Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

The Role of Sesamin in Targeting Neurodegenerative Disorders: A Systematic Review

Author(s): Mohammad Amin Ghaderi, Seyed Ahmad Emami, Mahla Daliri Beirak Olia and Behjat Javadi*

Volume 23, Issue 6, 2023

Published on: 23 August, 2022

Page: [756 - 770] Pages: 15

DOI: 10.2174/1389557522666220523112027

Price: $65

Abstract

Background: Neurodegenerative Diseases (NDs) are characterized by progressive neuronal deterioration as a result of several pathogenesis mechanisms. Phytochemicals, including sesamin with multitarget activities, have been studied widely.

Objective: In this review, we aim to survey the neuroprotective effects of sesamin on NDs and its mechanisms of action.

Methods: Searching GoogleScholar, PubMed, and Science Direct databases, we reviewed original English language articles on sesamin effects against NDs, specifically Alzheimer’s Disease (AD) and Parkinson's Disease (PD), either in vivo or in vitro settings, with no time limitation.

Results: Sesamin has been reported to interfere with NDs progression through its antioxidative, antiinflammatory, and antiapoptotic actions in most of the retrieved studies. Sesamin also can prevent amyloid-β aggregation in AD models and elevate dopamine levels in PD-induced models.

Conclusion: The results of this study revealed the beneficial effects of sesamin in the prevention and management of NDs, including AD and PD; however, no clinical data supporting these effects in humans is available, which highlights the need for designing clinical trials to evaluate the efficacy, proper dosage, pharmacokinetics aspects, and possible side effects of sesamin in humans.

Keywords: Sesamin, neurodegenerative disease, alzheimer’s disease, parkinson's disease, natural products, systematic review.

« Previous
Graphical Abstract

[1]
Cano, A.; Sánchez-López, E.; Ettcheto, M.; López-Machado, A.; Espina, M.; Souto, E.B.; Galindo, R.; Camins, A.; García, M.L.; Turowski, P. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (Lond.), 2020, 15(12), 1239-1261.
[http://dx.doi.org/10.2217/nnm-2019-0443] [PMID: 32370600]
[2]
Peplow, P.V.; Martinez, B.; Gennarelli, T.A.   In: Neurodegenerative Diseases Biomarkers; Peplow, P.V.; Martinez, B.; Gennarelli, T.A., Eds.; Humana: New York, NY, 2022; pp. 3-8.
[http://dx.doi.org/10.1007/978-1-0716-1712-0_1]
[3]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[4]
Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Ventura-Spagnolo, E.; Gangemi, S.; Calapai, G.; Navarra, M. Neurodegenerative diseases: Might citrus flavonoids play a protective role? Molecules, 2016, 21(10), 1312.
[http://dx.doi.org/10.3390/molecules21101312] [PMID: 27706034]
[5]
Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139.
[http://dx.doi.org/10.1007/s12325-019-01148-5] [PMID: 31782132]
[6]
Hong, H.; Kim, B.S. Im H.-I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J., 2016, 20(Suppl. 1), S2-S7.
[http://dx.doi.org/10.5213/inj.1632604.302] [PMID: 27230456]
[7]
Scuderi, S.A.; Ardizzone, A.; Paterniti, I.; Esposito, E.; Campolo, M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants, 2020, 9(7), 630.
[http://dx.doi.org/10.3390/antiox9070630] [PMID: 32708926]
[8]
Javadi, B.; Sahebkar, A.; Emami, S.A. Medicinal plants for the treatment of asthma: A traditional Persian medicine perspective. Curr. Pharm. Des., 2017, 23(11), 1623-1632.
[http://dx.doi.org/10.2174/1381612822666161021143332] [PMID: 27774904]
[9]
Kim, H.G.; Oh, M.S. Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 57-75.
[http://dx.doi.org/10.2174/138161212798919002] [PMID: 22316321]
[10]
Ho, Y-S.; So, K-F.; Chang, R.C-C. Anti-aging herbal medicine-how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev., 2010, 9(3), 354-362.
[http://dx.doi.org/10.1016/j.arr.2009.10.001] [PMID: 19833234]
[11]
Wu, M-S.; Aquino, L.B.B.; Barbaza, M.Y.U.; Hsieh, C-L.; Castro-Cruz, D.; Kathlia, A. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L. -A review. Molecules, 2019, 24, 4426.
[http://dx.doi.org/10.3390/molecules24244426]
[12]
Zhao, M.; Zheng, S.; Yang, J.; Wu, Y.; Ren, Y.; Kong, X.; Li, W.; Xuan, J. Suppression of TGF-β1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS One, 2015, 10(3), e0121312.
[http://dx.doi.org/10.1371/journal.pone.0121312] [PMID: 25793583]
[13]
Ruankham, W.; Suwanjang, W.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Sesamin and sesamol attenuate H2O2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr. Neurosci., 2021, 24(2), 90-101.
[http://dx.doi.org/10.1080/1028415X.2019.1596613] [PMID: 30929586]
[14]
Cao, J.; Feng, C.; Xie, L.; Li, L.; Chen, J.; Yun, S.; Guo, W.; Wang, T.; Wu, Y.; Meng, R.; Wang, G.; He, X.; Luo, Y. Sesamin attenuates histological alterations, oxidative stress and expressions of immune-related genes in liver of zebrafish (Danio rerio) exposed to fluoride. Fish Shellfish Immunol., 2020, 106, 715-723.
[http://dx.doi.org/10.1016/j.fsi.2020.08.039] [PMID: 32860904]
[15]
Park, H.J.; Zhao, T.T.; Lee, K.S.; Lee, S.H.; Shin, K.S.; Park, K.H.; Choi, H.S.; Lee, M.K. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochem. Int., 2015, 83-84, 19-27.
[http://dx.doi.org/10.1016/j.neuint.2015.01.003] [PMID: 25747493]
[16]
Ito, N.; Saito, H.; Seki, S.; Ueda, F.; Asada, T. Effects of composite supplement containing astaxanthin and sesamin on cognitive functions in people with mild cognitive impairment: A randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis., 2018, 62(4), 1767-1775.
[http://dx.doi.org/10.3233/JAD-170969] [PMID: 29614679]
[17]
Hung, C-T.; Chen, L-D.; Hou, C-W. Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury. Iran. J. Basic Med. Sci., 2017, 20(12), 1324-1330.
[PMID: 29238467]
[18]
Mohamed, S.M.; Chaurasiya, N.D.; Mohamed, N.M.; Bayoumi, S.A.L.; Tekwani, B.L.; Ross, S.A. Promising selective MAO-B inhibition by sesamin, a lignan from Zanthoxylum flavum stems. Saudi Pharm. J., 2020, 28(4), 409-413.
[http://dx.doi.org/10.1016/j.jsps.2020.02.001] [PMID: 32273799]
[19]
Udomruk, S.; Kaewmool, C.; Phitak, T.; Pothacharoen, P.; Kongtawelert, P. Sesamin promotes neurite outgrowth under insufficient nerve growth factor condition in PC12 cells through ERK1/2 pathway and SIRT1 modulation. Evid. Based Complement. Alternat. Med., 2020, 2020, 9145458.
[20]
Bournival, J.; Francoeur, M-A.; Renaud, J.; Martinoli, M-G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res., 2012, 15(3), 322-333.
[http://dx.doi.org/10.1089/rej.2011.1242] [PMID: 22524206]
[21]
Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol., 2021, 267, 113468.
[http://dx.doi.org/10.1016/j.jep.2020.113468] [PMID: 33049345]
[22]
Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol., 2010, 8(6), e1000412.
[http://dx.doi.org/10.1371/journal.pbio.1000412] [PMID: 20613859]
[23]
Ulrey, A.; Kolle, S.; Landsiedel, R.; Hill, E. How a GIVIMP certification program can increase confidence in in vitro methods. Altern. Anim. Exp., 2021, 38(2), 316-318.
[http://dx.doi.org/10.14573/altex.2102261] [PMID: 33871038]
[24]
Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurother, 2015, 12(2), 364-375.
[http://dx.doi.org/10.1007/s13311-014-0329-3] [PMID: 25567201]
[25]
Yaribeygi, H.; Panahi, Y.; Javadi, B.; Sahebkar, A.; Targets, N.D-D. The underlying role of oxidative stress in neurodegeneration: a mechanistic review. CNS Neurol. Disord. Drug Targets, 2018, 17(3), 207-215.
[http://dx.doi.org/10.2174/1871527317666180425122557] [PMID: 29692267]
[26]
Caboni, P.; Sarais, G.; Aissani, N.; Tocco, G.; Sasanelli, N.; Liori, B.; Carta, A.; Angioni, A. Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from caper (Capparis spinosa) against Meloidogyne incognita. J. Agric. Food Chem., 2012, 60(30), 7345-7351.
[http://dx.doi.org/10.1021/jf302075w] [PMID: 22769561]
[27]
Sawada, M. Neuroprotective and toxic changes in microglia in neurodegenerative disease. Parkinsonism Relat. Disord., 2009, 15(Suppl. 1), S39-S41.
[http://dx.doi.org/10.1016/S1353-8020(09)70011-2] [PMID: 19131042]
[28]
Iranshahy, M.; Javadi, B. Diet therapy for the treatment of Alzheimer’s disease in view of traditional Persian medicine: A review. Iran. J. Basic Med. Sci., 2019, 22(10), 1102-1117.
[PMID: 31998450]
[29]
Dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; Dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2018, 25(26), 3141-3159.
[http://dx.doi.org/10.2174/0929867323666161213101126] [PMID: 30191777]
[30]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[31]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[32]
Bournival, J.; Plouffe, M.; Renaud, J.; Provencher, C.; Martinoli, M.-G. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longev, 2012, 2012.
[33]
Tayarani-Najaran, Z.; Hadipour, E.; Seyed Mousavi, S.M.; Emami, S.A.; Mohtashami, L.; Javadi, B. Protective effects of Lavandula stoechas L. methanol extract against 6-OHDA-induced apoptosis in PC12 cells. J. Ethnopharmacol., 2021, 273, 114023.
[http://dx.doi.org/10.1016/j.jep.2021.114023] [PMID: 33716081]
[34]
Tayarani-Najaran, Z.; Rashidi, R.; Rashedinia, M.; Khoshbakht, S.; Javadi, B. The protective effect of Lavandula officinalis extract on 6-hydroxydopamine-induced reactive oxygen species and apoptosis in PC12 cells. Eur. J. Integr. Med., 2021, 41, 101233.
[http://dx.doi.org/10.1016/j.eujim.2020.101233]
[35]
Park, H.J.; Lee, K.S.; Zhao, T.T.; Lee, S.H.; Shin, K.S.; Park, K.H. Effects of (-)-sesamin on dopamine biosynthesis in PC12 cells. Nat. Prod. Sci., 2014, 20, 296-300.
[36]
Moore, D.J.; West, A.B.; Dawson, V.L.; Dawson, T.M. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci., 2005, 28, 57-87.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135718] [PMID: 16022590]
[37]
Indo, H.P.; Nakanishi, I.; Ohkubo, K.; Yen, H-C.; Nyui, M.; Manda, S. Comparison of in vivo and in vitro antioxidative parameters for eleven food factors. RSC Adv, 2013, 3, 4535-4538.
[http://dx.doi.org/10.1039/c3ra22686g]
[38]
Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci., 2019, 20(3), 148-160.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[39]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[40]
Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement., 2016, 12(6), 719-732.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[41]
Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau protein modifications and interactions: Their role in function and dysfunction. Int. J. Mol. Sci., 2014, 15(3), 4671-4713.
[http://dx.doi.org/10.3390/ijms15034671] [PMID: 24646911]
[42]
Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid. Med. Cell. Longev., 2014, 2014, 427318.
[http://dx.doi.org/10.1155/2014/427318]
[43]
Naoi, M.; Shamoto-Nagai, M.; Maruyama, W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol., 2019, 14, FNL9.
[http://dx.doi.org/10.2217/fnl-2018-0028]
[44]
Uddin, M.S.; Hossain, M.F.; Mamun, A.A.; Shah, M.A.; Hasana, S.; Bulbul, I.J.; Sarwar, M.S.; Mansouri, R.A.; Ashraf, G.M.; Rauf, A.; Abdel-Daim, M.M.; Bin-Jumah, M.N. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci. Total Environ., 2020, 725, 138313.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138313] [PMID: 32464743]
[45]
Hamada, N.; Tanaka, A.; Fujita, Y.; Itoh, T.; Ono, Y.; Kitagawa, Y.; Tomimori, N.; Kiso, Y.; Akao, Y.; Nozawa, Y.; Ito, M. Involvement of heme oxygenase-1 induction via Nrf2/ARE activation in protection against H2O2-induced PC12 cell death by a metabolite of sesamin contained in sesame seeds. Bioorg. Med. Chem., 2011, 19(6), 1959-1965.
[http://dx.doi.org/10.1016/j.bmc.2011.01.059] [PMID: 21345685]
[46]
Shimoyoshi, S.; Takemoto, D.; Ono, Y.; Kitagawa, Y.; Shibata, H.; Tomono, S.; Unno, K.; Wakabayashi, K. Sesame lignans suppress age-related cognitive decline in senescence-accelerated mice. Nutrients, 2019, 11(7), 1582.
[http://dx.doi.org/10.3390/nu11071582] [PMID: 31336975]
[47]
Udomruk, S.; Kaewmool, C.; Pothacharoen, P.; Phitak, T.; Kongtawelert, P. Sesamin suppresses LPS-induced microglial activation via regulation of TLR4 expression. J. Funct. Foods, 2018, 49, 32-43.
[http://dx.doi.org/10.1016/j.jff.2018.08.020]
[48]
Hou, R.C-W.; Wu, C.C.; Yang, C-H.; Jeng, K-C.G. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci. Lett., 2004, 367(1), 10-13.
[http://dx.doi.org/10.1016/j.neulet.2004.05.073] [PMID: 15308287]
[49]
Hou, C-W.; Chen, Y-L.; Chuang, S-H.; Wang, J-S.; Jeng, K-C. Protective effect of a sesamin derivative, 3-bis (3-methoxybenzyl) butane-1, 4-diol on ischemic and hypoxic neuronal injury. J. Biomed. Sci., 2014, 21, 15.
[http://dx.doi.org/10.1186/1423-0127-21-15] [PMID: 24548760]
[50]
Jeng, K-C.G.; Hou, R.C.; Wang, J-C.; Ping, L-I. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol. Lett., 2005, 97(1), 101-106.
[http://dx.doi.org/10.1016/j.imlet.2004.10.004] [PMID: 15626481]
[51]
Keowkase, R.; Shoomarom, N.; Bunargin, W.; Sitthithaworn, W.; Weerapreeyakul, N. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed. Pharmacother., 2018, 107, 656-664.
[http://dx.doi.org/10.1016/j.biopha.2018.08.037] [PMID: 30118882]
[52]
Udomruk, S.; Wudtiwai, B.; Hla Shwe, T.; Phitak, T.; Pothacharoen, P.; Phimphilai, M.; Kongtawelert, P. Sesamin suppresses advanced glycation end products induced microglial reactivity using BV2 microglial cell line as a model. Brain Res. Bull., 2021, 172, 190-202.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.012] [PMID: 33894297]
[53]
Amtul, Z.; Uhrig, M.; Wang, L.; Rozmahel, R.F.; Beyreuther, K. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s disease: Structural insight. Neurobiol. Aging, 2012, 33, 831.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.07.014]
[54]
Matsumura, S.; Murata, K.; Zaima, N.; Yoshioka, Y.; Morimoto, M.; Matsuda, H. Inhibitory activities of sesame seed extract and its constituents against β-secretase. Nat. Prod. Commun., 2016, 111934578X1601101112.
[http://dx.doi.org/10.1177/1934578X1601101112]
[55]
Iwamoto, K.; Matsumura, S.; Yoshioka, Y.; Yamamoto, A.; Makino, S.; Moriyama, T.; Zaima, N. Using turmeric oil as a solvent improves the distribution of sesamin-sesamolin in the serum and brain of mice. Lipids, 2019, 54(5), 311-320.
[http://dx.doi.org/10.1002/lipd.12147] [PMID: 30993746]
[56]
Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761.
[http://dx.doi.org/10.1016/j.biopha.2017.01.123] [PMID: 28157651]
[57]
Ahmad, S.; Khan, M.B.; Hoda, M.N.; Bhatia, K.; Haque, R.; Fazili, I.S.; Jamal, A.; Khan, J.S.; Katare, D.P. Neuroprotective effect of sesame seed oil in 6-hydroxydopamine induced neurotoxicity in mice model: Cellular, biochemical and neurochemical evidence. Neurochem. Res., 2012, 37(3), 516-526.
[http://dx.doi.org/10.1007/s11064-011-0638-4] [PMID: 22089932]
[58]
Lahaie-Collins, V.; Bournival, J.; Plouffe, M.; Carange, J.; Martinoli, M-G. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress. Oxid. Med. Cell. Longev., 2008, 1(1), 54-62.
[http://dx.doi.org/10.4161/oxim.1.1.6958] [PMID: 19794909]
[59]
Zhang, M.; Lee, H.J.; Park, K.H.; Park, H.J.; Choi, H.S.; Lim, S.C.; Lee, M.K. Modulatory effects of sesamin on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology, 2012, 62(7), 2219-2226.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.012] [PMID: 22293035]
[60]
Zhao, T.T.; Shin, K.S.; Park, H.J.; Kim, K.S.; Lee, K.E.; Cho, Y.J.; Lee, M.K. Effects of (-)-sesamin on chronic stress-induced memory deficits in mice. Neurosci. Lett., 2016, 634, 114-118.
[http://dx.doi.org/10.1016/j.neulet.2016.09.055] [PMID: 27717829]
[61]
Wu, Y.; Shamoto-Nagai, M.; Maruyama, W.; Osawa, T.; Naoi, M. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein. J. Neural Transm. (Vienna), 2017, 124(1), 89-98.
[http://dx.doi.org/10.1007/s00702-016-1624-4] [PMID: 27640013]
[62]
Yasuda, K.; Sakaki, T. How is sesamin metabolised in the human liver to show its biological effects? Expert Opin. Drug Metab. Toxicol., 2012, 8(1), 93-102.
[http://dx.doi.org/10.1517/17425255.2012.637917] [PMID: 22098100]
[63]
Lim, Y-P.; Ma, C-Y.; Liu, C-L.; Lin, Y-H.; Hu, M-L.; Chen, J-J.; Hung, D.Z.; Hsieh, W.T.; Huang, J.D. Sesamin: A naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation. Evid. Based Complement. Alternat. Med., 2012, 2012, 242810.
[http://dx.doi.org/10.1155/2012/242810] [PMID: 22645625]
[64]
Yasuda, K.; Ikushiro, S.; Kamakura, M.; Ohta, M.; Sakaki, T. Metabolism of sesamin by cytochrome P450 in human liver microsomes. Drug Metab. Dispos., 2010, 38(12), 2117-2123.
[http://dx.doi.org/10.1124/dmd.110.035659] [PMID: 20851877]
[65]
Sakaki, T.; Yasuda, K.; Nishikawa, M.; Ikushiro, S. Metabolism of sesamin and drug-sesamin interaction. J. Pharm. Soc. Jpn., 2018, 138(3), 357-363.
[http://dx.doi.org/10.1248/yakushi.17-00191-4] [PMID: 29503429]
[66]
Xu, R.A.; Sun, W.; Chen, R.; Liu, N.; Huang, C. Inhibitory effect of sesamin on ivabradine metabolism in rats. Pak. J. Pharm. Sci., 2020, 33(6), 2543-2546.
[PMID: 33867328]
[67]
Tomimori, N.; Tanaka, Y.; Kitagawa, Y.; Fujii, W.; Sakakibara, Y.; Shibata, H. Pharmacokinetics and safety of the sesame lignans, sesamin and episesamin, in healthy subjects. Biopharm. Drug Dispos., 2013, 34(8), 462-473.
[http://dx.doi.org/10.1002/bdd.1862] [PMID: 24014208]
[68]
Le, T.D.; Inoue, Y.H. Sesamin activates Nrf2/Cnc-dependent transcription in the absence of oxidative stress in Drosophila adult brains. Antioxidants, 2021, 10(6), 924.
[http://dx.doi.org/10.3390/antiox10060924] [PMID: 34200419]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy