Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Molecular Modelling and Docking Analysis of Filarial Targets by using New Lead Compounds identified from Psoralea corylifolia and Mimusops elengi

Author(s): Shobana A., Priyadharshini A.M., Yogalakshmi Manoharan and Gowri Shankar Bagavananthem Andavan*

Volume 11, Issue 2, 2022

Published on: 12 September, 2022

Page: [123 - 130] Pages: 8

DOI: 10.2174/2211550111666220517095527

Price: $65

Abstract

Background: Psoralea corylifolia and Mimusops elengi could be a source of new bioactive compounds for treating filariasis Psoralea corylifolia and Mimusops elengi. Thediversity of these plants has been proved medicinally and phytochemically. These plants haveplayed an important role in ancient medicine for the treatments of various ailments and especially against many helminths.

Methods: Psoralea corylifolia and Mimusops elengi could be a source of new bioactive compounds for treating filariasis. 20g of dried powder of Psoralea corylifolia and Mimusops elengi were extracted using a Soxhlet apparatus using various solvents like methanol, chloroform, acetone, and water for about 30 cycles and then concentrated using a rotary evaporator and stored at 4 °C in airtight containers. It is effective against Setaria cervi at 100 and 200 μg, respectively. In-vitro studies have been done for the respective compounds. Homology models of Glutathione S transferase, Chitinase, and Transglutaminase were constructed using MODELLER v9.20 (Accelrys).

Results: The results from the in vitro studies were confirmed by TLC and GC MS analysis of the extracts, which showed the presence of different phytochemical compounds in the extracts. Among the compounds identified in GC MS, 7,10-Octadecadienoic acid, methyl ester, Pentadecanoic acid, 14-methyl-, methyl ester, 2-Nonadecanone2,4-dinitrophenylhydrazine, Aspidospermidin-17-ol, 1- acetyl-19,21-epoxy-15,16-dimethoxy-, 9- (2’,2’-Dimethylpropanihydrozano)-3,6 dichloro-2,7-bis- [2-(diethylamino)-ethoxy] fluorine, and 2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca- 3,7,11,15-tetraenyl)-cyclohexanol were docked against crystallised bioactive compounds.

Conclusion: As a result of this study, it was concluded that arresting these proteins will help in arresting the growth and multiplication of parasites, thus leading to the development of a new antifilarial drug.

Keywords: Psoralea corylifolia, Mimusops elengi, Setaria cervi, GST, major sperm protein, coproporphyrinogen oxidase.

Graphical Abstract

[1]
Ottesen EA. Lymphatic filariasis: Treatment, control and elimination. Adv Parasitol 2006; 61: 395-441.
[http://dx.doi.org/10.1016/S0065-308X(05)61010-X] [PMID: 16735170]
[2]
Molyneux DH, Bradley M, Hoerauf A, Kyelem D, Taylor MJ. Mass drug treatment for lymphatic filariasis and onchocercia-sis. Trends Parasitol 2003; 19(11): 516-22.
[http://dx.doi.org/10.1016/j.pt.2003.09.004] [PMID: 14580963]
[3]
Krishna Kumari A, Harichandrakumar KT, Das LK, Krish-namoorthy K. Physical and psychosocial burden due to lym-phatic filariasis as perceived by patients and medical experts. Trop Med Int Health 2005; 10(6): 567-73.
[http://dx.doi.org/10.1111/j.1365-3156.2005.01426.x] [PMID: 15941420]
[4]
Melrose WD. Lymphatic filariasis: New insights into an old disease. International for parasitology 2002; 32(8): 947-60.
[5]
Molyneux D, Zagaria N. Lymphatic filariasis elimination: Progress in global programme development. Ann Trop Med Parasitol 2002; 96(2): S15-40.
[http://dx.doi.org/10.1179/000349802125002374]
[6]
Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endo-symbionts of filarial nematodes. Adv Parasitol 2005; 60: 245-84.
[http://dx.doi.org/10.1016/S0065-308X(05)60004-8] [PMID: 16230105]
[7]
Wu B, Novelli J, Foster J, et al. The heme biosynthetic path-way of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 2009; 3(7): e475.
[http://dx.doi.org/10.1371/journal.pntd.0000475] [PMID: 19597542]
[8]
Awadzi K, Attah SK, Addy ET, et al. Thirty-month follow-up of sub-optimal responders to multiple treatments with Iver-mectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 2004; 98(4): 359-70.
[http://dx.doi.org/10.1179/000349804225003442] [PMID: 15228717]
[9]
Chanda S, Kaneria M, Nair R. Antibacterial activity of Psora-lea corylifolia L. seed and aerial parts with various extraction methods. Res J Microbiol 2011; 6(2): 124-31.
[http://dx.doi.org/10.3923/jm.2011.124.131]
[10]
Roy B, Swargiary A, Syiem D, Tandon V. Potentilla fulgens (Family Rosaceae), a medicinal plant of north-east India: A natural anthelmintic? J Parasit Dis 2010; 34(2): 83-8.
[http://dx.doi.org/10.1007/s12639-010-0018-z] [PMID: 21966126]
[11]
Bhargavi R, Vishwakarma S, Murty US. Modeling analysis of GST (Glutathione-S-Transferases) from Wuchereria bancrofti and Brugia malayi. Bioinformation 2005; 1(1): 25-7.
[http://dx.doi.org/10.6026/97320630001025] [PMID: 17597848]
[12]
Scott AL. Nematode sperm. Parasitol Today 1996; 12(11): 425-30.
[http://dx.doi.org/10.1016/0169-4758(96)10063-6] [PMID: 15275275]
[13]
Mohanta TK, Patra JK, Rath SK, Pal DK, Thatoi HN. Evalua-tion of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium Lf. Sci Res Essays 2007; 2(11): 486-90.
[14]
Qamaruddin A, Parveen N, Khan NU, Singhal KC. Potential antifilarial activity of the leaves and seeds extracts of Psora-lea corylifolia on cattle filarial parasite Setaria cervi. J Ethnopharmacol 2002; 82(1): 23-8.
[http://dx.doi.org/10.1016/S0378-8741(02)00141-1] [PMID: 12169401]
[15]
Nostro A, Germanò MP, D’angelo V, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 2000; 30(5): 379-84.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00731.x] [PMID: 10792667]
[16]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[17]
Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and ge-nomes. Annu Rev Biophys Biomol Struct 2000; 29(1): 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291] [PMID: 10940251]
[18]
Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature 1996; 381(6580): 272-.
[http://dx.doi.org/10.1038/381272a0] [PMID: 8692262]
[19]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[20]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[21]
Laskowski RA. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res 2001; 29(1): 221-2.
[http://dx.doi.org/10.1093/nar/29.1.221] [PMID: 11125097]
[22]
Khushboo PS, Jadhav VM, Kadam VJ, Sathe NS. Psoralea corylifolia Linn.-“Kushtanashini”. Pharmacogn Rev 2010; 4(7): 69-76.
[http://dx.doi.org/10.4103/0973-7847.65331] [PMID: 22228944]
[23]
Gadamsetty G, Lakshmipathy R, Sarada NC. Phytochemical analysis and in-vitro anthelmintic activity of Mimusops elengi Linn and Drypetes sepiaria. Int J Pharm Pharm Sci 2013; 5(1): 126-8.
[24]
Ruikar A, Torane R, Tambe A, Puranik V, Deshpande N. GC-MS study of a steam volatile matter from Mimusopselengi. Int J Chemtech Res Coden 2009; 1(2): 158-61.
[25]
Murali B, Amit A, Anand MS, Venkataraman BV. An HPLC method for simultaneous estimation of psoralen, bakuchicin and bakuchiol in Psoralea corylifolia. J Nat Rem 2002; 2(1): 76-80.
[26]
Zhao L, Huang C, Shan Z, Xiang B, Mei L. Fingerprint analy-sis of Psoralea corylifolia L. by HPLC and LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 821(1): 67-74.
[http://dx.doi.org/10.1016/j.jchromb.2005.04.008] [PMID: 15905140]
[27]
Sharma OP, Vadlamudi Y, Kota AG, Sinha VK, Kumar MS. Drug targets for lymphatic filariasis: A bioinformatics ap-proach. J Vector Borne Dis 2013; 50(3): 155-62.
[PMID: 24220073]
[28]
Devarajan E, Mishra PK, Thirugnanam S, Mehta K, Chan-drashekar R, Perumal K. Molecular characterization of a Bru-gia malayi transglutaminase. Parasitol Res 2004; 93(2): 145-50.
[http://dx.doi.org/10.1007/s00436-004-1121-9] [PMID: 15127297]
[29]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[30]
Fiser A, Šali A. Modeller: Generation and refinement of ho-mology-based protein structure models. Methods Enzymol 2003; 374: 461-91.
[http://dx.doi.org/10.1016/S0076-6879(03)74020-8] [PMID: 14696385]
[31]
Rao UR, Salinas G, Mehta K, Klei TR. Identification and lo-calization of glutathione S-transferase as a potential target en-zyme in Brugia species. Parasitol Res 2000; 86(11): 908-15.
[http://dx.doi.org/10.1007/s004360000255] [PMID: 11097299]
[32]
Harnett W, Deehan MR, Houston KM, Harnett MM. Im-munomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein. Parasite Immunol 1999; 21(12): 601-8.
[http://dx.doi.org/10.1046/j.1365-3024.1999.00267.x] [PMID: 10583862]
[33]
Doharey PK, Singh SK, Verma P, Verma A, Rathaur S, Saxena JK. Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK). Int J Biol Macromol 2016; 88: 565-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.004] [PMID: 27044348]
[34]
Misra S, Valicherla GR. Mohd Shahab, Gupta J, Gayen JR, Misra-Bhattacharya S. UDP-galactopyranose mutase, a poten-tial drug target against human pathogenic nematode Brugia malayi. Pathog Dis 2016; 74(6): ftw072.
[http://dx.doi.org/10.1093/femspd/ftw072] [PMID: 27465638]
[35]
Rajaiah Prabhu P, Moorthy SD, Madhumathi J, et al. Wucher-ria bancrofti glutathione S-Transferase: Insights into the 2.3 Å resolution X-ray structure and function, a therapeutic target for human lymphatic filariasis. Biochem Biophys Res Commun 2018; 505(4): 979-84.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.077] [PMID: 30297111]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy