Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemical Determination of Vanillin in Cookies at Mediated AuNPs/GR Nanocomposites Modified Glassy Carbon Electrode

Author(s): Xiaojing Si*, Mei Han, Wei Li, Chen Bai, Xin Xu and Jieming Xu

Volume 18, Issue 7, 2022

Published on: 06 June, 2022

Page: [818 - 825] Pages: 8

DOI: 10.2174/1573411018666220518093417

Price: $65

Abstract

Background: Currently, carbon nanomaterials and carbon nanomaterials-based electrodes have illustrated significant electrocatalytic abilities.

Methods: An electrochemical sensor was developed for vanillin using graphene (GR) decorated with gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) with two steps. AuNPs/GR/GCE, as the electrochemical sensor for determination of vanillin, included dropping GR onto the electrode and then electrodepositing AuNPs on GR/GCE. The structure and morphology of the synthesized nanocomposites (AuNPs/GR) on the electrode were confirmed by scanning electron microscopy (SEM).

Results: Electrochemical studies revealed that modification of the electrode surface with AuNPs/GR nanocomposites significantly increases the oxidation peak currents of vanillin. The peak currents in differential pulse voltammetry (DPV) of vanillin increased linearly with their concentration in the range of 5-120 μM. The limit of detection was found to be 1.7 μM for vanillin. Also, the effect of some interfering compounds, such as NaCl, KCl, glucose, alanine, phenylalanine, glycine, and others, on the determination of vanillin was evaluated, and none of them had a significant effect on the assay recovery.

Conclusions: A new electrochemical biosensor was fabricated with AuNPs/GR nanocomposites. The sensor was successfully used to detect vanillin in cookie samples.

Keywords: Vanillin, graphene, AuNPs, electrochemical sensor, differential pulse voltammetry, determination.

Graphical Abstract

[1]
Yigit, A.; Alpar, N.; Yardım, Y.; Elebi, M.; Entürk, Z. A Graphene-based electrochemical sensor for the individual, selective and simulta-neous determination of total chlorogenic acids, vanillin and caffeine in food and beverage samples. Electroanalysis, 2018, 30, 2011-2020.
[http://dx.doi.org/10.1002/elan.201800229]
[2]
Yazana, Z.; Erdenb, S.; Din, E. A comparative application of two-way and three-way analysis to threedimensional voltammetric dataset for the pKa determination of vanillin. J. Electroanal. Chem. (Lausanne), 2018, 826, 133-141.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.047]
[3]
Jiang, L.; Ding, Y.; Jiang, F.; Li, L.; Mo, F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal. Chim. Acta, 2014, 833, 22-28.
[http://dx.doi.org/10.1016/j.aca.2014.05.010] [PMID: 24909770]
[4]
Karabiberoglu, S.; Koack, C. Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) film-modified glassy carbon electrodes. Turk. J. Chem., 2018, 42, 291-305.
[http://dx.doi.org/10.3906/kim-1704-21]
[5]
Liu, T.; Zhang, X.; Zhu, W.; Liu, W.; Zhang, D.; Wang, J. A G-quadruplex DNAzyme-based colorimetric method for facile detection of Alicyclobacillus acidoterrestris. Analyst (Lond.), 2014, 139(17), 4315-4321.
[http://dx.doi.org/10.1039/C4AN00643G] [PMID: 24989256]
[6]
Ni, Y.N.; Zhang, G.W.; Kokot, S. Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem., 2005, 89, 465-473.
[http://dx.doi.org/10.1016/j.foodchem.2004.05.037]
[7]
Li, L.; Zhang, Q.; Ding, Y.; Lu, Y.; Cai, X.; Yu, L. A simple fluorescence quenching method for the determination of vanillin Uusing TGA-capped CdTe/ZnS nanoparticles as probes. J. Fluoresc., 2015, 25(4), 897-905.
[http://dx.doi.org/10.1007/s10895-015-1570-9] [PMID: 25911548]
[8]
Liu, C.Y.; Zhao, L.L.; Sun, Z.; Cheng, N.; Wu, L.M.; Cao, W. Determination of three flavor enhancers using HPLC-ECD and its applica-tion in detecting adulteration of honey. Anal. Methods, 2018, 10, 743-748.
[http://dx.doi.org/10.1039/C7AY02248D]
[9]
Perez-Silva, A. Odoux, E; Brat, P; Ribeyre, F; Rodriguez-Jimenes, G; Robles-Olvera, V. GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem., 2006, 99, 728-735.
[http://dx.doi.org/10.1016/j.foodchem.2005.08.050]
[10]
Ohashi, M.; Omae, H.; Hashida, M.; Sowa, Y.; Imai, S. Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. J. Chromatogr. A, 2007, 1138(1-2), 262-267.
[http://dx.doi.org/10.1016/j.chroma.2006.10.031] [PMID: 17084851]
[11]
Liu, Y.X.; Liang, Y.Z.; Lian, H.; Zhang, C.Z.; Peng, J.Y. Sensitive Voltammetric determination of vanillin with an electrolytic manganese dioxide−graphene composite modified electrode. Int. J. Electrochem. Sci., 2015, 10, 4129-4137.
[12]
Pandurangan, P.; Rajendran, S.B.; Sangilimuthu, S.N. Electrochemical determination of l-vanillin using copper hexacyanoferrate film mod-ified gold nanoparticle graphite-wax composite electrode. J. Mater. Sci. Mater. Electron., 2019, 30, 9955-9963.
[http://dx.doi.org/10.1007/s10854-019-01335-8]
[13]
Sun, Y.; Jiang, X.; Jin, H.; Gui, R. Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel rati-ometric electrochemical aptasensor for vanillin detection. Anal. Chim. Acta, 2019, 1083, 101-109.
[http://dx.doi.org/10.1016/j.aca.2019.07.027] [PMID: 31493800]
[14]
Wu, F.H.; Xu, F.; Chen, L.; Jiang, B.; Sun, W.; Wei, X. Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sen-sors for ofloxacin determination. Chem. Res. Chin. Univ., 2016, 32, 468-473.
[http://dx.doi.org/10.1007/s40242-016-5367-4]
[15]
Zhou, X.; Wang, L.; Shen, G.; Zhang, D.; Xie, J.; Mamut, A.; Huang, W.; Zhou, S. Colorimetric determination of ofloxacin using unmodi-fied aptamers and the aggregation of gold nanoparticles. Mikrochim. Acta, 2018, 185(7), 355-363.
[http://dx.doi.org/10.1007/s00604-018-2895-2] [PMID: 29971570]
[16]
Fan, Y.; Liu, J.H.; Lu, H.T.; Zhang, Q. Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Mikrochim. Acta, 2011, 173, 241-247.
[http://dx.doi.org/10.1007/s00604-011-0556-9]
[17]
Huang, L.; Hou, K.; Jia, X.; Pan, H.; Du, M. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater. Sci. Eng. C, 2014, 38, 39-45.
[http://dx.doi.org/10.1016/j.msec.2014.01.037] [PMID: 24656350]
[18]
Alpar, N.; Yardım, Y.; Şentürk, Z. Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sens. Actuators B Chem., 2018, 257, 398-408.
[http://dx.doi.org/10.1016/j.snb.2017.10.100]
[19]
Wu, W.H.; Yang, L.T.; Zhao, F.Q.; Zeng, B.Z. A vanillin electrochemical sensor based on molecularly imprinted poly(1-vinyl-3-octylimidazole hexafluoride phosphorus)-multi-walled carbon nanotubes@polydopamine-carboxyl single-walled carbon nanotubes com-posite. Sens. Actuators B Chem., 2017, 239, 481-487.
[http://dx.doi.org/10.1016/j.snb.2016.08.041]
[20]
Mei. Q.W., Ding. Y.P., Li. L., Wang. A.Q., & Duan. D.D. Electrospun MoS2 composite carbon nanofibers for determination of vanillin. J. Electroanal. Chem. (Lausanne), 2019, 833, 297-303.
[http://dx.doi.org/10.1016/j.jelechem.2018.09.040]
[21]
Ziyatdinova, G.; Kozlova, E.; Ziganshina, E.; Budnikov, H. Surfactant/carbon nanofibrous modified electrode for the determi nation of vanillin. Monatsh. Chem., 2016, 147, 191-200.
[http://dx.doi.org/10.1007/s00706-015-1559-8]
[22]
Shang, L.; Zhao, F.; Zeng, B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem., 2014, 151, 53-57.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.044] [PMID: 24423501]
[23]
Zheng, D.Y.; Hu, C.G.; Gan, T.; Dang, X.Q.; Hu, S.H. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sens. Actuators B Chem., 2010, 148, 247-252.
[http://dx.doi.org/10.1016/j.snb.2010.04.031]
[24]
Durán, G.M.; Llorent-Martínez, E.J.; Contento, A.M.; Ríos, Á. Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Mikrochim. Acta, 2018, 185(3), 204.
[http://dx.doi.org/10.1007/s00604-018-2738-1] [PMID: 29594680]
[25]
Calam, T.T.; Uzun, D. Rapid and selective determination of vanillin in the presence of caffeine, its electrochemical behavior on an Au electrode electropolymerized with 3-amino-1,2,4- triazole-5-thiol. Electroanalysis, 2019, 31, 1-13.
[http://dx.doi.org/10.1002/elan.201900328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy