Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Virtual Screening, Molecular Docking, and Physiochemical Analysis of Novel 1,3-diphenyl-2-propene-1-one as Dual COX-2/5-LOX Inhibitors

Author(s): Roopal Mittal*, Shailesh Sharma, Amit Mittal*, Shubham Kumar and Ajay Singh Kushwah

Volume 21, Issue 2, 2024

Published on: 20 August, 2022

Page: [270 - 288] Pages: 19

DOI: 10.2174/1570180819666220523093435

Price: $65

Abstract

Background: Chronic inflammation is usually combated with non-steroidal anti-inflammatory drugs (NSAIDs). However, long-term use of NSAIDs causes side effects comprising gastric ulceration, abdominal discomfort, lack of anti-thrombolytic activity, and myocardial infarction. Emerging reports indicate alteration of arachidonic acid metabolism, via cyclooxygenase and lipoxygenase pathways, being investigated as potential anti-inflammatory agents. There is a dynamic balance shift toward lipoxygenase on cyclooxygenase inhibition, therefore there is a need to identify naïve dual COX-2/5-LOX inhibitory agents with better therapeutic and minimal side effects.

Objective: The current research focused on identifying a prospective natural candidate molecule (1,3- diphenyl-2-propene-1-one derivative) as a dual COX-2/5-LOX inhibitor by using structure-based database screening, molecular modelling, and in-silico ADMET analysis.

Methods: Virtual screening using the ZINC database, molecular docking of potential compounds, and ADME analysis of hit compounds were performed.

Results: A virtual library of 116 chalcone-based molecules was screened out. The molecules were docked for COX-2 (PDB ID-3LN1) and 5-LOX (PDB ID-3V99) enzymatic active pockets and resulted in compounds C96, C8, C83, C45, C20 better than zileuton. The potent compounds and zileuton showed good binding affinity in the range of -8.0 to -8.7 Kcal/mol in the COX-2 and -7.0 to -8.7Kcal/mol in the 5-LOX active site respectively. These compounds were further subjected to ADME analysis giving two plausible lead compounds C45 and C64 following ideal pharmacokinetic properties.

Conclusion: The research work provides abundant opportunities to explore computational and medicinal research areas which will facilitate the development of novel dual COX-2/5-LOX inhibitors in future experimental studies.

Keywords: Dual COX-2/5-LOX inhibition, chalcones, virtual screening, anti-inflammatory, ZINC database, ADME.

Graphical Abstract

[1]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[2]
Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell, 2015, 160(5), 816-827.
[http://dx.doi.org/10.1016/j.cell.2015.02.010] [PMID: 25723161]
[3]
Aparoy, P.; Kumar Reddy, K.; Reddanna, P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem., 2012, 19(22), 3763-3778.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[4]
Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis., 2003, 62(6), 501-509.
[http://dx.doi.org/10.1136/ard.62.6.501] [PMID: 12759283]
[5]
Hansen, F.K.; Khankischpur, M.; Tolaymat, I.; Mesaros, R.; Dannhardt, G.; Geffken, D. Efficient synthesis and 5-LOX/COX-inhibitory activity of some 3-hydroxybenzo[b]thiophene-2-carboxylic acid derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5031-5034.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.012] [PMID: 22749420]
[6]
Ghatak, S.; Vyas, A.; Misra, S.; O’Brien, P.; Zambre, A.; Fresco, V.M.; Markwald, R.R.; Swamy, K.V.; Afrasiabi, Z.; Choudhury, A.; Khetmalas, M.; Padhye, S. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: Synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg. Med. Chem. Lett., 2014, 24(1), 317-324.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.015] [PMID: 24295787]
[7]
Kulkarni, S.; Pal Singh, V. Licofelone--a novel analgesic and anti-inflammatory agent. Curr. Top. Med. Chem., 2007, 7(3), 251-263.
[http://dx.doi.org/10.2174/156802607779941305] [PMID: 17305568]
[8]
Koeberle, A.; Siemoneit, U.; Bühring, U.; Northoff, H.; Laufer, S.; Albrecht, W.; Werz, O. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther., 2008, 326(3), 975-982.
[http://dx.doi.org/10.1124/jpet.108.139444] [PMID: 18550688]
[9]
Fischer, L.; Hornig, M.; Pergola, C.; Meindl, N.; Franke, L.; Tanrikulu, Y.; Dodt, G.; Schneider, G.; Steinhilber, D.; Werz, O. The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. Br. J. Pharmacol., 2007, 152(4), 471-480.
[http://dx.doi.org/10.1038/sj.bjp.0707416] [PMID: 17704828]
[10]
Bertolini, A.; Ottani, A.; Sandrini, M. Dual acting anti-inflammatory drugs: A reappraisal. Pharmacol. Res., 2001, 44(6), 437-450.
[http://dx.doi.org/10.1006/phrs.2001.0872] [PMID: 11735348]
[11]
P, J.J.; Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci., 2018, 121, 356-381.
[http://dx.doi.org/10.1016/j.ejps.2018.06.003] [PMID: 29883727]
[12]
Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; D’Agostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem., 2018, 153, 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[13]
Prashar, H.; Chawla, A.; Sharma, A.K.; Kharb, R. Chalcone as a versatile moiety for diverse pharmacological activities. Int. J. Pharm. Sci. Res., 2012, 3(7), 1913.
[14]
Bukhari, S.N.A.; Ahmad, W.; Butt, A.M.; Ahmad, N.; Amjad, M.W.B.; Hussain, M.A.; Trivedi, A.R. Synthesis and evaluation of chalcone analogues and pyrimidines as cyclooxygenase (COX) inhibitors. Afr. J. Pharm. Pharmacol., 2012, 6(14), 1064-1068.
[http://dx.doi.org/10.5897/AJPP12.022]
[15]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Chaitanya, M.; Arunasree, K.M.; Alam, M.S. Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur. J. Med. Chem., 2013, 65, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.056] [PMID: 23693150]
[16]
Mittal, R.; Sharma, S.; Kushwah, A.S. An overview of novel bioactive compounds with potent anti-inflammatory activity via dual COX-2 and 5-LOX enzyme inhibition. Curr. Bioact. Compd., 2021, 18.
[http://dx.doi.org/10.2174/1573407218666211230151139]
[17]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[18]
Hara, H.; Ikeda, R.; Ninomiya, M.; Kamiya, T.; Koketsu, M.; Adachi, T. Newly synthesized ‘hidabeni’ chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia. Biol. Pharm. Bull., 2014, 37(6), 1042-1049.
[http://dx.doi.org/10.1248/bpb.b14-00116] [PMID: 24882415]
[19]
Bayati, S.; Yazdanparast, R.; Majd, S.S.; Oh, S. Protective effects of 1,3-diaryl-2-propen-1-one derivatives against H2O2-induced damage in SK-N-MC cells. J. Appl. Toxicol., 2011, 31(6), 545-553.
[http://dx.doi.org/10.1002/jat.1594] [PMID: 21154880]
[20]
Valavanidis, A.; Vlachogianni, T. Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. In: Nat. Prod. Chem; Atta ur, R, , Ed.; Elsevier, 2013; 35, pp. 269-295.
[http://dx.doi.org/10.1016/B978-0-444-62615-8.00008-4]
[21]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[22]
Bashary, R.; Khatik, G.L. Design, and facile synthesis of 1,3 diaryl-3-(arylamino)propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants. Bioorg. Chem., 2019, 82, 156-162.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.010] [PMID: 30321778]
[23]
Mady, M.F.; Awad, G.E.A.; Jørgensen, K.B. Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Eur. J. Med. Chem., 2014, 84, 433-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.042] [PMID: 25038485]
[24]
Jin, X.Y.; Lee, S.H.; Park, P.H.; Hur, J.; Kim, S.A.; Kim, H.S.; Sohn, D.H. 2′-Methoxy-4‘6’-bis(methoxymethoxy)chalcone inhibits nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Basic Clin. Pharmacol. Toxicol., 2010, 106(6), 454-460.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00524.x] [PMID: 20088848]
[25]
Mahmood, A.; Wang, J.L. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(28), 15684-15695.
[http://dx.doi.org/10.1039/D1TA04742F]
[26]
Mahmood, A.; Wang, J.L. Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy Environ. Sci., 2021, 14(1), 90-105.
[http://dx.doi.org/10.1039/D0EE02838J]
[27]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[28]
Pilipović A.; Mitrović D.; Obradović S.; Poša, M. Docking-based analysis and modeling of the activity of bile acids and their synthetic analogues on large conductance Ca2+ activated K channels in smooth muscle cells. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(23), 7501-7507.
[http://dx.doi.org/10.26355/eurrev_202112_27449] [PMID: 34919252]
[29]
Niu, K.; Chen, X.W.; Qin, Y.; Zhang, L.P.; Liao, R.X.; Sun, J.G. Celecoxib Blocks Vasculogenic Mimicry via an Off-Target Effect to Radiosensitize Lung Cancer Cells: An Experimental Study. Front. Oncol., 2021, 11, 697227-, 11, 697227.
[http://dx.doi.org/10.3389/fonc.2021.697227] [PMID: 34568026]
[30]
Mirza, S.B.; Lee, R.C.H.; Chu, J.J.H.; Salmas, R.E.; Mavromoustakos, T.; Durdagi, S. Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. J. Mol. Graph. Model., 2018, 79, 88-102.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.010] [PMID: 29156382]
[31]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[32]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.,, 2009, 31(2), NA.
[http://dx.doi.org/ 10.1002/jcc.21334 ] [PMID: 19499576]
[33]
Khokra, S.L. Jyoti; Chetan; Kaushik, P.; Alam, M.M.; Zaman, M.S.; Ahmad, A.; Khan, S.A.; Husain, A. Quinoline based furanones and their nitrogen analogues: Docking, synthesis and biological evaluation. Saudi Pharm. J., 2016, 24(6), 705-717.
[http://dx.doi.org/10.1016/j.jsps.2015.05.002] [PMID: 27829814]
[34]
Shaaban, M.A.; Kamal, A.M.; Faggal, S.I.; Farag, N.A.; Aborehab, N.M.; Elsahar, A.E.; Mohamed, K.O. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX‐2/5‐LOX inhibitors. Arch. Pharm. (Weinheim), 2020, 353(11), 2000027.
[http://dx.doi.org/10.1002/ardp.202000027] [PMID: 32696514]
[35]
Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Miri, R.; Shahabipour, S. Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct. Chem., 2015, 26(2), 607-621.
[http://dx.doi.org/10.1007/s11224-014-0523-2]
[36]
da Silva-Junior, E.F.; Barcellos Franca, P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[37]
Kumar, S.; Khatik, G.L.; Mittal, A. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo [3.2. 1] octane scaffold. Curr. Computeraided Drug Des., 2020, 16(2), 145-154.
[http://dx.doi.org/10.2174/1573409914666181019165821] [PMID: 30345926]
[38]
Razzaghi-Asl, N.; Firuzi, O.; Hemmateenejad, B.; Javidnia, K.; Edraki, N.; Miri, R. Design and synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridines as small molecule BACE-1 inhibitors. Bioorg. Med. Chem., 2013, 21(22), 6893-6909.
[http://dx.doi.org/10.1016/j.bmc.2013.09.033] [PMID: 24113238]
[39]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[40]
Bharathy, G.; Christian Prasana, J.; Muthu, S.; Irfan, A.; Basha Asif, F.; Saral, A.; Aayisha, S. Niranjana devi, R. Evaluation of electronic and biological interactions between N-[4-(Ethylsulfamoyl)phenyl]acetamide and some polar liquids (IEFPCM solvation model) with Fukui function and molecular docking analysis. J. Mol. Liq., 2021, 340, 117271.
[http://dx.doi.org/10.1016/j.molliq.2021.117271]
[41]
Tsolaki, E.; Eleftheriou, P.; Kartsev, V.; Geronikaki, A.; Saxena, A.K. Application of docking analysis in the prediction and biological evaluation of the lipoxygenase inhibitory action of thiazolyl derivatives of mycophenolic acid. Molecules, 2018, 23(7), 1621.
[http://dx.doi.org/10.3390/molecules23071621] [PMID: 29970872]
[42]
Saura, P.; Maréchal, J.D.; Masgrau, L.; Lluch, J.M.; González-Lafont, À. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: Consequences for the positional specificity of oxygenation. Phys. Chem. Chem. Phys., 2016, 18(33), 23017-23035.
[http://dx.doi.org/10.1039/C6CP03973A] [PMID: 27489112]
[43]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[44]
Zhang, Z.; Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B, 2018, 8(5), 721-732.
[http://dx.doi.org/10.1016/j.apsb.2018.04.003] [PMID: 30245961]

© 2025 Bentham Science Publishers | Privacy Policy