] [PMID: 24338484]
[180]
Shakeel, F.; Alshehri, S.; Ibrahim, M.A.; Elzayat, E.M.; Altamimi, M.A.; Mohsin, K.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic parameters of apigenin in different neat solvents at different temperatures. J. Mol. Liq., 2017, 234, 73-80.
[http://dx.doi.org/10.1016/j.molliq.2017.03.057]
[181]
Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett., 2018, 413, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
[182]
Lefort, É.C.; Blay, J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res., 2013, 57(1), 126-144.
[http://dx.doi.org/10.1002/mnfr.201200424] [PMID: 23197449]
[183]
Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 323-330.
[http://dx.doi.org/10.1080/17425255.2017.1251903] [PMID: 27766890]
[184]
Gurung, R.B.; Kim, E-H.; Oh, T-J.; Sohng, J.K. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells, 2013, 36(4), 355-361.
[http://dx.doi.org/10.1007/s10059-013-0164-0] [PMID: 24170092]
[185]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[186]
Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Huang, Z.; Wu, Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep., 2019, 20(3), 2867-2874.
[http://dx.doi.org/10.3892/mmr.2019.10491] [PMID: 31322238]
[187]
Yue, S.; Xue, N.; Li, H.; Huang, B.; Chen, Z.; Wang, X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-κB pathway in vivo and in vitro. Inflammation, 2020, 43(5), 1634-1648.
[http://dx.doi.org/10.1007/s10753-020-01238-5] [PMID: 32458347]
[188]
Kim, B.R.; Jeon, Y.K.; Nam, M.J. A mechanism of apigenin-induced apoptosis is potentially related to anti-angiogenesis and anti-migration in human hepatocellular carcinoma cells. Food Chem. Toxicol., 2011, 49(7), 1626-1632.
[http://dx.doi.org/10.1016/j.fct.2011.04.015] [PMID: 21515330]
[189]
Barlas, N.; Özer, S.; Karabulut, G. The estrogenic effects of apigenin, phloretin and myricetin based on uterotrophic assay in immature Wistar albino rats. Toxicol. Lett., 2014, 226(1), 35-42.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.030] [PMID: 24487097]
[190]
Wu, L.; Guo, T.; Deng, R.; Liu, L.; Yu, Y. Apigenin ameliorates insulin resistance and lipid accumulation by endoplasmic reticulum stress and SREBP-1c/SREBP-2 pathway in palmitate-induced HepG2 cells and high-fat diet-fed mice. J. Pharmacol. Exp. Ther., 2021, 377(1), 146-156.
[http://dx.doi.org/10.1124/jpet.120.000162] [PMID: 33509902]
[191]
Alshehri, S.M.; Shakeel, F.; Ibrahim, M.A.; Elzayat, E.M.; Altamimi, M.; Mohsin, K.; Almeanazel, O.T.; Alkholief, M.; Alshetaili, A.; Alsulays, B.; Alanazi, F.K.; Alsarra, I.A. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm. J., 2019, 27(2), 264-273.
[http://dx.doi.org/10.1016/j.jsps.2018.11.008] [PMID: 30766439]
[192]
Kazi, M.; Alhajri, A.; Alshehri, S.M.; Elzayat, E.M.; Al Meanazel, O.T.; Shakeel, F.; Noman, O.; Altamimi, M.A.; Alanazi, F.K. Enhancing oral bioavailability of apigenin using a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS): In vitro, in vivo and stability evaluations. Pharmaceutics, 2020, 12(8), 749.
[http://dx.doi.org/10.3390/pharmaceutics12080749] [PMID: 32785007]
[193]
Lima, L.K.F.; Pereira, S.K.S.; Junior, R.D.S.S.; Santos, F.P.D.S.; ascimento, A.D.S.; Feitosa, C.M.; Figuerêdo, J.D.S.; Cavalcante, A.D.N.; Araújo, E.C.D.C.; Rai, M. A brief review on the neuroprotective mechanisms of vitexin. BioMed Res. Int.,s 2018, 2018, 4785089.
[194]
Wong, T.-Y.; Tsai, M.-S.; Hsu, L.-C.; Lin, S.-W.; Liang, P.-H. Traversal of the Blood-Brain Barrier by Cleavable l-Lysine Conjugates of Apigenin. J. Agric. Food Chem., 2018, 66(30), 8124-8131.
[http://dx.doi.org/10.1021/acs.jafc.8b01187] [PMID: 29923397]
[195]
Chen, X.J.; Wu, M.Y.; Li, D.H.; You, J. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP-9. Mol. Med. Rep., 2016, 14(3), 2352-2358.
[http://dx.doi.org/10.3892/mmr.2016.5460] [PMID: 27430517]
[196]
Coelho, P.L.; Oliveira, M.N.; da Silva, A.B.; Pitanga, B.P.; Silva, V.D.; Faria, G.P.; Sampaio, G.P.; Costa, M.F.; Braga-de-Souza, S.; Costa, S.L. The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells. Anticancer Drugs, 2016, 27(10), 960-969.
[http://dx.doi.org/10.1097/CAD.0000000000000413] [PMID: 27622606]
[197]
Coelho, P.L.C.; Amparo, J.A.O.; da Silva, A.B.; da Silva, K.C.; Braga-de-Souza, S.; Barbosa, P.R.; Lopes, G.P.F.; Costa, S.L. Apigenin from Croton betulaster Müll restores the immune profile of microglia against glioma cells. Phytother. Res., 2019, 33(12), 3191-3202.
[http://dx.doi.org/10.1002/ptr.6491] [PMID: 31468624]
[198]
Zhang, G.; Li, D.; Chen, H.; Zhang, J.; Jin, X. Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol. Med. Rep., 2018, 17(3), 4599-4604.
[http://dx.doi.org/10.3892/mmr.2018.8394] [PMID: 29328424]
[199]
Stump, T.A.; Santee, B.N.; Williams, L.P.; Kunze, R.A.; Heinze, C.E.; Huseman, E.D.; Gryka, R.J.; Simpson, D.S.; Amos, S. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells. J. Pharm. Pharmacol., 2017, 69(7), 907-916.
[http://dx.doi.org/10.1111/jphp.12718] [PMID: 28349530]
[200]
Wang, D.; Wang, Z.; Dai, X.; Zhang, L.; Li, M. Apigenin and temozolomide synergistically inhibit glioma growth through the PI3K/AKT pathway. Cancer Biother. Radiopharm., 2021.
[http://dx.doi.org/10.1089/cbr.2020.4283] [PMID: 33471569]
[201]
Yang, T.Q.; Lu, X.J.; Wu, T.F.; Ding, D.D.; Zhao, Z.H.; Chen, G.L.; Xie, X.S.; Li, B.; Wei, Y.X.; Guo, L.C.; Zhang, Y.; Huang, Y.L.; Zhou, Y.X.; Du, Z.W. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-κB1/MMP9 signaling pathway. Cancer Sci., 2014, 105(3), 265-271.
[http://dx.doi.org/10.1111/cas.12351] [PMID: 24418124]
[202]
Li, S.; Zeng, A.; Hu, Q.; Yan, W.; Liu, Y.; You, Y. miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro-oncol., 2017, 19(1), 55-65.
[http://dx.doi.org/10.1093/neuonc/now129] [PMID: 27471108]
[203]
Wan, Y.; Fei, X.; Wang, Z.; Jiang, D.; Chen, H.; Wang, M.; Zhou, S. miR-423-5p knockdown enhances the sensitivity of glioma stem cells to apigenin through the mitochondrial pathway. Tumour Biol., 2017, 39(4)
[http://dx.doi.org/10.1177/1010428317695526] [PMID: 28381178]
[204]
Garnier, D.; Renoult, O.; Alves-Guerra, M.-C.; Paris, F.; Pecqueur, C. Glioblastoma stem-like cells, metabolic strategy to kill a challenging target. Front. Oncol., 2019, 9, 118.
[http://dx.doi.org/10.3389/fonc.2019.00118] [PMID: 30895167]
[205]
Organ, S.L.; Tsao, M-S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1)(Suppl.), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[206]
Li, Y.; Li, A.; Glas, M.; Lal, B.; Ying, M.; Sang, Y.; Xia, S.; Trageser, D.; Guerrero-Cázares, H.; Eberhart, C.G.; Quiñones-Hinojosa, A.; Scheffler, B.; Laterra, J. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc. Natl. Acad. Sci. USA, 2011, 108(24), 9951-9956.
[http://dx.doi.org/10.1073/pnas.1016912108] [PMID: 21628563]
[207]
D’Orazio, N.; Gemello, E.; Gammone, M.A.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxantin: A treasure from the sea. Mar. Drugs, 2012, 10(3), 604-616.
[http://dx.doi.org/10.3390/md10030604] [PMID: 22611357]
[208]
Eid, S.Y.; Althubiti, M.A.; Abdallah, M.E.; Wink, M.; El-Readi, M.Z. The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes. Phytomedicine, 2020, 77, 153280.
[http://dx.doi.org/10.1016/j.phymed.2020.153280] [PMID: 32712543]
[209]
Zhao, D.; Yu, D.; Kim, M.; Gu, M.-Y.; Kim, S.-M.; Pan, C.-H.; Kim, G.-H.; Chung, D. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chem., 2019, 291, 87-93.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.002] [PMID: 31006475]
[210]
Kawee-ai, A.; Kuntiya, A.; Kim, S. M. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat. Prod. Commun., 2013, 8(10), 1934578X1300801010.
[http://dx.doi.org/10.1177/1934578X1300801010]
[211]
Zhang, H.; Tang, Y.; Zhang, Y.; Zhang, S.; Qu, J.; Wang, X.; Kong, R.; Han, C.; Liu, Z. Fucoxanthin: A promising medicinal and nutritional ingredient. Evid. Based Complement. Alternat. Med., 2015, 2015, 723515.
[http://dx.doi.org/10.1155/2015/723515]
[212]
Peng, J.; Yuan, J-P.; Wu, C-F.; Wang, J-H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs, 2011, 9(10), 1806-1828.
[http://dx.doi.org/10.3390/md9101806] [PMID: 22072997]
[213]
Sachindra, N.M.; Sato, E.; Maeda, H.; Hosokawa, M.; Niwano, Y.; Kohno, M.; Miyashita, K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem., 2007, 55(21), 8516-8522.
[http://dx.doi.org/10.1021/jf071848a] [PMID: 17894451]
[214]
Miyashita, K.; Beppu, F.; Hosokawa, M.; Liu, X.; Wang, S. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch. Biochem. Biophys., 2020, 686, 108364.
[http://dx.doi.org/10.1016/j.abb.2020.108364] [PMID: 32315653]
[215]
Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102.
[http://dx.doi.org/10.1021/acs.jafc.7b00805] [PMID: 28478680]
[216]
Sun, G.; Xin, T.; Zhang, R.; Liu, C.; Pang, Q. Fucoxanthin attenuates behavior deficits and neuroinflammatory response in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease in mice. Pharmacogn. Mag., 2020, 16(67), 51.
[http://dx.doi.org/10.4103/pm.pm_318_19]
[217]
Mohibbullah, M.; Haque, M.N.; Khan, M.N.A.; Park, I.-S.; Moon, I.S.; Hong, Y.-K. Neuroprotective effects of fucoxanthin and its derivative fucoxanthinol from the phaeophyte Undaria pinnatifida attenuate oxidative stress in hippocampal neurons. J. Appl. Phycol., 2018, 30(6), 3243-3252.
[http://dx.doi.org/10.1007/s10811-018-1458-6]
[218]
Ravi, H.; Kurrey, N.; Manabe, Y.; Sugawara, T.; Baskaran, V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater. Sci. Eng. C, 2018, 91, 785-795.
[http://dx.doi.org/10.1016/j.msec.2018.06.018] [PMID: 30033314]
[219]
Yu, R.X.; Yu, R.T.; Liu, Z. Inhibition of two gastric cancer cell lines induced by fucoxanthin involves downregulation of Mcl-1 and STAT3. Hum. Cell, 2018, 31(1), 50-63.
[http://dx.doi.org/10.1007/s13577-017-0188-4] [PMID: 29110251]
[220]
Satomi, Y. Fucoxanthin induces GADD45A expression and G1 arrest with SAPK/JNK activation in LNCap human prostate cancer cells. Anticancer Res., 2012, 32(3), 807-813.
[PMID: 22399598]
[221]
Wang, L.; Zeng, Y.; Liu, Y.; Hu, X.; Li, S.; Wang, Y.; Li, L.; Lei, Z.; Zhang, Z. Fucoxanthin induces growth arrest and apoptosis in human bladder cancer T24 cells by up-regulation of p21 and down-regulation of mortalin. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(10), 877-884.
[http://dx.doi.org/10.1093/abbs/gmu080] [PMID: 25187415]
[222]
Wang, J.; Ma, Y.; Yang, J.; Jin, L.; Gao, Z.; Xue, L.; Hou, L.; Sui, L.; Liu, J.; Zou, X. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J. Cell. Mol. Med., 2019, 23(3), 2219-2229.
[http://dx.doi.org/10.1111/jcmm.14151] [PMID: 30648805]
[223]
Kim, K-N.; Heo, S-J.; Kang, S-M.; Ahn, G.; Jeon, Y-J. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. In Vitro, 2010, 24(6), 1648-1654.
[http://dx.doi.org/10.1016/j.tiv.2010.05.023] [PMID: 20594983]
[224]
Wu, H.L.; Fu, X.Y.; Cao, W.Q.; Xiang, W.Z.; Hou, Y.J.; Ma, J.K.; Wang, Y.; Fan, C.D. Induction of apoptosis in human glioma cells by fucoxanthin via triggering of ros-mediated oxidative damage and regulation of MAPKs and PI3K-AKT pathways. J. Agric. Food Chem., 2019, 67(8), 2212-2219.
[http://dx.doi.org/10.1021/acs.jafc.8b07126] [PMID: 30688446]
[225]
Lopes, F.G.; Oliveira, K.A.; Lopes, R.G.; Poluceno, G.G.; Simioni, C.; Gabriel, D.S.P.; Bauer, C.M.; Maraschin, M.; Derner, R.B.; Garcez, R.C.; Tasca, C.I.; Nedel, C.B. Anti-cancer effects of fucoxanthin on human glioblastoma cell line. Anticancer Res., 2020, 40(12), 6799-6815.
[http://dx.doi.org/10.21873/anticanres.14703] [PMID: 33288573]
[226]
Liu, Y.; Zheng, J.; Zhang, Y.; Wang, Z.; Yang, Y.; Bai, M.; Dai, Y. Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38-MMP-2/9 pathway in human glioblastoma cells. Neurochem. Res., 2016, 41(10), 2728-2751.
[http://dx.doi.org/10.1007/s11064-016-1989-7] [PMID: 27394418]
[227]
Wu, H.; Fu, X.; Cao, W.; Xiang, W.; Hou, Y.; Ma, J.; Wang, Y.; Fan, C. Fucoxanthin induces apoptosis in human glioma cells by triggering ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways. J. Agric. Food Chem., 2019, 67, 2212-2219.
[http://dx.doi.org/10.1021/acs.jafc.8b07126] [PMID: 30688446]
[228]
Jiang, Y.; Wang, X.; Hu, D. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: A study in vitro and in vivo. Cell Death Dis., 2017, 8(5), e2815-e2815.
[http://dx.doi.org/10.1038/cddis.2017.220] [PMID: 28542135]
[229]
Pruteanu, L.L.; Kopanitsa, L.; Módos, D.; Kletnieks, E.; Samarova, E.; Bender, A.; Gomez, L.D.; Bailey, D.S. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells. PLoS One, 2020, 15(9), e0239551.
[http://dx.doi.org/10.1371/journal.pone.0239551] [PMID: 32946518]
[230]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[231]
Li, N. The extraction of a natural dye berberine and evaluation of its corrosion inhibition properties for P110SS steel. Int. J. Electrochem. Sci., 2019, 14, 1830-1842.
[232]
Li, Z.; Geng, Y.-N.; Jiang, J.-D.; Kong, W.-J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid. Based Complement. Alternat. Med., 2014, 2014, 289264.
[http://dx.doi.org/10.1155/2014/289264]
[233]
Brusq, J-M.; Ancellin, N.; Grondin, P.; Guillard, R.; Martin, S.; Saintillan, Y.; Issandou, M. Inhibition of lipid synthesis through activation of AMP kinase: An additional mechanism for the hypolipidemic effects of berberine. J. Lipid Res., 2006, 47(6), 1281-1288.
[http://dx.doi.org/10.1194/jlr.M600020-JLR200] [PMID: 16508037]
[234]
Domitrović, R.; Jakovac, H.; Blagojević, G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α COX-2, and iNOS expression in CCl(4)-intoxicated mice. Toxicology, 2011, 280(1-2), 33-43.
[http://dx.doi.org/10.1016/j.tox.2010.11.005] [PMID: 21095217]
[235]
Wang, Q-S.; Li, K.; Gao, L-N.; Zhang, Y.; Lin, K-M.; Cui, Y-L. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater. Sci., 2020, 8(10), 2853-2865.
[http://dx.doi.org/10.1039/C9BM02006C] [PMID: 32270794]
[236]
Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; He, C.; Ye, G.; Yin, L.; Shi, F.; Lv, C.; Jing, B. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5217-5223.
[PMID: 26191220]
[237]
Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral activity of berberine. Arch. Virol., 2020, 165(9), 1935-1945.
[http://dx.doi.org/10.1007/s00705-020-04706-3] [PMID: 32594322]
[238]
Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[239]
Jiang, W.; Li, S.; Li, X. Therapeutic potential of berberine against neurodegenerative diseases. Sci. China Life Sci., 2015, 58(6), 564-569.
[http://dx.doi.org/10.1007/s11427-015-4829-0] [PMID: 25749423]
[240]
Kulkarni, S.K.; Dhir, A. On the mechanism of antidepressant-like action of berberine chloride. Eur. J. Pharmacol., 2008, 589(1-3), 163-172.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.043] [PMID: 18585703]
[241]
Sahibzada, M.U.K.; Sadiq, A.; Faidah, H.S.; Khurram, M.; Amin, M.U.; Haseeb, A.; Kakar, M. Berberine nanoparticles with enhanced in vitro bioavailability: Characterization and antimicrobial activity. Drug Des. Devel. Ther., 2018, 12, 303-312.
[http://dx.doi.org/10.2147/DDDT.S156123] [PMID: 29491706]
[242]
Wang, S.; An, J.; Dong, W.; Wang, X.; Sheng, J.; Jia, Y.; He, Y.; Ma, X.; Wang, J.; Yu, D.; Jia, X.; Wang, B.; Yu, W.; Liu, K.; Zhao, Y.; Wu, Y.; Zhu, W.; Pan, Y. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int. J. Nanomedicine, 2020, 15, 7951-7965.
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[243]
Liu, Z.; Chen, Y.; Gao, H.; Xu, W.; Zhang, C.; Lai, J.; Liu, X.; Sun, Y.; Huang, H. Berberine inhibits cell proliferation by interfering with wild-type and mutant P53 in human glioma cells. Onco-Targets Ther., 2020, 13, 12151-12162.
[http://dx.doi.org/10.2147/OTT.S279002] [PMID: 33262612]
[244]
Zhang, Y.; Dube, C.; Gibert, M., Jr; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; Grello, C.; Oxford, M.; Yuan, F.; Abounader, R. The p53 pathway in glioblastoma. Cancers (Basel), 2018, 10(9), 297.
[http://dx.doi.org/10.3390/cancers10090297] [PMID: 30200436]
[245]
Jin, F.; Xie, T.; Huang, X.; Zhao, X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol., 2018, 56(1), 665-671.
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[246]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[247]
Yung, H.W.; Wyttenbach, A.; Tolkovsky, A.M. Aggravation of necrotic death of glucose-deprived cells by the MEK1 inhibitors U0126 and PD184161 through depletion of ATP. Biochem. Pharmacol., 2004, 68(2), 351-360.
[http://dx.doi.org/10.1016/j.bcp.2004.03.030] [PMID: 15194007]
[248]
Monick, M.M.; Powers, L.S.; Barrett, C.W.; Hinde, S.; Ashare, A.; Groskreutz, D.J.; Nyunoya, T.; Coleman, M.; Spitz, D.R.; Hunninghake, G.W.; Constitutive, E.R.K. Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity. J. Immunol., 2008, 180(11), 7485-7496.
[http://dx.doi.org/10.4049/jimmunol.180.11.7485] [PMID: 18490749]
[249]
Sun, Y.; Yu, J.; Liu, X.; Zhang, C.; Cao, J.; Li, G.; Liu, X.; Chen, Y.; Huang, H. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed. Pharmacother., 2018, 102, 699-710.
[250]
Weerasinghe, P.; Buja, L.M. Oncosis: An important non-apoptotic mode of cell death. Exp. Mol. Pathol., 2012, 93(3), 302-308.
[http://dx.doi.org/10.1016/j.yexmp.2012.09.018] [PMID: 23036471]
[251]
Pomerantz, B.J.; Reznikov, L.L.; Harken, A.H.; Dinarello, C.A. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2871-2876.
[http://dx.doi.org/10.1073/pnas.041611398] [PMID: 11226333]
[252]
Fathima Hurmath, K.; Ramaswamy, P.; Nandakumar, D.N. IL-1β microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell Biol. Int., 2014, 38(12), 1415-1422.
[http://dx.doi.org/10.1002/cbin.10353] [PMID: 25053165]
[253]
Tong, L.; Xie, C.; Wei, Y.; Qu, Y.; Liang, H.; Zhang, Y.; Xu, T.; Qian, X.; Qiu, H.; Deng, H. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release. Front. Oncol., 2019, 9, 364.
[http://dx.doi.org/10.3389/fonc.2019.00364] [PMID: 31139563]
[254]
Tan, D.-X.; Manchester, L.C.; Qin, L.; Reiter, R.J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci., 2016, 17(12), 2124.
[http://dx.doi.org/10.3390/ijms17122124] [PMID: 27999288]
[255]
Maitra, S.; Bhattacharya, D.; Das, S.; Bhattacharya, S. Melatonin and its anti-glioma functions: A comprehensive review. Rev. Neurosci., 2019, 30(5), 527-541.
[http://dx.doi.org/10.1515/revneuro-2018-0041] [PMID: 30645197]
[256]
He, C.; Wang, J.; Zhang, Z.; Yang, M.; Li, Y.; Tian, X.; Ma, T.; Tao, J.; Zhu, K.; Song, Y.; Ji, P.; Liu, G. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci., 2016, 17(6), 939.
[http://dx.doi.org/10.3390/ijms17060939] [PMID: 27314334]
[257]
Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.-X.; Reiter, R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci., 2014, 71(16), 2997-3025.
[http://dx.doi.org/10.1007/s00018-014-1579-2] [PMID: 24554058]
[258]
Yu, H.; Dickson, E.J.; Jung, S.-R.; Koh, D.-S.; Hille, B. High membrane permeability for melatonin. J. Gen. Physiol., 2016, 147(1), 63-76.
[http://dx.doi.org/10.1085/jgp.201511526] [PMID: 26712850]
[259]
Shida, C.S.; Castrucci, A.M.; Lamy-Freund, M.T. High melatonin solubility in aqueous medium. J. Pineal Res., 1994, 16(4), 198-201.
[http://dx.doi.org/10.1111/j.1600-079X.1994.tb00102.x] [PMID: 7807375]
[260]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.-Y.; Xu, D.-P.; Li, H.-B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4), 367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[261]
Fukushige, H.; Fukuda, Y.; Tanaka, M.; Inami, K.; Wada, K.; Tsumura, Y.; Kondo, M.; Harada, T.; Wakamura, T.; Morita, T. Effects of tryptophan-rich breakfast and light exposure during the daytime on melatonin secretion at night. J. Physiol. Anthropol., 2014, 33(1), 33.
[http://dx.doi.org/10.1186/1880-6805-33-33] [PMID: 25407790]
[262]
Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev., 2005, 9(1), 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001] [PMID: 15649735]
[263]
Baker, J.; Kimpinski, K. Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent. Clin. Exp. Pharmacol. Physiol., 2018, 45(8), 755-766.
[http://dx.doi.org/10.1111/1440-1681.12942] [PMID: 29603319]
[264]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[265]
Bondy, S. C.; Campbell, A. Melatonin and regulation of immune function: Impact on numerous diseases. Curr. Aging Sci., 2020, 13(2), 92-101.
[266]
Knani, L.; Venditti, M.; Kechiche, S.; Banni, M.; Messaoudi, I.; Minucci, S. Melatonin protects bone against cadmium-induced toxicity via activation of Wnt/β-catenin signaling pathway. Toxicol. Mech. Methods, 2020, 30(4), 237-245.
[http://dx.doi.org/10.1080/15376516.2019.1701595] [PMID: 31809235]
[267]
Colares, J.R.; Schemitt, E.G.; Hartmann, R.M.; Licks, F.; Soares, M.D.; Bosco, A.D.; Marroni, N.P. Antioxidant and anti-inflammatory action of melatonin in an experimental model of secondary biliary cirrhosis induced by bile duct ligation. World J. Gastroenterol., 2016, 22(40), 8918-8928.
[http://dx.doi.org/10.3748/wjg.v22.i40.8918] [PMID: 27833383]
[268]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.-X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.-F.; Xu, K. Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4), 843.
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[269]
Mediavilla, M.D.; Sanchez-Barcelo, E.J.; Tan, D.X.; Manchester, L.; Reiter, R.J. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem., 2010, 17(36), 4462-4481.
[http://dx.doi.org/10.2174/092986710794183015] [PMID: 21062257]
[270]
Alghamdi, B.S. The neuroprotective role of melatonin in neurological disorders. J. Neurosci. Res., 2018, 96(7), 1136-1149.
[http://dx.doi.org/10.1002/jnr.24220] [PMID: 29498103]
[271]
Neamati, F.; Asemi, Z. The effects of melatonin on signaling pathways and molecules involved in glioma. Fundam. Clin. Pharmacol., 2020, 34(2), 192-199.
[http://dx.doi.org/10.1111/fcp.12526] [PMID: 31808968]
[272]
Zheng, X.; Pang, B.; Gu, G.; Gao, T.; Zhang, R.; Pang, Q.; Liu, Q. Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int. J. Biol. Sci., 2017, 13(2), 245-253.
[http://dx.doi.org/10.7150/ijbs.16818] [PMID: 28255276]
[273]
Yamagishi, M.; Uchimaru, K. Targeting EZH2 in cancer therapy. Curr. Opin. Oncol., 2017, 29(5), 375-381.
[http://dx.doi.org/10.1097/CCO.0000000000000390] [PMID: 28665819]
[274]
Yin, X.; Yang, S.; Zhang, M.; Yue, Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed. Pharmacother., 2019, 118, 109384.
[http://dx.doi.org/10.1016/j.biopha.2019.109384] [PMID: 31545292]
[275]
Zhang, J.; Chen, L.; Han, L.; Shi, Z.; Zhang, J.; Pu, P.; Kang, C. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett., 2015, 356(2 Pt B), 929-936.
[http://dx.doi.org/10.1016/j.canlet.2014.11.003] [PMID: 25444902]
[276]
Chen, X.; Hao, A.; Li, X.; Du, Z.; Li, H.; Wang, H.; Yang, H.; Fang, Z. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J. Pineal Res., 2016, 61(2), 208-217.
[http://dx.doi.org/10.1111/jpi.12341] [PMID: 27121240]
[277]
Gu, J.; Lu, Z.; Ji, C.; Chen, Y.; Liu, Y.; Lei, Z.; Wang, L.; Zhang, H-T.; Li, X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed. Pharmacother., 2017, 93, 969-975.
[http://dx.doi.org/10.1016/j.biopha.2017.07.010] [PMID: 28724215]
[278]
Yang, L.; Li, C.; Liang, F.; Fan, Y.; Zhang, S. MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed. Pharmacother., 2017, 95, 1759-1764.
[http://dx.doi.org/10.1016/j.biopha.2017.08.088] [PMID: 28962081]
[279]
Ling, N.; Gu, J.; Lei, Z.; Li, M.; Zhao, J.; Zhang, H-T.; Li, X. microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol. Rep., 2013, 30(5), 2111-2118.
[http://dx.doi.org/10.3892/or.2013.2685] [PMID: 23970205]
[280]
Chen, X.; Wang, Z.; Ma, H.; Zhang, S.; Yang, H.; Wang, H.; Fang, Z. Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/CCL20 in glioma. Oncotarget, 2017, 8(55), 93580-93592.
[http://dx.doi.org/10.18632/oncotarget.20525] [PMID: 29212174]
[281]
Brand, O.J.; Somanath, S.; Moermans, C.; Yanagisawa, H.; Hashimoto, M.; Cambier, S.; Markovics, J.; Bondesson, A.J.; Hill, A.; Jablons, D.; Wolters, P.; Lou, J.; Marks, J.D.; Baron, J.L.; Nishimura, S.L. Transforming growth factor-β and interleukin-1β signaling pathways converge on the chemokine CCL20 promoter. J. Biol. Chem., 2015, 290(23), 14717-14728.
[http://dx.doi.org/10.1074/jbc.M114.630368] [PMID: 25918170]
[282]
Xu, C.S.; Wang, Z.F.; Huang, X.D.; Dai, L.M.; Cao, C.J.; Li, Z.Q. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J. Transl. Med., 2015, 13(1), 95.
[http://dx.doi.org/10.1186/s12967-015-0454-8] [PMID: 25889845]
[283]
Gutenberg, A.; Brück, W.; Buchfelder, M.; Ludwig, H.C. Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas. Acta Neuropathol., 2004, 108(3), 224-230.
[http://dx.doi.org/10.1007/s00401-004-0886-3] [PMID: 15221336]
[284]
Avraham, H.; Park, S.-Y.; Schinkmann, K.; Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal., 2000, 12(3), 123-133.
[http://dx.doi.org/10.1016/S0898-6568(99)00076-5] [PMID: 10704819]
[285]
Wang, J.; Hao, H.; Yao, L.; Zhang, X.; Zhao, S.; Ling, E.A.; Hao, A.; Li, G. Melatonin suppresses migration and invasion via inhibition of oxidative stress pathway in glioma cells. J. Pineal Res., 2012, 53(2), 180-187.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00985.x] [PMID: 22404622]
[286]
Ma, H.; Wang, Z.; Hu, L.; Zhang, S.; Zhao, C.; Yang, H.; Wang, H.; Fang, Z.; Wu, L.; Chen, X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun., 2018, 496(4), 1322-1330.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.010] [PMID: 29408377]
[287]
Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release, 2014, 196, 96-105.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.027] [PMID: 25307998]
[288]
Al Othman, Z.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules, 2011, 16(10), 8919-8929.
[http://dx.doi.org/10.3390/molecules16108919] [PMID: 22024959]
[289]
Clark, R.; Lee, S.-H. Anticancer properties of capsaicin against human cancer. Anticancer Res., 2016, 36(3), 837-843.
[PMID: 26976969]
[290]
Smith, H.; Brooks, J.R. Capsaicin-based therapies for pain control. Prog. Drug Res., 2014, 68, 129-146.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_5]
[291]
Pokorná, J.; Staffa, E.; Bernard, V.; Mornstein, V. Capsaicin effects on human facial and neck temperature. In: World Congress on Medical Physics and Biomedical Engineering 2018; Lhotska, L.; Sukupova, L.; Lacković, I.; Ibbott, G., Eds.; Springer: Singapore, 2019; pp. 87-90.
[292]
Chaudhary, A.; Gour, J.K.; Rizvi, S.I. Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is non-receptor mediated. Arch. Physiol. Biochem., 2022, 128(1), 141-147.
[PMID: 31566018]
[293]
Wang, J.; Tian, W.; Wang, S.; Wei, W.; Wu, D.; Wang, H.; Wang, L.; Yang, R.; Ji, A.; Li, Y. Anti-inflammatory and retinal protective effects of capsaicin on ischaemia-induced injuries through the release of endogenous somatostatin. Clin. Exp. Pharmacol. Physiol., 2017, 44(7), 803-814.
[http://dx.doi.org/10.1111/1440-1681.12769] [PMID: 28429852]
[294]
Vianna, L.C.; Fernandes, I.A.; Barbosa, T.C.; Teixeira, A.L.; Nóbrega, A.C.L. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans. J. Appl. Physiol., 2018, 125(2), 362-368.
[http://dx.doi.org/10.1152/japplphysiol.00038.2018] [PMID: 29698108]
[295]
Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Biosci. Rep., 2017, 37(3), BSR20170286.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[296]
Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[297]
Kaiser, M.; Burek, M.; Britz, S.; Lankamp, F.; Ketelhut, S.; Kemper, B.; Förster, C.; Gorzelanny, C.; Goycoolea, F.M. The influence of capsaicin on the integrity of microvascular endothelial cell monolayers. Int. J. Mol. Sci., 2018, 20(1), 122.
[http://dx.doi.org/10.3390/ijms20010122] [PMID: 30598013]
[298]
Beggs, S.; Liu, X.J.; Kwan, C.; Salter, M.W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol. Pain, 2010, 6(1), 74.
[http://dx.doi.org/10.1186/1744-8069-6-74] [PMID: 21044346]
[299]
Bok, E.; Chung, Y.C.; Kim, K.-S.; Baik, H.H.; Shin, W.-H.; Jin, B.K. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp. Mol. Med., 2018, 50(7), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0111-4] [PMID: 29968707]
[300]
Zhu, Y.; Wang, M.; Zhang, J.; Peng, W.; Firempong, C.K.; Deng, W.; Wang, Q.; Wang, S.; Shi, F.; Yu, J.; Xu, X.; Zhang, W. Improved oral bioavailability of capsaicin via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats. Arch. Pharm. Res., 2015, 38(4), 512-521.
[http://dx.doi.org/10.1007/s12272-014-0481-7] [PMID: 25231341]
[301]
Bhagwat, D.A.; Swami, P.A.; Nadaf, S.J.; Choudhari, P.B.; Kumbar, V.M.; More, H.N.; Killedar, S.G.; Kawtikwar, P.S. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In-vitro, in-silico, and in-vivo characterization. J. Pharm. Sci., 2021, 110(1), 280-291.
[http://dx.doi.org/10.1016/j.xphs.2020.10.020] [PMID: 33069713]
[302]
Jiang, Z.; Wang, X.; Zhang, Y.; Zhao, P.; Luo, Z.; Li, J. Effect of capsaicin-loading nanoparticles on gliomas. J. Nanosci. Nanotechnol., 2015, 15(12), 9834-9839.
[http://dx.doi.org/10.1166/jnn.2015.10313] [PMID: 26682421]
[303]
Xie, L.; Xiang, G.H.; Tang, T.; Tang, Y.; Zhao, L.Y.; Liu, D.; Zhang, Y.R.; Tang, J.T.; Zhou, S.; Wu, D.H. Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+-mediated mitochondrial pathway. Mol. Med. Rep., 2016, 14(5), 4198-4208.
[http://dx.doi.org/10.3892/mmr.2016.5784] [PMID: 27748914]
[304]
Pramanik, K.C.; Boreddy, S.R.; Srivastava, S.K. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One, 2011, 6(5), e20151.
[http://dx.doi.org/10.1371/journal.pone.0020151] [PMID: 21647434]
[305]
Halestrap, A.P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 2009, 46(6), 821-831.
[http://dx.doi.org/10.1016/j.yjmcc.2009.02.021] [PMID: 19265700]
[306]
Kinnally, K.W.; Peixoto, P.M.; Ryu, S-Y.; Dejean, L.M. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta., 2011, 1813(4), 616-622.
[307]
Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie, 2017, 135, 111-125.
[http://dx.doi.org/10.1016/j.biochi.2017.02.001] [PMID: 28192157]
[308]
Kischkel, F.C.; Lawrence, D.A.; Chuntharapai, A.; Schow, P.; Kim, K.J.; Ashkenazi, A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 2000, 12(6), 611-620.
[http://dx.doi.org/10.1016/S1074-7613(00)80212-5] [PMID: 10894161]
[309]
Fallah, M.; Askari, G.; Soleimani, A.; Feizi, A.; Asemi, Z. Clinical trial of the effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in diabetic hemodialysis patients. Int. J. Prev. Med., 2019, 10(1), 12.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_418_18] [PMID: 30774846]
[310]
Duiker, E.W.; Mom, C.H.; de Jong, S.; Willemse, P.H.; Gietema, J.A.; van der Zee, A.G.; de Vries, E.G. The clinical trail of TRAIL. Eur. J. Cancer, 2006, 42(14), 2233-2240.
[http://dx.doi.org/10.1016/j.ejca.2006.03.018] [PMID: 16884904]
[311]
Ma, W.; Cui, Y.; Liu, M.; Tan, Z.; Jiang, Y. Downregulation of miR-125b promotes resistance of glioma cells to TRAIL through overexpression of Tafazzin which is a mitochondrial protein. Aging (Albany NY), 2019, 11(9), 2670-2680.
[http://dx.doi.org/10.18632/aging.101939] [PMID: 31056533]
[312]
Serrano-Saenz, S.; Palacios, C.; Delgado-Bellido, D.; López-Jiménez, L.; Garcia-Diaz, A.; Soto-Serrano, Y.; Casal, J.I.; Bartolomé, R.A.; Fernández-Luna, J.L.; López-Rivas, A.; Oliver, F.J. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death Dis., 2019, 10(2), 51.
[http://dx.doi.org/10.1038/s41419-018-1293-3] [PMID: 30718520]
[313]
Kim, J.Y.; Kim, E.H.; Kim, S.U.; Kwon, T.K.; Choi, K.S. Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis, 2010, 31(3), 367-375.
[http://dx.doi.org/10.1093/carcin/bgp298] [PMID: 19939880]
[314]
Shin, S.; Sung, B.-J.; Cho, Y.-S.; Kim, H.-J.; Ha, N.-C.; Hwang, J.-I.; Chung, C.-W.; Jung, Y.-K.; Oh, B.-H. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001, 40(4), 1117-1123.
[http://dx.doi.org/10.1021/bi001603q] [PMID: 11170436]
[315]
Zhang, S.; Zhang, C.; Song, Y.; Zhang, J.; Xu, J. Prognostic role of survivin in patients with glioma. Medicine (Baltimore), 2018, 97(17), e0571.
[http://dx.doi.org/10.1097/MD.0000000000010571] [PMID: 29703049]
[316]
Szoka, L.; Palka, J. Capsaicin up-regulates pro-apoptotic activity of thiazolidinediones in glioblastoma cell line. Biomed. Pharmacother., 2020, 132, 110741.
[http://dx.doi.org/10.1016/j.biopha.2020.110741]
[317]
Baradaran, A. Beyond mineral metabolism, the bright immunomodulatory effect of vitamin D in renal disease. J. Nephropharmacol., 2012, 1(2), 17-18.
[PMID: 28197428]
[318]
Nasri, H.; Behradmanesh, S.; Ahmadi, A.; Rafieian-Kopaei, M. Impact of oral vitamin D (cholecalciferol) replacement therapy on blood pressure in type 2 diabetes patients; a randomized, double-blind, placebo controlled clinical trial. J. Nephropathol., 2014, 3(1), 29-33.
[PMID: 24644541]
[319]
Kharat, M.; McClements, D.J. Recent advances in colloidal delivery systems for nutraceuticals: A case study - Delivery by Design of curcumin. J. Colloid Interface Sci., 2019, 557, 506-518.
[http://dx.doi.org/10.1016/j.jcis.2019.09.045] [PMID: 31542691]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy