Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Mathematical Oncology to Cancer Systems Medicine: Translation from Academic Pursuit to Individualized Therapy with MORA

Author(s): Durjoy Majumder*

Volume 19, Issue 1, 2023

Published on: 03 November, 2022

Page: [37 - 57] Pages: 21

DOI: 10.2174/1573394718666220517112049

Price: $65

Abstract

Aim & Objective: This article aims at understanding the gradual development of cancer systems medicine and how it provides a better therapeutic strategy (in terms of drug selection, dose and duration) and, thus, improves patients' care. Hence, this study focuses on understanding the need and the evolving nature of the analytical models for assessing the outcome of different cancer therapeutics.

Background: At present, cancer is viewed from a quantitative standpoint; hence, several analytical models on different cancers have been developed. Mathematical oncology has contributed significantly - from drawing the hypothesis of cancer development to therapeutic advantage. Using fewer variables, models in this area have successfully synchronized the model output with real-life dynamical data. However, with the availability of large scale data for different cancers, the systems biology approach has gained importance. It provides biomedical insights among a large number of variables and to get information for clinically relevant variables, especially the controlling variable(s), cancer systems medicine is suggested.

Methods: In this article, we have reviewed the gradual development of the field from mathematical oncology to cancer systems biology to cancer systems medicine. An intensive search with PubMed, IEEE Xplorer and Google for cancer model, analytical model, and cancer systems biology was made and the latest developments have been noted.

Results: Gradual development of cancer systems biology entails the importance of developing models towards a unified model of cancer treatment. For this, the model should be flexible so that different types of cancer and/or its therapy can be included within the same model. With the existing knowledge, relevant variables are included in the same model, followed by simulation studies that will enrich the knowledge base further. In the future, such a deductive approach through the modelling and simulations efforts can not only aid in overcoming the challenges in different individual cancer cases but also help to tackle the drug adversities in individual patients. This approach may help to tune with the fourth industrial revolution in the health sector.

Conclusion: Towards the development of a unified modelling effort, a multi-scale modelling approach could be suitable; so that different researchers across the globe can add their contributions to enrich the same model. Moreover, with this, the identification of controlling variables may be possible. Towards this goal, the middle-out rationalist approach (MORA) is working on analytical models for cancer treatment.

Keywords: Systems Biology, mathematical oncology, pathophysiology in cancer, cancer dynamics, dynamical model of cancer therapy, cancer systems medicine

Graphical Abstract

[1]
Mackenzie D. Mathematical modeling and cancer. SIAM News 2004; 37(1): 1-3.
[2]
Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumour growth: A review. SIAM Rev 2007; 49: 179-208.
[http://dx.doi.org/10.1137/S0036144504446291]
[3]
Rockne RC, Hawkins-Daarud A, Swanson KR, et al. The 2019 mathematical oncology roadmap. Phys Biol 2019; 16(4): 041005.
[http://dx.doi.org/10.1088/1478-3975/ab1a09] [PMID: 30991381]
[4]
Byrne HM. Using mathematics to study solid tumour growth. In: Proceedings of the 9th General Meetings of European Women in Mathematics. August 30-September 5, 1999 Conference center Loccum, Germany pp. 81-107.
[5]
Imperial Cancer Research Fund. Available from: http://www.liverpool.ac.uk/~trh/local_html/lungcancer/epid.htm
[6]
Whiteman H. 1 in 2 people will develop cancer in their lifetime. 2015 Available from: www.medicalnewstoday.com/articles/288916.php
[7]
Araujo RP, McElwain DLS. A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol 2004; 66(5): 1039-91.
[http://dx.doi.org/10.1016/j.bulm.2003.11.002] [PMID: 15294418]
[8]
American Cancer Society. Cancer Facts and Figures 2018. Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html
[9]
WHO. Key facts 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[10]
Alwan A. Global status report on noncommunicable diseases. World Health Organization 2010. Available from: apps.who.int/iris/bitstream/handle/10665/44579/9789240686458_eng.pdf?sequence=1
[11]
Report of the Planning commission: 2nd Five year plan, Report of the working Group on Health Research for the 12th Five Year Plan Department of Health: Govt of India 2011. Available from: http://niti.gov.in/planningcommission.gov.in/docs/aboutus/committee/wrkgrp12/health/WG_5health_research.pdf
[12]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[14]
International Institute for Population Sciences (IIPS) and Macro International.National Family Health Survey (NFHS-3), 2005–06: India: Volume I. Mumbai:. 2005.
[15]
Upadhyay RP. An overview of the burden of non-communicable diseases in India. Iran J Public Health 2012; 41(3): 1-8.
[PMID: 23113144]
[16]
Mallath MK, Taylor DG, Badwe RA, et al. The growing burden of cancer in India: Epidemiology and social context. Lancet Oncol 2014; 15(6): e205-12.
[http://dx.doi.org/10.1016/S1470-2045(14)70115-9] [PMID: 24731885]
[17]
Cancer Research UK. Annual Report and accounts 2017. Available from: https://www.cancerresearchuk.org/
[18]
Gatenby RA. Mathematical models of tumor–host interactions. Cancer J 1998; 11: 289-93.
[19]
Gatenby RA, Maini PK. Mathematical oncology: Cancer summed up. Nature 2003; 421(6921): 321.
[http://dx.doi.org/10.1038/421321a] [PMID: 12540881]
[20]
Byrne HM, Alarcon T, Owen MR, Webb SD, Maini PK. Modelling aspects of cancer dynamics: A review. Philos Trans- Royal Soc, Math Phys Eng Sci 2006(364 1843): 1563-78.
[http://dx.doi.org/10.1098/rsta.2006.1786] [PMID: 16766361]
[21]
Nosengo N. Can you teach old drugs new tricks? Nature 2016; 534(7607): 314-6.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[22]
Majumder D, Mukherjee A. Mathematical modelling of toxicity-related trade-offs in metronomic chemotherapy. IET Syst Biol 2007; 1(5): 298-305.
[http://dx.doi.org/10.1049/iet-syb:20060085] [PMID: 17907679]
[23]
Majumder D, Mukherjee A. A passage through systems biology to systems medicine: Adoption of middle-out rational approaches towards the understanding of therapeutic outcomes in cancer. Analyst (Lond) 2011; 136(4): 663-78.
[http://dx.doi.org/10.1039/C0AN00746C] [PMID: 21109854]
[24]
Majumder D, Mukherjee A. Multi-scale modeling approaches in Systems Biology towards the assessment of cancer treatment dynamics: Adoption of Middle-out Rationalist Approach. Adv Cancer Res Treat 2013; 2013: 587889.
[http://dx.doi.org/10.5171/2013/587889]
[25]
Majumder D, Ray DK, Chatterjee I, et al. Importance and Implementation Strategies of Systems Medicine Education in India. Annals Syst Biol 2016; 1(1): 1-12.
[http://dx.doi.org/10.17352/asb.000001]
[26]
Byrne HM. Dissecting cancer through mathematics: From the cell to the animal model. Nat Rev Cancer 2010; 10(3): 221-30.
[http://dx.doi.org/10.1038/nrc2808] [PMID: 20179714]
[27]
Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954; 8(1): 1-12.
[http://dx.doi.org/10.1038/bjc.1954.1] [PMID: 13172380]
[28]
Nordling CO. A new theory on cancer-inducing mechanism. Br J Cancer 1953; 7(1): 68-72.
[http://dx.doi.org/10.1038/bjc.1953.8] [PMID: 13051507]
[29]
Knudson AG Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68(4): 820-3.
[http://dx.doi.org/10.1073/pnas.68.4.820] [PMID: 5279523]
[30]
Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323(6089): 643-6.
[http://dx.doi.org/10.1038/323643a0] [PMID: 2877398]
[31]
Mayneord WV. On a law of growth of Jensen’s rat sarcoma. Am J Cancer 1932; 16: 841-6.
[32]
Haddow A. The biological characters of spontaneous tumours of the mouse, with special reference to rate of growth. J Pathol Bacteriol 1938; 47: 553-65.
[http://dx.doi.org/10.1002/path.1700470315]
[33]
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955; 9(4): 539-49.
[http://dx.doi.org/10.1038/bjc.1955.55] [PMID: 13304213]
[34]
Hill AV. The diffusion of oxygen and lactic acid through tissues. Proc Royal Soc Proc B 1928; 104(728): 39-96. Available from: https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.1928.0064
[35]
Gompertz B. On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Philos Trans R Soc Lond 1825; 115: 513-85.
[http://dx.doi.org/10.1098/rstl.1825.0026]
[36]
Laird AK. Cell fractionation of normal and malignant tissues. Exp Cell Res 1954; 6(1): 30-44.
[http://dx.doi.org/10.1016/0014-4827(54)90145-7] [PMID: 13141981]
[37]
Laird AK. Dynamics of tumor growth. Br J Cancer 1964; 13: 490-502.
[http://dx.doi.org/10.1038/bjc.1964.55] [PMID: 14219541]
[38]
Burton AC. Rate of growth of solid tumours as a problem of diffusion. Growth 1966; 30(2): 157-76.
[PMID: 5963695]
[39]
Chance B. Cellular oxygen requirements. Fed Proc 1957; 16(3): 671-80.
[PMID: 13480340]
[40]
Stainsby WN, Otis AB. Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Am J Physiol 1961; 201: 117-22.
[http://dx.doi.org/10.1152/ajplegacy.1961.201.1.117] [PMID: 14166185]
[41]
Greenspan HP. Models for the growth of a solid tumour by diffusion. Stud Appl Math 1972; 52: 317-40.
[http://dx.doi.org/10.1002/sapm1972514317]
[42]
Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 1971; 46(1): 113-20.
[PMID: 5101993]
[43]
Glass L. Instability and mitotic patterns in tissue growth. J Dyn Syst Meas Control 1973; 95: 324-7.
[http://dx.doi.org/10.1115/1.3426723]
[44]
Landry J, Freyer JP, Sutherland RM. A model for the growth of multicellular spheroids. Cell Tissue Kinet 1982; 15(6): 585-94.
[http://dx.doi.org/10.1111/j.1365-2184.1982.tb01065.x] [PMID: 7172196]
[45]
Hiltmann P, Lory P. On oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. Bull Math Biol 1983; 45(5): 661-4.
[http://dx.doi.org/10.1016/S0092-8240(83)80019-6] [PMID: 6652282]
[46]
Adam JA. A simplified mathematical model of tumour growth. Math Biosci 1986; 81: 229-42.
[http://dx.doi.org/10.1016/0025-5564(86)90119-7]
[47]
Groebe K, Mueller-Klieser W. Distributions of oxygen, nutrient, and metabolic waste concentrations in multicellular spheroids and their dependence on spheroid parameters. Eur Biophys J 1991; 19(4): 169-81.
[http://dx.doi.org/10.1007/BF00196343] [PMID: 2029873]
[48]
Monz B, Karbach U, Groebe K, Muellerklieser W. Proliferation and oxygenation status of widr spheroids in different lactate and oxygen environments. Oncol Rep 1994; 1(6): 1177-83.
[http://dx.doi.org/10.3892/or.1.6.1177] [PMID: 21607511]
[49]
Byrne HM, Chaplain MA. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math Biosci 1995; 130(2): 151-81.
[http://dx.doi.org/10.1016/0025-5564(94)00117-3] [PMID: 8527869]
[50]
Groebe K, Mueller-Klieser W. On the relation between size of necrosis and diameter of tumor spheroids. Int J Radiat Oncol Biol Phys 1996; 34(2): 395-401.
[http://dx.doi.org/10.1016/0360-3016(95)02065-9] [PMID: 8567341]
[51]
Byrne HM, Chaplain MAJ. Free boundary value problems associated with the growth and development of multicellular spheroids. Eur J Appl Math 1997; 8: 639-58.
[http://dx.doi.org/10.1017/S0956792597003264]
[52]
Steel GG. Growth kinetics of tumors. Oxford: Clarendon Press 1977.
[53]
Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nucl Med 1956; 76(5): 988-1000.
[PMID: 13362715]
[54]
Collins VP. Time of occurrence of pulmonary metastasis from carcinoma of colon and rectum. Cancer 1962; 15: 387-95.
[http://dx.doi.org/10.1002/1097-0142(196203/04)15:2<387:AID-CNCR2820150222>3.0.CO;2-5] [PMID: 13880612]
[55]
McAneney H, O’Rourke SF. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy. Phys Med Biol 2007; 52(4): 1039-54.
[http://dx.doi.org/10.1088/0031-9155/52/4/012] [PMID: 17264369]
[56]
Enderling H, Chaplain MAJ. Mathematical modeling of tumor growth and treatment. Curr Pharm Des 2014; 20(30): 4934-40.
[http://dx.doi.org/10.2174/1381612819666131125150434] [PMID: 24283955]
[57]
Mackey MC. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 1978; 51(5): 941-56.
[http://dx.doi.org/10.1182/blood.V51.5.941.941] [PMID: 638253]
[58]
Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med 2006; 57: 119-37.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104724] [PMID: 16409140]
[59]
Plard C, Bressolle F, Fakhoury M, et al. A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2007; 60(4): 609-20.
[http://dx.doi.org/10.1007/s00280-007-0550-4] [PMID: 17195068]
[60]
Barrett JS, Mondick JT, Narayan M, Vijayakumar K, Vijayakumar S. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy. BMC Med Inform Decis Mak 2008; 8: 6.
[http://dx.doi.org/10.1186/1472-6947-8-6] [PMID: 18226244]
[61]
Alameddine AK, Conlin F, Binnall B. An introduction to the mathematical modeling in the study of cancer systems biology. Cancer Inform 2018; 17: 1176935118799754.
[http://dx.doi.org/10.1177/1176935118799754] [PMID: 30224860]
[62]
Sonnenschein C, Soto AM, Rangarajan A, Kulkarni P. Competing views on cancer. J Biosci 2014; 39(2): 281-302.
[http://dx.doi.org/10.1007/s12038-013-9403-y] [PMID: 24736160]
[63]
Magi S, Iwamoto K, Okada-Hatakeyama M. Current status of mathematical modeling of cancer—from the viewpoint of cancer hallmarks. Curr Opin Syst Biol 2017; 2: 38-47.
[http://dx.doi.org/10.1016/j.coisb.2017.02.008]
[64]
Du W, Elemento O. Cancer systems biology: Embracing complexity to develop better anticancer therapeutic strategies. Oncogene 2015; 34(25): 3215-25.
[http://dx.doi.org/10.1038/onc.2014.291] [PMID: 25220419]
[65]
Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11(3): 220-8.
[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397]
[66]
Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013; 339(6127): 1567-70.
[http://dx.doi.org/10.1126/science.1230184] [PMID: 23539597]
[67]
Booth MJ, Branco MR, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012; 336(6083): 934-7.
[http://dx.doi.org/10.1126/science.1220671] [PMID: 22539555]
[68]
Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013; 31(11): 1023-31.
[http://dx.doi.org/10.1038/nbt.2696] [PMID: 24142049]
[69]
Ojesina AI, Lichtenstein L, Freeman SS, et al. Landscape of genomic alterations in cervical carcinomas. Nature 2014; 506(7488): 371-5.
[http://dx.doi.org/10.1038/nature12881] [PMID: 24390348]
[70]
Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014; 508(7494): 113-7.
[http://dx.doi.org/10.1038/nature13187] [PMID: 24695311]
[71]
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[72]
Vaske CJ, Benz SC, Sanborn JZ, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010; 26(12): i237-45.
[http://dx.doi.org/10.1093/bioinformatics/btq182] [PMID: 20529912]
[73]
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546-58.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[74]
Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013; 45(10): 1127-33.
[http://dx.doi.org/10.1038/ng.2762] [PMID: 24071851]
[75]
Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol 2011; 8(3): 135-41.
[http://dx.doi.org/10.1038/nrclinonc.2011.2] [PMID: 21364686]
[76]
Medina MÁ. Mathematical modeling of cancer metabolism Crit Rev Oncol Hematol 2018; 124:37-40.
[http://dx.doi.org/10.1016/j.critrevonc.2018.02.004]
[77]
Tyson JJ. Modeling the cell division cycle: Cdc2 and cyclin interactions. Proc Natl Acad Sci USA 1991; 88(16): 7328-32.
[http://dx.doi.org/10.1073/pnas.88.16.7328] [PMID: 1831270]
[78]
Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 1991; 88(20): 9107-11.
[http://dx.doi.org/10.1073/pnas.88.20.9107] [PMID: 1833774]
[79]
Sahin O, Fröhlich H, Löbke C, et al. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 2009; 3: 1.
[http://dx.doi.org/10.1186/1752-0509-3-1] [PMID: 19118495]
[80]
Conradie R, Bruggeman FJ, Ciliberto A, et al. Restriction point control of the mammalian cell cycle via the cyclin E/Cdk2:p27 complex. FEBS J 2010; 277(2): 357-67.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07473.x] [PMID: 20015233]
[81]
Yao G, Tan C, West M, Nevins JR, You L. Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 2011; 7: 485.
[http://dx.doi.org/10.1038/msb.2011.19] [PMID: 21525871]
[82]
Mueller S, Huard J, Waldow K, et al. T160‐phosphorylated CDK2 defines threshold for HGF dependent proliferation in primary hepatocytes. Mol Syst Biol 2015; 11(3): 795.
[http://dx.doi.org/10.15252/msb.20156032] [PMID: 26148348]
[83]
Iwamoto K, Hamada H, Eguchi Y, Okamoto M. Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. PLoS One 2014; 9(7): e101333.
[http://dx.doi.org/10.1371/journal.pone.0101333] [PMID: 25003668]
[84]
Hat B, Kochańczyk M, Bogdał MN, Lipniacki T. Feedbacks, bifurcations, and cell fate decision-making in the p53 system. PLOS Comput Biol 2016; 12(2): e1004787.
[http://dx.doi.org/10.1371/journal.pcbi.1004787] [PMID: 26928575]
[85]
Fussenegger M, Bailey JE, Varner J. A mathematical model of caspase function in apoptosis. Nat Biotechnol 2000; 18(7): 768-74.
[http://dx.doi.org/10.1038/77589] [PMID: 10888847]
[86]
Legewie S, Blüthgen N, Herzel H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLOS Comput Biol 2006; 2(9): e120.
[http://dx.doi.org/10.1371/journal.pcbi.0020120] [PMID: 16978046]
[87]
Roux J, Hafner M, Bandara S, et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol 2015; 11(5): 803.
[http://dx.doi.org/10.15252/msb.20145584] [PMID: 25953765]
[88]
Yizhak K, Le Dévédec SE, Rogkoti VM, et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 2014; 10: 744.
[http://dx.doi.org/10.15252/msb.20134993] [PMID: 25086087]
[89]
Ghaffari P, Mardinoglu A, Asplund A, et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci Rep 2015; 5: 8183.
[http://dx.doi.org/10.1038/srep08183] [PMID: 25640694]
[90]
Mulukutla BC, Yongky A, Daoutidis P, Hu W-S. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9(6): e98756.
[http://dx.doi.org/10.1371/journal.pone.0098756] [PMID: 24911170]
[91]
Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu W-S. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 2015; 10(3): e0121561.
[http://dx.doi.org/10.1371/journal.pone.0121561] [PMID: 25806512]
[92]
Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481(7381): 306-13.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[93]
Reticker-Flynn NE, Engleman EG. Cancer systems immunology. eLife 2020; 9: e53839.
[http://dx.doi.org/10.7554/eLife.53839] [PMID: 32657757]
[94]
Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 2007; 121(7): 1463-72.
[http://dx.doi.org/10.1002/ijc.22874] [PMID: 17546601]
[95]
Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14(5): 518-27.
[http://dx.doi.org/10.1038/nm1764] [PMID: 18438415]
[96]
Sheehan KM, Gulmann C, Eichler GS, et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene 2008; 27(3): 323-31.
[http://dx.doi.org/10.1038/sj.onc.1210647] [PMID: 17621268]
[97]
Kahlert C, Pecqueux M, Halama N, et al. Tumour-site-dependent expression profile of angiogenic factors in tumour-associated stroma of primary colorectal cancer and metastases. Br J Cancer 2014; 110(2): 441-9.
[http://dx.doi.org/10.1038/bjc.2013.745] [PMID: 24292449]
[98]
Venkatasubramanian R, Arenas RB, Henson MA, Forbes NS. Mechanistic modelling of dynamic MRI data predicts that tumour heterogeneity decreases therapeutic response. Br J Cancer 2010; 103(4): 486-97.
[http://dx.doi.org/10.1038/sj.bjc.6605773] [PMID: 20628390]
[99]
Choe SC, Zhao G, Zhao Z, et al. Model for in vivo progression of tumors based on co-evolving cell population and vasculature. Sci Rep 2011; 1: 31.
[http://dx.doi.org/10.1038/srep00031] [PMID: 22355550]
[100]
Wu Y, Zhang W, Li J, Zhang Y. Optical imaging of tumor microenvironment. Am J Nucl Med Mol Imaging 2013; 3(1): 1-15.
[PMID: 23342297]
[101]
Brady R, Enderling H. Mathematical models of cancer: When to predict novel therapies, and when not to. Bull Math Biol 2019; 81(10): 3722-31.
[http://dx.doi.org/10.1007/s11538-019-00640-x] [PMID: 31338741]
[102]
Interian R, Rodríguez-Ramos R, Valdés-Ravelo F, Ramírez-Torres A, Ribeiro CC, Conci A. Tumor growth modelling by Cellular Automata. Math Mechan Complex Syst 2017; 5: 239-59.
[http://dx.doi.org/10.2140/memocs.2017.5.239]
[103]
Guisoni N, Mazzitello KI, Diambra L. Modeling active cell movement with Potts model. Front Phys 2018; 6: 61.
[http://dx.doi.org/10.3389/fphy.2018.00061]
[104]
Macklin P. When seeing isn’t believing: How math can guide our interpretation of measurements and experiments. Cell Syst 2017; 5(2): 92-4.
[http://dx.doi.org/10.1016/j.cels.2017.08.005] [PMID: 28837815]
[105]
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: From spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2018; 15(138): 20170703.
[http://dx.doi.org/10.1098/rsif.2017.0703] [PMID: 29367239]
[106]
Metzcar J, Wang Y, Heiland R, Macklin P. A Review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform 2019; 3: 1-13.
[http://dx.doi.org/10.1200/CCI.18.00069] [PMID: 30715927]
[107]
Grant MR, Mostov KE, Tlsty TD, Hunt CA. Simulating properties of in vitro epithelial cell morphogenesis. PLOS Comput Biol 2006; 2(10): e129.
[http://dx.doi.org/10.1371/journal.pcbi.0020129] [PMID: 17029556]
[108]
Kim SH, Debnath J, Mostov K, Park S, Hunt CA. A computational approach to resolve cell level contributions to early glandular epithelial cancer progression. BMC Syst Biol 2009; 3: 122.
[http://dx.doi.org/10.1186/1752-0509-3-122] [PMID: 20043854]
[109]
Kim SHJ, Yu W, Mostov K, Matthay MA, Hunt CA, Selvarajoo K. A computational approach to understand in vitro alveolar morphogenesis. PLoS One 2009; 4(3): e4819.
[http://dx.doi.org/10.1371/journal.pone.0004819] [PMID: 19283073]
[110]
Zhang L, Strouthos CG, Wang Z, Deisboeck TS. Simulating brain tumor heterogeneity with a multi scale agent-based model: Linking molecular signatures, phenotypes and expansion rate. Math Comput Model 2009; 49(1-2): 307-19.
[http://dx.doi.org/10.1016/j.mcm.2008.05.011] [PMID: 20047002]
[111]
Tang J, Enderling H, Becker-Weimann S, et al. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling. Integr Biol 2011; 3(4): 408-21.
[http://dx.doi.org/10.1039/c0ib00092b] [PMID: 21373705]
[112]
Engelberg JA, Datta A, Mostov KE, Hunt CA, McCulloch AD. MDCK cystogenesis driven by cell stabilization within computational analogues. PLOS Comput Biol 2011; 7(4): e1002030.
[http://dx.doi.org/10.1371/journal.pcbi.1002030] [PMID: 21490722]
[113]
Siu LL, Conley BA, Boerner S, LoRusso PM. Next generation sequencing to guide clinical trials. Clin Cancer Res 2015; 21(20): 4536-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3215] [PMID: 26473189]
[114]
Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N. Next generation sequencing: Implications in personalized medicine and pharmacogenomics. Mol Biosyst 2016; 12(6): 1818-30.
[http://dx.doi.org/10.1039/C6MB00115G] [PMID: 27066891]
[115]
Rejniak KA. An immersed boundary framework for modelling the growth of individual cells: An application to the early tumour development. J Theor Biol 2007; 247(1): 186-204.
[http://dx.doi.org/10.1016/j.jtbi.2007.02.019] [PMID: 17416390]
[116]
Rejniak KA, Anderson AR. A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol 2008; 70(3): 677-712.
[http://dx.doi.org/10.1007/s11538-007-9274-1] [PMID: 18188652]
[117]
Rejniak KA, Quaranta V, Anderson AR. Computational investigation of intrinsic and extrinsic mechanisms underlying the formation of carcinoma. Math Med Biol 2012; 29(1): 67-84.
[http://dx.doi.org/10.1093/imammb/dqq021] [PMID: 21106672]
[118]
Rejniak KA. IBCell Morphocharts: A computational model for linking cell molecular activity with emerging tissue morphology. In: Jjonoska N, Saito M Eds., Discrete and topological models in molecular biology. Berlin, Germany: Springer 2014; pp. 507-24.
[http://dx.doi.org/10.1007/978-3-642-40193-0_23]
[119]
Poleszczuk J, Enderling H. A high-performance cellular automaton model of tumor growth with dynamically growing domains. Appl Math (Irvine) 2014; 5(1): 144-52.
[http://dx.doi.org/10.4236/am.2014.51017] [PMID: 25346862]
[120]
Van Liedekerke P, Palm MM, Jagiella N, et al. Simulating tissue mechanics with agent-based models: Concepts, perspectives and some novel results. Comput Part Mech 2015; 2: 401-44.
[http://dx.doi.org/10.1007/s40571-015-0082-3]
[121]
Lowengrub JS, Frieboes HB, Jin F, et al. Nonlinear modelling of cancer: Bridging the gap between cells and tumours. Nonlinearity 2010; 23(1): R1-9.
[http://dx.doi.org/10.1088/0951-7715/23/1/R01] [PMID: 20808719]
[122]
Macklin P, Edgerton ME. Discrete cell modeling. In: Cristini V, Lowengrub JS, Eds., Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge, United Kingdom: Cambridge University Press 2010; pp. 88-122.
[http://dx.doi.org/10.1017/CBO9780511781452.007]
[123]
Poleszczuk J, Macklin P, Enderling H. Agent-based modeling of cancer stem cell driven solid tumor growth. Methods Mol Biol 2016; 1516: 335-46.
[http://dx.doi.org/10.1007/7651_2016_346] [PMID: 27044046]
[124]
Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. New York: Springer 2004.
[125]
Deutsch A, Dormann S. Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. (2nd ed.), New York: Birkhauser 2017.
[http://dx.doi.org/10.1007/978-1-4899-7980-3]
[126]
Dallon JC, Othmer HG. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 2004; 231(2): 203-22.
[http://dx.doi.org/10.1016/j.jtbi.2004.06.015] [PMID: 15380385]
[127]
Sütterlin T, Tsingos E, Bensaci J, Stamatas GN, Grabe N. A 3D self-organizing multicellular epidermis model of barrier formation and hydration with realistic cell morphology based on EPISIM. Sci Rep 2017; 7: 43472.
[http://dx.doi.org/10.1038/srep43472] [PMID: 28262741]
[128]
Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. Vertex models of epithelial morphogenesis. Biophys J 2014; 106(11): 2291-304.
[http://dx.doi.org/10.1016/j.bpj.2013.11.4498] [PMID: 24896108]
[129]
Venugopalan G, Camarillo DB, Webster KD, et al. Multicellular architecture of malignant breast epithelia influences mechanics. PLoS One 2014; 9(8): e101955.
[http://dx.doi.org/10.1371/journal.pone.0101955] [PMID: 25111489]
[130]
Novak IL, Slepchenko BM. A conservative algorithm for parabolic problems in domains with moving boundaries. J Comput Phys 2014; 270: 203-13.
[http://dx.doi.org/10.1016/j.jcp.2014.03.014] [PMID: 25067852]
[131]
Alt S, Ganguly P, Salbreux G. Vertex models: From cell mechanics to tissue morphogenesis. Philos Trans R Soc Lond B Biol Sci 1720; 372(1720): 20150520.
[http://dx.doi.org/10.1098/rstb.2015.0520] [PMID: 28348254]
[132]
Alarcón T, Byrne HM, Maini PK. Towards whole-organ modelling of tumour growth. Prog Biophys Mol Biol 2004; 85(2-3): 451-72.
[http://dx.doi.org/10.1016/j.pbiomolbio.2004.02.004] [PMID: 15142757]
[133]
Anderson AR. A hybrid multi-scale model of solid tumour growth and invasion: Evolution and microenvironment. In: Anderson AR, Chaplain MAJ, Rejniak KA Eds., Single-cell-based models in biology and medicine. Basel, Switzerland: Birkhauser 2007; pp. 1-28.
[http://dx.doi.org/10.1007/978-3-7643-8123-3_1]
[134]
Radszuweit M, Block M, Hengstler JG, Schöll E, Drasdo D. Comparing the growth kinetics of cell populations in two and three dimensions. Phys Rev E Stat Nonlin Soft Matter Phys 2009; 79(5 Pt 1): 051907.
[http://dx.doi.org/10.1103/PhysRevE.79.051907] [PMID: 19518480]
[135]
Meyer-Hermann M. Delaunay-Object-Dynamics: Cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation. Curr Top Dev Biol 2008; 81: 373-99.
[http://dx.doi.org/10.1016/S0070-2153(07)81013-1] [PMID: 18023735]
[136]
Anderson AR, Rejniak KA, Gerlee P, Quaranta V. Microenvironment driven invasion: A multiscale multimodel investigation. J Math Biol 2009; 58(4-5): 579-624.
[http://dx.doi.org/10.1007/s00285-008-0210-2] [PMID: 18839176]
[137]
Poplawski NJ, Shirinifard A, Agero U, et al. Front instabilities and invasiveness of simulated 3D avascular tumors. PLoS One 2010; 5(5): e10641.
[http://dx.doi.org/10.1371/journal.pone.0010641] [PMID: 20520818]
[138]
Anderson ARA. A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. Math Med Biol 2005; 22(2): 163-86.
[http://dx.doi.org/10.1093/imammb/dqi005] [PMID: 15781426]
[139]
Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Phys Biol 2005; 2(3): 133-47.
[http://dx.doi.org/10.1088/1478-3975/2/3/001] [PMID: 16224119]
[140]
Gatenby RA, Smallbone K, Maini PK, et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 2007; 97(5): 646-53.
[http://dx.doi.org/10.1038/sj.bjc.6603922] [PMID: 17687336]
[141]
Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ. Metabolic changes during carcinogenesis: Potential impact on invasiveness. J Theor Biol 2007; 244(4): 703-13.
[http://dx.doi.org/10.1016/j.jtbi.2006.09.010] [PMID: 17055536]
[142]
Macklin P, Edgerton ME, Thompson AM, Cristini V. Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 2012; 301: 122-40.
[http://dx.doi.org/10.1016/j.jtbi.2012.02.002] [PMID: 22342935]
[143]
Hyun AZ, Macklin P. Improved patient-specific calibration for agent-based cancer modeling. J Theor Biol 2013; 317: 422-4.
[http://dx.doi.org/10.1016/j.jtbi.2012.10.017] [PMID: 23084996]
[144]
Szymańska Z, Cytowski M, Mitchell E, Macnamara CK, Chaplain MAJ. Computational modelling of cancer development and growth modelling at multiple scales and multiscale modelling. Bull Math Biol 2018; 80(5): 1366-403.
[http://dx.doi.org/10.1007/s11538-017-0292-3] [PMID: 28634857]
[145]
Fletcher AG, Mirams GR, Murray PJ, et al. Multiscale modelling of colonic crypts and early colorectal cancer. In: Deisboeck TS, Stamatakos GS Eds., Multiscale Cancer Modeling, Mathematical and Computational Biology Series. Boca Raton, FL: Chapman & Hall/CRC 2010; pp. 111-34.
[146]
Fletcher AG, Breward CJ, Jonathan Chapman S. Mathematical modeling of monoclonal conversion in the colonic crypt. J Theor Biol 2012; 300: 118-33.
[http://dx.doi.org/10.1016/j.jtbi.2012.01.021] [PMID: 22285553]
[147]
Tektonidis M, Hatzikirou H, Chauvière A, Simon M, Schaller K, Deutsch A. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J Theor Biol 2011; 287: 131-47.
[http://dx.doi.org/10.1016/j.jtbi.2011.07.012] [PMID: 21816160]
[148]
Gao X, McDonald JT, Hlatky L, Enderling H. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res 2013; 73(5): 1481-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3429] [PMID: 23269274]
[149]
Alfonso JC, Jagiella N, Núñez L, Herrero MA, Drasdo D. Estimating dose painting effects in radiotherapy: A mathematical model. PLoS One 2014; 9(2): e89380.
[http://dx.doi.org/10.1371/journal.pone.0089380] [PMID: 24586734]
[150]
Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and phenotypic selection of cancer stem cells. PLOS Comput Biol 2015; 11(3): e1004025.
[http://dx.doi.org/10.1371/journal.pcbi.1004025] [PMID: 25742563]
[151]
Enderling H. Cancer stem cells: Small subpopulation or evolving fraction? Integr Biol 2015; 7(1): 14-23.
[http://dx.doi.org/10.1039/C4IB00191E] [PMID: 25359461]
[152]
Gong C, Milberg O, Wang B, et al. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. J R Soc Interface 2017; 14(134): 14.
[http://dx.doi.org/10.1098/rsif.2017.0320] [PMID: 28931635]
[153]
Kather JN, Poleszczuk J, Suarez-Carmona M, et al. In silico modeling of immunotherapy and stroma-targeting therapies in human colorectal cancer. Cancer Res 2017; 77(22): 6442-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2006] [PMID: 28923860]
[154]
Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A. ‘Go or grow’: The key to the emergence of invasion in tumour progression? Math Med Biol 2012; 29(1): 49-65.
[http://dx.doi.org/10.1093/imammb/dqq011] [PMID: 20610469]
[155]
Gerlee P, Nelander S. The impact of phenotypic switching on glioblastoma growth and invasion. PLOS Comput Biol 2012; 8(6): e1002556.
[http://dx.doi.org/10.1371/journal.pcbi.1002556] [PMID: 22719241]
[156]
Bottger K, Hatzikirou H, Chauviere A, et al. Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math Model Nat Phenom 2012; 7: 105-35.
[http://dx.doi.org/10.1051/mmnp/20127106]
[157]
Kim Y, Kang H, Lawler S. TheroleofthemiR-451-AMPK signaling pathway in regulation of cell migration and proliferation in glioblastoma. In: Eladdadi A, Kim P, Mallet D. Eds., Mathematical Models of Tumor-Immune System Dynamics. New York: Springer 2014; pp. 125-56.
[158]
Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A. An emerging Allee effect is critical for tumor initiation and persistence. PLOS Comput Biol 2015; 11(9): e1004366.
[http://dx.doi.org/10.1371/journal.pcbi.1004366] [PMID: 26335202]
[159]
Alfonso JCL, Talkenberger K, Seifert M, et al. The biology and mathematical modelling of glioma invasion: A review. J R Soc Interface 2017; 14(136): 20170490.
[http://dx.doi.org/10.1098/rsif.2017.0490] [PMID: 29118112]
[160]
Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PLOS Comput Biol 2018; 14(2): e1005991.
[http://dx.doi.org/10.1371/journal.pcbi.1005991] [PMID: 29474446]
[161]
Ozik J, Collier N, Wozniak JM, et al. High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow. BMC Bioinformatics 2018; 19 (Suppl. 18): 483.
[http://dx.doi.org/10.1186/s12859-018-2510-x] [PMID: 30577742]
[162]
Johnson D, McKeever S, Stamatakos G, et al. Dealing with diversity in computational cancer modeling. Cancer Inform 2013; 12: 115-24.
[http://dx.doi.org/10.4137/CIN.S11583] [PMID: 23700360]
[163]
Li XL, Oduola WO, Qian L, Dougherty ER. Integrating multiscale modeling with drug effects for cancer treatment. Cancer Inform 2016; 14 (Suppl. 5): 21-31.
[PMID: 26792977]
[164]
Berg OG, Paulsson J, Ehrenberg M. Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated. Biophys J 2000; 79(3): 1228-36.
[http://dx.doi.org/10.1016/S0006-3495(00)76377-6] [PMID: 10968987]
[165]
Mansury Y, Deisboeck TS. The impact of “search precision” in an agent-based tumor model. J Theor Biol 2003; 224(3): 325-37.
[http://dx.doi.org/10.1016/S0022-5193(03)00169-3] [PMID: 12941591]
[166]
Wang Z, Zhang L, Sagotsky J, Deisboeck TS. Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 2007; 4: 50.
[http://dx.doi.org/10.1186/1742-4682-4-50] [PMID: 18154660]
[167]
Zhang L, Athale CA, Deisboeck TS. Development of a three-dimensional multiscale agent-based tumor model: Simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 2007; 244(1): 96-107.
[http://dx.doi.org/10.1016/j.jtbi.2006.06.034] [PMID: 16949103]
[168]
Wang Z, Birch CM, Sagotsky J, Deisboeck TS. Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinform 2009; 25(18): 2389-96.
[http://dx.doi.org/10.1093/bioinformatics/btp416] [PMID: 19578172]
[169]
Wang Z, Bordas V, Sagotsky J, Deisboeck TS. Identifying therapeutic targets in a combined EGFR-TGFβR signalling cascade using a multiscale agent-based cancer model. Math Med Biol 2012; 29(1): 95-108.
[http://dx.doi.org/10.1093/imammb/dqq023] [PMID: 21147846]
[170]
Wang H, Qian L, Dougherty E. Inference of gene regulatory networks using S-system: A unified approach. Proceedings of the IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology (CIBCB ’07). Honolulu. 2007; pp. 82-9.
[171]
Deschuyteneer M, Elouahabi A, Plainchamp D, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin 2010; 6(5): 407-19.
[http://dx.doi.org/10.4161/hv.6.5.11023] [PMID: 20953154]
[172]
Li X, Qian L, Dougherty ER. Modelling treatment and drug effects at the molecular level using hybrid system theory. Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Montreal, QC. 2010; pp. 1-7.
[173]
Li X, Qian L, Dougherty ER. Dynamical modeling of drug effect using hybrid systems. EURASIP J Bioinform Syst Biol 2012; 2012(1): 19.
[http://dx.doi.org/10.1186/1687-4153-2012-19] [PMID: 23268741]
[174]
Li X, Qian L, Bittner ML, Dougherty ER. A systems biology approach in therapeutic response study for different dosing regimens – a modeling study of drug effects on tumor growth using hybrid systems. Cancer Inform 2012; 11: 41-60.
[http://dx.doi.org/10.4137/CIN.S8185] [PMID: 22442626]
[175]
Li X, Qian L, Bittner ML, Dougherty ER. Drug effect study on proliferation and survival pathways on cell line-based platform: A stochastic hybrid systems approach. Proceedings of the IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). Houston, Texas. 2013; pp. 54-7.
[http://dx.doi.org/10.1109/GENSIPS.2013.6735930]
[176]
Marias K, Dionysiou D, Sakkalis V, et al. Clinically driven design of multi-scale cancer models: The ContraCancrum project paradigm. Interface Focus 2011; 1(3): 450-61.
[http://dx.doi.org/10.1098/rsfs.2010.0037] [PMID: 22670213]
[177]
Stamatakos G, Kolokotroni E, Dionysiou D, et al. In silico oncology: Exploiting clinical studies to clinically adapt and validate multiscale oncosimulators. In: Engineering in Medicine and Biology Society (EMBC Proceedings of the 35th Annual International Conference of the IEEE. Osaka. 2013; pp. 5545-9.
[178]
Sun X, Su J, Bao J, et al. Cytokine combination therapy prediction for bone remodeling in tissue engineering based on the intracellular signaling pathway. Biomaterials 2012; 33(33): 8265-76.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.041] [PMID: 22910219]
[179]
Hahnfeldt P, Folkman J, Hlatky L. Minimizing long-term tumor burden: The logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 2003; 220(4): 545-54.
[http://dx.doi.org/10.1006/jtbi.2003.3162] [PMID: 12623285]
[180]
Mukherjee A, Majumder D, Icbal A. Exploring the effectiveness of low continuous chemo-bio-therapeutic treatment of cancer through analytical system modelling. J Biol Syst 2006; 14: 1-12.
[http://dx.doi.org/10.1142/S0218339006001696]
[181]
Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4(6): 423-36.
[http://dx.doi.org/10.1038/nrc1369] [PMID: 15170445]
[182]
Kaur H, Budd GT. Metronomic therapy for breast cancer. Curr Oncol Rep 2004; 6(1): 49-52.
[http://dx.doi.org/10.1007/s11912-996-0009-5] [PMID: 14664761]
[183]
Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: New rationale for new directions. Nat Rev Clin Oncol 2010; 7(8): 455-65.
[http://dx.doi.org/10.1038/nrclinonc.2010.82] [PMID: 20531380]
[184]
André N, Padovani L, Pasquier E. Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy? Future Oncol 2011; 7(3): 385-94.
[http://dx.doi.org/10.2217/fon.11.11] [PMID: 21417902]
[185]
Mukherjee A, Majumder D. Mathematical modelling for the assessment of the effect of drug application delays in metronomic chemotherapy of cancer due to physiological constraints. Biosystems 2008; 91(1): 108-16.
[http://dx.doi.org/10.1016/j.biosystems.2007.08.002] [PMID: 17889991]
[186]
Majumder D. Tumor angiogenesis based analytical model for the assessment of MCT and MTD chemotherapeutic strategies in cancer. J Biol Syst 2010; 18(4): 749-61.
[http://dx.doi.org/10.1142/S0218339010003482]
[187]
Folkman J. The vascularization of tumors. Sci Am 1976; 234(5): 58-64, 70-73.
[http://dx.doi.org/10.1038/scientificamerican0576-58] [PMID: 1273568]
[188]
Liotta LA. Tumor Invasion and metastasis - role of extracellular matrix. Cancer Res 1986; 46: 1-7.
[PMID: 2998604]
[189]
Balding D, McElwain DLS. A mathematical model of tumour-induced capillary growth. J Theor Biol 1985; 114(1): 53-73.
[http://dx.doi.org/10.1016/S0022-5193(85)80255-1] [PMID: 2409405]
[190]
Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol 2015; 5(3): 246-55.
[http://dx.doi.org/10.1016/j.jceh.2015.08.001] [PMID: 26628842]
[191]
Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2010; 2(4): 438-59.
[http://dx.doi.org/10.1002/wsbm.75] [PMID: 20836040]
[192]
Bhattacharya S, Majumder D. An analytical approach for tracking the tumor system dynamics. Proc 2009 World Congr Nat Biol Insp Comput (NaBIC 2009), IEEE, 2009; pp. 92–97, ISBN: 978-1-4244-5612- 3.
[http://dx.doi.org/10.1109/NABIC.2009.5393606]
[193]
Chen TY, Chen HHW, Su WC, Tsao CJ. High-dose chemotherapy and hematopoietic stem cell transplantation for patients with nasopharyngeal cancer: A feasibility study. Jpn J Clin Oncol 2003; 33(7): 331-5.
[http://dx.doi.org/10.1093/jjco/hyg064] [PMID: 12949058]
[194]
Antman KH, Rowlings PA, Vaughan WP, et al. High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. J Clin Oncol 1997; 15(5): 1870-9.
[http://dx.doi.org/10.1200/JCO.1997.15.5.1870] [PMID: 9164197]
[195]
Damon LE, Hu WW, Stockerl-Goldstein KE, et al. High-dose chemotherapy and hematopoietic stem cell rescue for breast cancer: Experience in California. Biol Blood Marrow Transplant 2000; 6(5): 496-505.
[http://dx.doi.org/10.1016/S1083-8791(00)70020-6] [PMID: 11063378]
[196]
Lotz JP, Curé H, Janvier M, et al. High-dose chemotherapy with haematopoietic stem cell transplantation for metastatic breast cancer patients: Final results of the French multicentric randomised CMA/PEGASE 04 protocol. Eur J Cancer 2005; 41(1): 71-80.
[http://dx.doi.org/10.1016/j.ejca.2004.09.006] [PMID: 15617992]
[197]
Adelberg DE, Bishop MR. Emergencies related to cancer chemotherapy and hematopoietic stem cell transplantation. Emerg Med Clin North Am 2009; 27(2): 311-31.
[http://dx.doi.org/10.1016/j.emc.2009.01.005] [PMID: 19447314]
[198]
Berry DA, Ueno NT, Johnson MM, et al. High-dose chemotherapy with autologous stem-cell support as adjuvant therapy in breast cancer: Overview of 15 randomized trials. J Clin Oncol 2011; 29(24): 3214-23.
[http://dx.doi.org/10.1200/JCO.2010.32.5910] [PMID: 21768471]
[199]
Hamidieh AA, Jalili M, Khojasteh O, Ghavamzadeh A. Autologous stem cell transplantation as treatment modality in a patient with relapsed pancreatoblastoma. Pediatr Blood Cancer 2010; 55(3): 573-6.
[http://dx.doi.org/10.1002/pbc.22536] [PMID: 20658635]
[200]
Litzow MR, Peethambaram PP, Safgren SL, et al. Phase I trial of autologous hematopoietic SCT with escalating doses of topotecan combined with CY and carboplatin in patients with relapsed or persistent ovarian or primary peritoneal carcinoma. Bone Marrow Transplant 2010; 45(3): 490-7.
[http://dx.doi.org/10.1038/bmt.2009.181] [PMID: 19648970]
[201]
Dhar PK, Majumder D. A composite synergistic systems model for exploring the efficacies of different chemotherapeutic strategies in cancer. Comput Biol J 2013; 2013: 301369.
[http://dx.doi.org/10.1155/2013/301369]
[202]
Ebos JML, Lee CR, Kerbel RS. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 2009; 15(16): 5020-5.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0095] [PMID: 19671869]
[203]
Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer 2010; 46(8): 1323-32.
[http://dx.doi.org/10.1016/j.ejca.2010.02.020] [PMID: 20236818]
[204]
Pasquier E, Kieran MW, Sterba J, et al. Moving forward with metronomic chemotherapy: Meeting report of the 2nd International Workshop on Metronomic and Anti-Angiogenic Chemotherapy in Paediatric Oncology. Transl Oncol 2011; 4(4): 203-11.
[http://dx.doi.org/10.1593/tlo.11124] [PMID: 21804915]
[205]
Ebos JML, Kerbel RS. Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011; 8(4): 210-21.
[http://dx.doi.org/10.1038/nrclinonc.2011.21] [PMID: 21364524]
[206]
Gregorc V, Santoro A, Bennicelli E, et al. Phase Ib study of NGR-hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. Br J Cancer 2009; 101(2): 219-24.
[http://dx.doi.org/10.1038/sj.bjc.6605162] [PMID: 19568235]
[207]
Gatenby RA. A change of strategy in the war on cancer. Nature 2009; 459(7246): 508-9.
[http://dx.doi.org/10.1038/459508a] [PMID: 19478766]
[208]
Anderson C. Leveraging blood based diagnostics. J Prec Med 2015; 49: 1.
[209]
Mazumder R. Blood-based companion diagnostics. J Prec Med 2015; 51: 1.
[210]
Wender RC, Brawley OW, Fedewa SA, Gansler T, Smith RA. A blueprint for cancer screening and early detection: Advancing screening’s contribution to cancer control. CA Cancer J Clin 2019; 69(1): 50-79.
[http://dx.doi.org/10.3322/caac.21550] [PMID: 30452086]
[211]
Majumder D, Banerjee D, Chandra S, Banerjee S, Chakrabarti A. Red cell morphology in leukemia, hypoplastic anemia and myelodysplastic syndrome. Pathophysiology 2006; 13(4): 217-25.
[http://dx.doi.org/10.1016/j.pathophys.2006.06.002] [PMID: 16876391]
[212]
Koma Y, Onishi A, Matsuoka H, et al. Increased red blood cell distribution width associates with cancer stage and prognosis in patients with lung cancer. PLoS One 2013; 8(11): e80240.
[http://dx.doi.org/10.1371/journal.pone.0080240] [PMID: 24244659]
[213]
Gening TP, Fedotova AY, Dolgova DR, et al. Use of atomic force microscopy for assessing paraneoplastic changes in red blood cells in carcinogenesis dynamics. Transl Biomed 2016; 7: 1.
[214]
Majumder D, Das M. Digital image analysis for early diagnosis of cancer: Identification of pre-cancerous state. In: Dey N, Ashour AS, Kalia H, Goswami RT, Das H. Eds., Histopathological image analysis in medical decision making. USA: IGI Global 2019; pp. 69-102.
[http://dx.doi.org/10.4018/978-1-5225-6316-7.ch004]
[215]
Majumder D. Development of MatLab coding for early detection of leukemia through automated analysis of RBCs. Curr Cancer Ther Rev 2020; 16: 152-64.
[http://dx.doi.org/10.2174/1573394715666191204102545]
[216]
Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology--patient and health systems opportunities. Nat Rev Clin Oncol 2015; 12(12): 732-42.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[217]
Majumder D, Mukherjee S. Molecular docking assessment of efficacy of different clinically used arsenic chelator drugs. J Comput Med 2013; 2013: 396768.
[http://dx.doi.org/10.1155/2013/396768]
[218]
Mukherjee S, Majumder D. Computational molecular docking assessment of hormone receptor adjuvant drugs: Breast cancer as an example. Pathophysiology 2009; 16(1): 19-29.
[http://dx.doi.org/10.1016/j.pathophys.2008.12.001] [PMID: 19147336]
[219]
Chatterjee G, Mukherjee S, Majumder D. 2016. Efficacy and toxicity assessment of different clinically used small molecular tyrosine kinase inhibitors by computational docking method. J Metabolom Syst Biol 2016; 2(1): 9.
[http://dx.doi.org/10.13188/2329-1583.1000006]
[220]
Mukherjee S, Chatterjee G, Ghosh M, Das B, Majumder D. Efficacy and toxicity assessment of different antibody based antiangiogenic drugs by computational docking method. Adv Bioinforma 2016; 2016: 7053712.
[221]
Roukos DH. Beyond HER2 and trastuzumab: Heterogeneity, systems biology, and cancer origin research may guide the future for personalized treatment of very early but aggressive breast cancer. J Clin Oncol 2010; 28(17): e279-80.
[http://dx.doi.org/10.1200/JCO.2009.27.7061] [PMID: 20406920]
[222]
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014; 32(1): 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[223]
Chauviere AH, Hatzikirou H, Lowengrub JS, Frieboes HB, Thompson AM, Cristini V. Mathematical oncology: How are the mathematical and physical sciences contributing to the war on breast cancer? Curr Breast Cancer Rep 2010; 2(3): 121-9.
[http://dx.doi.org/10.1007/s12609-010-0020-6] [PMID: 21151486]
[224]
Bruno R, Lu JF, Sun YN, Claret L. A modeling and simulation framework to support early clinical drug development decisions in oncology. J Clin Pharmacol 2011; 51(1): 6-8.
[http://dx.doi.org/10.1177/0091270010376970] [PMID: 20628172]
[225]
Levi F, Mosekilde E, Rand DA. Advancing systems medicine and therapeutics through biosimulation. Interface Focus 2011; 1: 3-6.
[http://dx.doi.org/10.1098/rsfs.2010.0019]
[226]
Liu ET. Systems biology, integrative biology, predictive biology. Cell 2005; 121(4): 505-6.
[http://dx.doi.org/10.1016/j.cell.2005.04.021] [PMID: 15907463]
[227]
Foo J, Basanta D, Rockne RC, et al. Roadmap on plasticity and epigenetics in cancer. Phys Biol 2022; 19(3): 10.1088/1478-3975/ac4ee2.
[http://dx.doi.org/10.1088/1478-3975/ac4ee2] [PMID: 35078159]
[228]
Subudhi S, Voutouri C, Hardin CC, et al. Strategies to minimize heterogeneity and optimize clinical trials in Acute Respiratory Distress Syndrome (ARDS): Insights from mathematical modelling. EBioMedicine 2022; 75: 103809.
[http://dx.doi.org/10.1016/j.ebiom.2021.103809] [PMID: 35033853]
[229]
Alias N, Al-Rahmi WM, Yahaya N, Al-Maatouk Q. Big data, modeling, simulation, computational platform and holistic approaches for the fourth industrial revolution. Int J Engg Technol 2018; 7(4): 3722-5.
[http://dx.doi.org/10.14419/ijet.v7i4.21244]
[230]
Otokiti AU. Digital Health and Healthcare Quality: A Primer on the Evolving 4th Industrial Revolution. In: Stawicki SP, Firstenberg MS, Eds. Contemporary Topics in Patient Safety - Volume 1. London: IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.94054]
[231]
Noble D. Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 2008; 93(1): 16-26.
[http://dx.doi.org/10.1113/expphysiol.2007.038695] [PMID: 17951329]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy