Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Review Article

Mapping of New Pharmacological Alternatives in the Face of the Emergence of Antibiotic Resistance in COVID-19 Patents Treated for Opportunistic Respiratory Bacterial Pathogens

Author(s): Anamaria Mendonça Santos*, Mariana Mendonça Santos, José Adão Carvalho Nascimento Júnior, João Rafael Lisboa Rêgo Brito, Tatianny de Araújo Andrade, Luiza Abrahão Frank and Mairim Russo Serafini*

Volume 17, Issue 1, 2022

Published on: 22 July, 2022

Page: [34 - 53] Pages: 20

DOI: 10.2174/1574891X16666220518142347

Price: $65

Abstract

Background: The increase in bacterial resistance against antibiotics is thought to be another type of pandemic after COVID-19. Emergency treatment based on antibiotics is a major influence in increasing this resistance. Bacteria, such as Klebsiella pneumoniae, are the most affected by the indiscriminate use of antibiotics, since they are resistant to most antibiotics currently available on the market.

Objective: This review aimed to evaluate patents of new drugs and formulations, for the treatment of infections caused by Klebsiella pneumoniae.

Methods: The present patent review was carried out through a specialized search database Espacenet. The selection was based on the criteria of patents published from 2010 to May 2021, in any language, and containing the keywords in title or abstract. Also, a research was performed on the PubMed database, using the inclusion criteria.

Results: Twenty-two patents were selected for the analysis according to the aim of the study. The advance of new patents has been mostly observed in the World Intellectual Property Organization, China, and United States. The results showed that the main approach was the drug association, followed by drug carriers, new isolated products, and vaccines.

Conclusion: It has been observed that few studies use new drug alternatives for the treatment, probably due to the higher cost of the development and lack of investments. The effectiveness and safety of these therapies depend on the acceptance, the correct prescription, and rational use of medicines. Therefore, this review can further develop new treatments as alternatives against Klebsiella pneumoniae and pneumonia caused by it.

Keywords: COVID-19, antibiotic resistance, Klebsiella pneumonia, pneumonia, antibiotics, pandemic.

Graphical Abstract

[1]
Rawson TM, Moore LSP, Castro-Sanchez E, et al. COVID-19 and the potential long-term impact on antimicrobial resis-tance. J Antimicrob Chemother 2020; 75(7): 1681-4.
[http://dx.doi.org/10.1093/jac/dkaa194] [PMID: 32433765]
[2]
Rawson TM, Ming D, Ahmad R, Moore LSP, Holmes AH. Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol 2020; 18(8): 409-10.
[http://dx.doi.org/10.1038/s41579-020-0395-y] [PMID: 32488173]
[3]
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021; 170: 1-25.
[http://dx.doi.org/10.1016/j.addr.2020.12.011] [PMID: 33359141]
[4]
OECD Stemming the superbug tide.OECD Health Policy Studies. Paris: OECD Publishing 2018.
[5]
CDC; Center for Disease Control and Prevention. Antibiotic/antimicrobial resistance (AR/ARM). Available from: https://www.cdc.gov/drugresistance/about.html(Accessed Apr 16, 2022).
[6]
Ginsburg AS, Klugman KP. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob Health 2020; 8(12): e1453-4.
[http://dx.doi.org/10.1016/S2214-109X(20)30444-7] [PMID: 33188730]
[7]
Beović B, Doušak M, Ferreira-Coimbra J, et al. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Di-seases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother 2020; 75(11): 3386-90.
[http://dx.doi.org/10.1093/jac/dkaa326] [PMID: 32766706]
[8]
Shah RK, Ni ZH, Sun XY, Wang GQ, Li F. The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Kleb-siella pneumoniae from respiratory tract infected patients. Pol J Microbiol 2017; 66(4): 501-8.
[http://dx.doi.org/10.5604/01.3001.0010.7042] [PMID: 29319515]
[9]
Shankar C, Veeraraghavan B, Nabarro LEB, Ravi R, Ragupathi NKD, Rupali P. Whole genome analysis of hyperviru-lent Klebsiella pneumoniae isolates from community and hospital acquired bloodstream infection. BMC Microbiol 2018; 18(1): 6.
[http://dx.doi.org/10.1186/s12866-017-1148-6] [PMID: 29433440]
[10]
Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics (Basel) 2021; 10(4): 415.
[http://dx.doi.org/10.3390/antibiotics10040415] [PMID: 33920199]
[11]
Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018; 8: 4.
[http://dx.doi.org/10.3389/fcimb.2018.00004] [PMID: 29404282]
[12]
Marr CM, Russo TA. Hypervirulent Klebsiella pneumoniae: A new public health threat. Expert Rev Anti Infect Ther 2019; 17(2): 71-3.
[http://dx.doi.org/10.1080/14787210.2019.1555470] [PMID: 30501374]
[13]
WHO. World Health Organization Global shortage of innovative antibiotics fuels emergence and spread of drug-resistance. Available from: https://www.who.int/news/item/15-04-2021-global-shortage-of-innovative-antibiotics-fuels-emergence-and-spread-of-drug-resistance
[14]
Cal PMSD, Matos MJ, Bernardes GJL. Trends in therapeutic drug conjugates for bacterial diseases: A patent review. Expert Opin Ther Pat 2017; 27(2): 179-89.
[http://dx.doi.org/10.1080/13543776.2017.1259411] [PMID: 27828733]
[15]
Serafini MR, Santos VV, Torres BGS, Johansson Azeredo F, Savi FM, Alves IA. A patent review of antibiofilm fungal drugs (2002-present). Crit Rev Biotechnol 2021; 41(2): 229-48.
[http://dx.doi.org/10.1080/07388551.2021.1874283] [PMID: 33530749]
[16]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6: 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[17]
Aminov RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[18]
Nascimento Junior J.A.C., Santos AM, Quintans-Júnior LJ, Walker CIB, Borges LP, Serafini MR. SARS, MERS and SARS-CoV-2 (COVID-19) treatment: A patent review. Expert Opin Ther Pat 2020; 30(8): 567-79.
[http://dx.doi.org/10.1080/13543776.2020.1772231] [PMID: 32429703]
[19]
Andrade T de A, Nascimento JAC Jr, Santos AM, et al. Technological scenario for masks in patent database during covid-19 pandemic. AAPS PharmSciTech 2021; 22: 72.
[20]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[21]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[22]
Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis 2020; 71(9): 2459-68.
[http://dx.doi.org/10.1093/cid/ciaa530] [PMID: 32358954]
[23]
Cantón R, Gijón D, Ruiz-Garbajosa P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pan-demic. Curr Opin Crit Care 2020; 26(5): 433-41.
[http://dx.doi.org/10.1097/MCC.0000000000000755] [PMID: 32739970]
[24]
Levison ME. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am 2004; 18(3): 451-465, vii..
[http://dx.doi.org/10.1016/j.idc.2004.04.012] [PMID: 15308272]
[25]
Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Proceedings of the Mayo Clinic Proceedings 2011; 86(2): 156-67.
[http://dx.doi.org/10.4065/mcp.2010.0639] [PMID: 21282489]
[26]
Belley A, Morrissey I, Hawser S, Kothari N, Knechtle P. Third-generation cephalosporin resistance in clinical isolates of Enterobacterales collected between 2016-2018 from USA and Europe: Genotypic analysis of β-lactamases and compa-rative in vitro activity of cefepime/enmetazobactam. J Glob Antimicrob Resist 2021; 25: 93-101.
[http://dx.doi.org/10.1016/j.jgar.2021.02.031] [PMID: 33746112]
[27]
Liao W. Composition of cefamandole sodium and sulbactam sodium and mixture ratio thereof. C.N. Patent 101,940,573 A 2011.
[28]
Sha Y, Zeng Y, Liu X. Antibiotic composition, preparation method thereof and purpose thereof. C.N. Patent 102,462,682 A 2012.
[29]
Byung-Ha B, Suk-Won K, Soon-Ok S. Combined antibiotics comprising cephalosporins and betalactamase inhibitors. C.N. Patent 103,826,639 A, 2014.
[30]
Li S, Jia X. Infection and drug resistance dovepress carbapenem-resistant and cephalosporin-susceptible pseudomonas aeruginosa: A notable phenotype in patients with bacteremia 2018.
[31]
Sutton LD, Zamboni R, Bureau P, et al. Cephem compounds with latent reactive groups. W.O. Patent 2019,070,973 A1 2019.
[32]
Hisakawa S, Hasegawa Y, Aoki T, et al. Cephem compound having catechol group. U.S. Patent 2,013,102,583 A1 2013.
[33]
Li Y, Li YH, Wang FA, Ren BZ. Volumetric and viscometric studies of cefepime hydrochloride in water and normal saline from (278.15 to 313.15) K. J Chem Thermodyn 2013; 66: 14-21.
[http://dx.doi.org/10.1016/j.jct.2013.06.009]
[34]
Wright GD. Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 2017; 34(7): 694-701.
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[35]
Imperi F, Ascenzioni F, Mori M, et al. Inhibitors of antibiotic resistance mediated by ArnT. W.O. Patent 2,021,014,422 A1 2021.
[36]
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodyna-mics of colistin. Clin Pharmacokinet 2017; 56(12): 1441-60.
[http://dx.doi.org/10.1007/s40262-017-0561-1] [PMID: 28550595]
[37]
Zhang T, Shi J, Meng H, Han F, Ma X, Li Z. Pharmaceutical composition containing honeysuckle extract and antibiotics, pharmaceutical kit, and use of honeysucke extract for preparation of drug. W.O. Patent 2,013,023,338 A1 2013.
[38]
Raudsepp P, Anton D, Roasto M, et al. The antioxidative and antimicrobial properties of the blue honeysuckle (Lonice-ra Caerulea L.), siberian rhubarb (Rheum Rhaponticum L.) and some other plants, compared to ascorbic acid and so-dium nitrite. Food Control 2013; 31(1): 129-35.
[http://dx.doi.org/10.1016/j.foodcont.2012.10.007]
[39]
Umar F, Tanuja R, Navroop K. Compound for enhancing activity of antibiotic compositions and overcoming drug resistance. W.O. Patent 2,016,178,242 A2, 2016.
[40]
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int J Mol Sci 2020; 21(3): 1061.
[http://dx.doi.org/10.3390/ijms21031061] [PMID: 32033477]
[41]
Deng X, Guo Y, Wang J, et al. Application of honokiol and mognolol in preparing MCR-1 enzyme inhibitor. W.O. Patent 2,021,068,614 A1 2021.
[42]
Łata E, Fulczyk A, Ott PG, Kowalska T, Sajewicz M, Móricz ÁM. Thin-layer chromatographic quantification of magno-lol and honokiol in dietary supplements and selected biological properties of these preparations. J Chromatogr A 2020; 1625: 461230.
[http://dx.doi.org/10.1016/j.chroma.2020.461230] [PMID: 32709311]
[43]
Liu H, Jiang Z, Zhang J, Zheng R. Novel clinical application of minor Radix buplenri granules and antibiotics. C.N. Patent 111,467,469 A, 2020.
[44]
Douafer H, Andrieu V, Phanstiel O IV, Brunel JM. Antibiotic adjuvants: Make antibiotics great again! J Med Chem 2019; 62(19): 8665-81.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01781] [PMID: 31063379]
[45]
Wright GD. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol 2016; 24(11): 862-71.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[46]
Pasternak A, Dong S, Scott J, et al. Metallo-betalactamase inhibitor and methods of use thereof. W.O. Patent 2,019,135,920 A1 2019.
[47]
Afinogenova AG, Voroshilova TM, Afinogenov GE. Antimicrobial combination for carbapenem-resistant gram-negative bacteria of the type Klebsiella pneumoniae producing metal-B-lactamase. R.U. Patent 2,016,147,242 A 2016.
[48]
Dijkmans AC, Wilms EB, Kamerling IMC, et al. Colistin: Revival of an old polymyxin antibiotic. Ther Drug Monit 2015; 37(4): 419-27.
[http://dx.doi.org/10.1097/FTD.0000000000000172] [PMID: 25549206]
[49]
Coates PA, Hu Y. Combinations of polymyxins. W.O. Patent 2,018,172,733 A1 2018.
[50]
Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Li J. Novel polymyxin combination with antineoplastic mitotane impro-ved the bacterial killing against polymyxin-resistant multidrug-resistant gram-negative pathogens. Front Microbiol 2018; 9: 721.
[http://dx.doi.org/10.3389/fmicb.2018.00721] [PMID: 29706941]
[51]
Melander C, Weig A, Basak AK. Compounds and methods for potentiating colistin activity. W.O. Patent 2,021,086,567 A1 2021.
[52]
Raetz CRH, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 2007; 76(1): 295-329.
[http://dx.doi.org/10.1146/annurev.biochem.76.010307.145803] [PMID: 17362200]
[53]
Leivers SW, Warn P. Fulvic acid and antibiotic combination for the inhibition or treatment of multi-drug resistant bacteria. W.O. Patent 2,013,132,444 A1, 2013.
[54]
Atrooz OM. Efects of alkylresorcinolic lipids obtained from acetonic extract of Jordanian wheat grains on liposome properties. Int J Biol Chem 2011; 5(5): 314-21.
[http://dx.doi.org/10.3923/ijbc.2011.314.321]
[55]
Garcia-Orue I, Pedraz JL, Hernandez RM, Igartua M. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017; 42: 2-17.
[http://dx.doi.org/10.1016/j.jddst.2017.03.002]
[56]
Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, et al. Nanoencapsulation: A new trend in food engi-neering processing. Food Eng Rev 2010; 2(1): 39-50.
[http://dx.doi.org/10.1007/s12393-009-9012-6]
[57]
Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018; 89: 1-11.
[http://dx.doi.org/10.1016/j.foodcont.2018.01.018]
[58]
Brown LA, Guilford FT. Treatment of multiple evolving bacterial resistance diseases with liposomally formulated glutathione. U.S. Patent 2,016,158,308 A1 2016.
[59]
Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep 2020; 30: 101063.
[http://dx.doi.org/10.1016/j.rmcr.2020.101063] [PMID: 32322478]
[60]
Kuroki A, Kengmo Tchoupa A, Hartlieb M, et al. Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship. Biomaterials 2019; 217: 119249.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119249] [PMID: 31279102]
[61]
Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 2014; 136(50): 17459-67.
[http://dx.doi.org/10.1021/ja507790z] [PMID: 25405895]
[62]
Hedrick JL, Yang YY, Yang C. Antimicrobial polycarbonates for multidrug resistant bacteria. U.S. Patent 2,019,390,005A1 2019.
[63]
Sun H. Silver-/gold-compounds and methods thereof. W.O. Patent 2,021,036,923 A1 2021.
[64]
Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30(10): 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[65]
Peña-González CE, Pedziwiatr-Werbicka E, Martín-Pérez T, et al. Antibacterial and antifungal properties of dendroni-zed silver and gold nanoparticles with cationic carbosilane dendrons. Int J Pharm 2017; 528(1-2): 55-61.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.067] [PMID: 28577968]
[66]
Wang L, Wang J, Li Z. Fosfomycin sodium composition lyophilized powder for injection. C.N. Patent 103,550,176 A 2014.
[67]
WHO, World Health Organization. The evolving threat of antimicrobial resistance: Options for action. Available from: http://www.ijmr.org.in/article.asp?issn=0971-5916;year=2014;volume=139;issue=1;spage=182;epage=183;aulast=Kapi
[68]
Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: Future antibiotics candi-dates. Bioorg Chem 2020; 101: 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[69]
He M, Li Y, Luo J, Liu C. Liquorice extract extractum with bacteriostatic activity. C.N. Patent 111,956,681 A, 2020.
[70]
Sidhu P, Shankargouda S, Rath A, Ramamurthy H, Fernandes B, Singh AK. Therapeutic benefits of liquorice in dentis-try 2018.
[71]
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and asso-ciated conditions. Phytomedicine Plus 2021; 1(3): 100043.
[http://dx.doi.org/10.1016/j.phyplu.2021.100043]
[72]
Istrati D, Gulea A, Ţapcov V, Zariciuc E, Cotovaia A. Chloro-{N-(3,4-Dimethylphenyl)-2-[1-(2- Hydroxyphenyl)Ethylidene]- Hydrazinecarbothioamido(1-)}nickel, exhibiting antimicrobial activity against Klebsiella pneumoniae and Pseudomonas aeruginosa bacterial species. M.D. Patent 4,462 B1 2017.
[73]
Raju P, Ramalingam T, Nooruddin T, Natarajan S. In vitro assessment of antimicrobial, antibiofilm and larvicidal acti-vities of bioactive nickel metal organic framework. J Drug Deliv Sci Technol 2020; 56: 101560.
[http://dx.doi.org/10.1016/j.jddst.2020.101560]
[74]
Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance (AMR). Hum Vaccin Immunother 2018; 14(9): 2142-9.
[http://dx.doi.org/10.1080/21645515.2018.1476814] [PMID: 29787323]
[75]
Peltola H, Rød TO, Jónsdóttir K, Böttiger M, Coolidge JA. Life-threatening Haemophilus influenzae infections in Scan-dinavia: A five-country analysis of the incidence and the main clinical and bacteriologic characteristics. Rev Infect Dis 1990; 12(4): 708-15.
[http://dx.doi.org/10.1093/clinids/12.4.708] [PMID: 2385772]
[76]
Buchy P, Ascioglu S, Buisson Y, et al. Impact of vaccines on antimicrobial resistance. Int J Infect Dis 2020; 90: 188-96.
[http://dx.doi.org/10.1016/j.ijid.2019.10.005] [PMID: 31622674]
[77]
Markov IS, Markov AI. Klebsiella-and Proteus-based vaccine “Kleproprimavac” against Klebsiella and Proteus. W.O. Patent 2,020,139,312A1 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy