Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Reactivity of 9-anilinoacridine Derivatives as Potent Anticancer Agents: A DFT Approach

Author(s): Pubalee Sarmah* and Ramesh Chandra Deka

Volume 12, Issue 3, 2022

Published on: 10 October, 2022

Page: [203 - 215] Pages: 13

DOI: 10.2174/1877946812666220518144815

Price: $65

Abstract

Background: Anticancer activity of 9-anilinoacridine derivatives has been well reported. Although, the DNA-drug sequence-specific binding of these compounds may be affected by the substituent(s) on the aniline ring, it is still unclear which substituent (NH2 or CH2–OH) on the anilino ring of the compound is the critical element. A good understanding of chemical properties such as steric, lipophilic and electronic properties at the molecular level may provide important background for mutagenic and carcinogenic properties.

Objectives: The present study is an attempt to understand the reactive nature of some selected 9-anilinoacridine derivatives in both gas and solvent phases and to predict their anticancer activity by QSAR analysis.

Methods: Full geometry optimizations of all derivatives were carried out at gradient corrected DFT using DMol3 program. We used DNP basis set in combination with BLYP to study all the derivatives. The molecular mechanics parameters used for QSAR analysis were calculated using Hyperchem software.

Results: We found Compound (31) (R=COOC6H5) as the most stable compound and compound (6) (R1= NO2) as the most reactive one in both gas and solvent phases. Fukui function (f+) values of all the atoms showed that N10 is the most reactive atom in each of the molecule which indicates that N10 is the preferred site for nucleophilic attack. The final QSAR model with four parameters (electrophilicity, hardness, surface area, and molar refractivity) is capable of predicting anticancer activity of the compounds against leukemic HL-60 cell lines with r2 = 0.91 and 0.88 in both gas and solvent phases, respectively.

Conclusion: The global and local reactivity descriptors, such as hardness, chemical potential, electrophilicity index, Fukui function, and local philicity were calculated to understand the reactive nature and reactive sites of the compounds. The comparative QSAR study with the help of DFT and MM + techniques provides the importance of the selected descriptors in predicting the activity of the selected derivatives.

Keywords: Density Functional Theory, Reactivity descriptors, QSAR, Anticancer Activity, Solvent effect

Graphical Abstract

[1]
Legha, S.S.; Gutterman, J.U.; Hall, S.W.; Benjamin, R.S.; Burgess, M.A.; Valdivieso, M.; Bodey, G.P. Phase 1 clinical investigation of 4′-(9-acridinylamino) methanesulfon-m-anisidide (NSC 249992), a new acridine derivative. Cancer Res., 1978, 38(11 Pt 1), 3712-3716.
[PMID: 279397]
[2]
Arlin, Z.A. Current status of amsacrine (AMSA) combination chemotherapy programs in acute leukemia. Cancer Treat. Rep., 1983, 67(11), 967-970.
[PMID: 6357436]
[3]
Shoemaker, D.D.; Cysyk, R.L.; Gormley, P.E.; DeSouza, J.J.V.; Malspeis, L. Metabolism of 4′-(9-acridinylamino)methanesulfon-m-anisidide by rat liver microsomes. Cancer Res., 1984, 44(5), 1939-1945.
[PMID: 6546898]
[4]
Shoemaker, D.D.; Cysyk, R.L.; Padmanabhan, S.; Bhat, H.B.; Malspeis, L. Identification of the principal biliary me-tabolite of 4′-(9-acridinylamino) methanesulfon-m-anisidide in rats. Drug Metab. Dispos., 1982, 10(1), 35-39.
[PMID: 6124380]
[5]
Su, T.L.; Chou, T.C.; Kim, J.Y.; Huang, J.T.; Ciszewska, G.; Ren, W.Y.; Otter, G.M.; Sirotnak, F.M.; Watanabe, K.A. 9-substituted acridine derivatives with long half-life and potent antitumor activity: Synthesis and structure-activity rela-tionships. J. Med. Chem., 1995, 38(17), 3226-3235.
[http://dx.doi.org/10.1021/jm00017a006] [PMID: 7650675]
[6]
Scarborough, A.; Su, T.L.; Leteutre, F.F.; Pommier, Y.; Chou, T-C. DNA interaction and topoisomerase II inhibition by the antitumor agent 3′-(9-acridinylamino)-5′-hydroxy- methylaniline and derivatives. Bioorg. Chem., 1996, 24(3), 229-241.
[http://dx.doi.org/10.1006/bioo.1996.0021]
[7]
Nelson, E.M.; Tewey, K.M.; Liu, L.F. Mechanism of antitumor drug action: Poisoning of mammalian DNA topoisomer-ase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Proc. Natl. Acad. Sci. USA, 1984, 81(5), 1361-1365.
[http://dx.doi.org/10.1073/pnas.81.5.1361] [PMID: 6324188]
[8]
Pommier, Y.; Zwelling, L.A.; Kao-Shan, C-S.; Wang-Peng, J.; Bradley, M. Correlations between intercalator-induced DNA strand breaks and sister chromatide exchanges, mutations, and cytotoxicity in Chinese hamster cells. Cancer Res., 1985, 45, 3143-3149.
[PMID: 2988762]
[9]
Su, T.L.; Chen, C.H.; Huang, L.F.; Chen, C.H.; Basu, M.K.; Zhang, X.G.; Chou, T.C. Synthesis and structure-activity relationships of potential anticancer agents: Alkylcarbamates of 3-(9-acridinylamino)-5-hydroxymethylaniline. J. Med. Chem., 1999, 42(23), 4741-4748.
[http://dx.doi.org/10.1021/jm9901226] [PMID: 10579838]
[10]
Hansch, C.; Leo, A. Exploring QSAR: Fundamentals and applications in chemistry and biology; American Chemical Society: Washington, DC, 1995.
[11]
Cherkasov, A. Inductive descriptors: 10 successful years in QSAR. Curr. Comput. Aided. Drug Des., 2005, 1, 21-42.
[12]
Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev., 1996, 96(3), 1027-1044.
[http://dx.doi.org/10.1021/cr950202r] [PMID: 11848779]
[13]
Chen, J.; Shen, Y.; Liao, S.; Chen, L.; Zheng, K. DFT-based QSAR study and molecular design of AHMA derivatives as potent anticancer agents. Int. J. Quantum Chem., 2007, 107(6), 1468-1478.
[http://dx.doi.org/10.1002/qua.21285]
[14]
Chtita, S.; Hmamouchi, R.; Larif, M.; Ghamali, M.; Bouachrine, M.; Lakhlifia, T. QSPR studies of 9-aniliioacridine de-rivatives for their DNA drug binding properties based on density functional theory using statistical methods: Model, val-idation and influencing factors. J. Taibah Univ. Sci., 2016, 10(6), 868-876.
[http://dx.doi.org/10.1016/j.jtusci.2015.04.007]
[15]
Pan, S.; Gupta, A.; Roy, D.; Sharma, R.; Subramanian, V.; Mitra, A.; Chattaraj, P.K. Chemometrics applications and research: QSAR in Medicinal Chemistry, 1st ed; Apple Academic Press, 2016, pp. 183-214.
[16]
Jana, G.; Pal, R.; Sural, S.; Chattaraj, P.K. Quantitative structure-toxicity relationship models based on hydrophobicity and electrophilicity. In: Roy K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. 2020, 661-679.
[17]
Pal, R.; Pal, G.; Jana, G.; Chattaraj, P.K. An in silico QSAR model study using electrophilicity as a possible descriptor against T. Brucei. Int. J. Chemoinformatics Chem. Eng., 2019, 8(2), 57-68.
[http://dx.doi.org/10.4018/IJCCE.20190701.oa1]
[18]
Sarmah, P.; Deka, R.C. Solvent effect on the reactivity of Cis-platinum (II) complexes: A density functional approach. Int. J. Quantum Chem., 2008, 108(8), 1400-1409.
[http://dx.doi.org/10.1002/qua.21635]
[19]
Sarmah, P.; Deka, R.C. DFT-based QSAR and QSPR models of several cis-platinum complexes: Solvent effect. J. Comput. Aided Mol. Des., 2009, 23(6), 343-354.
[http://dx.doi.org/10.1007/s10822-009-9265-4] [PMID: 19308327]
[20]
Sarmah, P. DFT-based reactivity and QSPR studies of platinum (IV) anticancer drugs. J. Mol. Graph. Model., 2020, 100, 107682-107689.
[http://dx.doi.org/10.1016/j.jmgm.2020.107682] [PMID: 32739639]
[21]
Sarmah, P.; Deka, R.C. Anticancer activity of nucleoside analogues: A density functional theory based QSAR study. J. Mol. Model., 2010, 16(3), 411-418.
[http://dx.doi.org/10.1007/s00894-009-0551-9] [PMID: 19626352]
[22]
Barua, N.; Sarmah, P.; Hussain, I.; Deka, R.C.; Buragohain, A.K. DFT-based QSAR models to predict the antimycobac-terial activity of chalcones. Chem. Biol. Drug Des., 2012, 79(4), 553-559.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01289.x] [PMID: 22151277]
[23]
Rajkhowa, S.; Hussain, I.; Hazarika, K.K.; Sarmah, P.; Deka, R.C. Quantitative structure-activity relationships of the antimalarial agent artemisinin and some of its derivatives - a DFT approach. Comb. Chem. High Throughput Screen., 2013, 16(8), 590-602.
[http://dx.doi.org/10.2174/1386207311316080002] [PMID: 23597248]
[24]
Iczkowski, R.P.; Margrave, J.L. Electronegativity. J. Am. Chem. Soc., 1961, 83(17), 3547-3551.
[http://dx.doi.org/10.1021/ja01478a001]
[25]
Koopmans, T.A. The extended Koopmans’ theorem and its exactness. Physica, 1993, 1, 104.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[26]
Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[27]
Chatterjee, A.; Balaji, T.; Matsunaga, H.; Mizukami, F. A reactivity index study to monitor the role of solvation on the interaction of the chromophores with amino-functional silanol surface for colorimetric sensors. J. Mol. Graph. Model., 2006, 25(2), 208-218.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.009] [PMID: 16427343]
[28]
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106(14), 4049-4050.
[http://dx.doi.org/10.1021/ja00326a036]
[29]
Mendez, F.; Gazquez, J.L. Chemical reactivity of enolate ions: The local hard and soft acids and bases principle view-point. J. Am. Chem. Soc., 1994, 116(20), 9298-9301.
[http://dx.doi.org/10.1021/ja00099a055]
[30]
Yang, W.; Mortier, W.J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc., 1986, 108(19), 5708-5711.
[http://dx.doi.org/10.1021/ja00279a008] [PMID: 22175316]
[31]
Roy, R.K.; Krishnamurti, S.; Geerlings, P.; Pal, S. Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds. J. Phys. Chem. A, 1998, 102(21), 3746-3755.
[http://dx.doi.org/10.1021/jp973450v]
[32]
Delley, B. An all electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990, 92(1), 508-517.
[http://dx.doi.org/10.1063/1.458452]
[33]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[34]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the elec-tron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[35]
Hehre, W.J.; Ditchfield, R.; Pople, J.A. Further extensions of gaussian—type basis sets for use in molecular orbital stud-ies of organic molecules. J. Chem. Phys., 1972, 56(5), 2257-2261.
[http://dx.doi.org/10.1063/1.1677527]
[36]
Andzelm, J.; Koelmel, C.; Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys., 1995, 103(21), 9312-9320.
[http://dx.doi.org/10.1063/1.469990]
[37]
Hyper Chem Release 7. Moleculer Modelling System. Hypercube Inc. 2002. Available from: http: //www.hyper.com
[38]
MATLAB. The Math Works, Inc. Natick, USA. 1999.
[39]
Pearson, R.G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ., 1987, 64(7), 561-567.
[http://dx.doi.org/10.1021/ed064p561]
[40]
Parr, R.G.; Chatterj, P.K. Principle of maximum hardness. J. Am. Chem. Soc., 1991, 113(5), 1854-1855.
[http://dx.doi.org/10.1021/ja00005a072]
[41]
Dietrich, S.W.; Dreyer, N.D.; Hansch, C.; Bentley, D.L. Confidence interval estimators for parameters associated with quantitative structure-activity relationships. J. Med. Chem., 1980, 23(11), 1201-1205.
[http://dx.doi.org/10.1021/jm00185a010] [PMID: 7452669]
[42]
Cornish-Bowden, A.; Wong, J.T. Evaluation of rate constants for enzyme-catalysed reactions by the jackknife tech-nique. Application to liver alcohol dehydrogenase. Biochem. J., 1978, 175(3), 969-976.
[http://dx.doi.org/10.1042/bj1750969] [PMID: 743242]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy