Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Nanomedicine in Neuroscience: An Application Towards the Treatment of Various Neurological Diseases

Author(s): Vajagathali Mohammed, Iyshwarya Bhaskar Kalarani and Ramakrishnan Veerabathiran*

Volume 12, Issue 2, 2022

Published on: 15 July, 2022

Page: [84 - 92] Pages: 9

DOI: 10.2174/2468187312666220516144008

Price: $65

Abstract

The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely compacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedical techniques that may allow for resolving these issues, including the ability to cross the bloodbrain barrier. It has substantially explored nanoparticles in the previous century, contributing to substantial progress in biomedical studies and medical procedures. Using many synthesized nanoparticles on the molecular level has given many potential gains in various domains of regenerative medicine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the delivery mechanism.

Keywords: Nanoparticles, neurological diseases, blood-brain barriers, stem cells, drug discovery, nanomedicine.

« Previous
Graphical Abstract

[1]
Nguyen, V.T.; Nguyen, T.H.; Dang, L.H.; Vu-Quang, H.; Tran, N.Q. Folate-conjugated chitosan-pluronic P123 nanogels: Synthesis and characterizations towards dual drug delivery. J. Nanomater., 2019, 2019, 1067821.
[http://dx.doi.org/10.1155/2019/1067821]
[2]
Preechawong, J.; Noulta, K.; Dubas, S.T.; Nithitanakul, M.; Sapsrithong, P. Nanolayer film on poly(styrene/ethylene glycol dimethacrylate) high internal phase emulsion porous polymer surface as a scaffold for tissue engineering application. J. Nanomater., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/7268192]
[3]
Lin, C.; Cai, S.; Feng, J. Positive contrast imaging of SPIO nanoparticles. J. Nanomater., 2012, 2012(5), 734842.
[http://dx.doi.org/10.1155/2012/734842]
[4]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[5]
Qiu, Y.; Liu, Y.; Wang, L. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31(30), 7606-7619.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.051] [PMID: 20656344]
[6]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[7]
Bredesen, D.E.; Rao, R.V.; Mehlen, P. Cell death in the nervous system. Nature, 2006, 443(7113), 796-802.
[http://dx.doi.org/10.1038/nature05293] [PMID: 17051206]
[8]
Hübler, A.W.; Osuagwu, O. Digital quantum batteries: Energy and information storage in nanovacuum tube arrays. Complexity, 2010, 15(5), 48-55.
[http://dx.doi.org/10.1002/cplx.20306]
[9]
Di Stefano, A.; Carafa, M.; Sozio, P. Evaluation of rat striatal L-dopa and DA concentration after intraperitoneal administration of L-dopa prodrugs in liposomal formulations. J. Control. Release, 2004, 99(2), 293-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.010] [PMID: 15380638]
[10]
Lin, C.Y.; Lin, Y.C.; Huang, C.Y.; Wu, S.R.; Chen, C.M.; Liu, H.L. Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson’s disease treatment. J. Control. Release, 2020, 321, 519-528.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.044] [PMID: 32112852]
[11]
McRae, A.; Dahlström, A. Transmitter-loaded polymeric microspheres induce regrowth of dopaminergic nerve terminals in striata of rats with 6-OH-DA induced parkinsonism. Neurochem. Int., 1994, 25(1), 27-33.
[http://dx.doi.org/10.1016/0197-0186(94)90049-3] [PMID: 7950966]
[12]
Aubert-Pouëssel, A.; Venier-Julienne, M.C.; Clavreul, A. In vitro study of GDNF release from biodegradable PLGA microspheres. J. Control. Release, 2004, 95(3), 463-475.
[http://dx.doi.org/10.1016/j.jconrel.2003.12.012] [PMID: 15023458]
[13]
D’Aurizio, E.; Sozio, P.; Cerasa, L.S. Biodegradable microspheres loaded with an anti-Parkinson prodrug: An in vivo pharmacokinetic study. Mol. Pharm., 2011, 8(6), 2408-2415.
[http://dx.doi.org/10.1021/mp200337h] [PMID: 22014118]
[14]
Betzer, O.; Shilo, M.; Opochinsky, R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.), 2017, 12(13), 1533-1546.
[http://dx.doi.org/10.2217/nnm-2017-0022] [PMID: 28621578]
[15]
An, J.H.; El-Said, W.A.; Yea, C.H.; Kim, T.H.; Choi, J.W. Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(5), 4424-4429.
[http://dx.doi.org/10.1166/jnn.2011.3688] [PMID: 21780469]
[16]
Feigin, V.L.; Norrving, B.; Mensah, G.A. Global burden of stroke. Circ. Res., 2017, 120(3), 439-448.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308413] [PMID: 28154096]
[17]
Xu, X.; Wang, B.; Ren, C. Age-related impairment of vascular structure and functions. Aging Dis., 2017, 8(5), 590-610.
[http://dx.doi.org/10.14336/AD.2017.0430] [PMID: 28966804]
[18]
Xu, X.; Wang, B.; Ren, C. Recent progress in vascular aging: Mechanisms and its role in age-related diseases. Aging Dis., 2017, 8(4), 486-505.
[http://dx.doi.org/10.14336/AD.2017.0507] [PMID: 28840062]
[19]
Hankey, G.J. Stroke. Lancet, 2017, 389(10069), 641-654.
[http://dx.doi.org/10.1016/S0140-6736(16)30962-X] [PMID: 27637676]
[20]
Ren, C.; Yao, Y.; Han, R. Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch 1 signaling activation. Exp. Neurol., 2018, 304, 30-40.
[http://dx.doi.org/10.1016/j.expneurol.2018.02.013] [PMID: 29481785]
[21]
Kyle, S.; Saha, S. Nanotechnology for the detection and therapy of stroke. Adv. Healthc. Mater., 2014, 3(11), 1703-1720.
[http://dx.doi.org/10.1002/adhm.201400009] [PMID: 24692428]
[22]
Huang, D.; Wu, K.; Zhang, Y. Recent advances in tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Rev. Adv. Mater. Sci., 2019, 58(1), 159-170.
[http://dx.doi.org/10.1515/rams-2019-0024]
[23]
Correa-Paz, C.; Navarro Poupard, M.F.; Polo, E. In vivo ultrasound-activated delivery of recombinant tissue plasminogen activator from the cavity of sub-micrometric capsules. J. Control. Release, 2019, 308, 162-171.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.017] [PMID: 31310784]
[24]
Jin, H.; Tan, H.; Zhao, L. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int. J. Pharm., 2012, 434(1-2), 384-390.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.001] [PMID: 22683455]
[25]
Kawata, H.; Uesugi, Y.; Soeda, T. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J. Am. Coll. Cardiol., 2012, 60(24), 2550-2557.
[http://dx.doi.org/10.1016/j.jacc.2012.08.1008] [PMID: 23158532]
[26]
Uesugi, Y.; Kawata, H.; Jo, J.; Saito, Y.; Tabata, Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J. Control. Release, 2010, 147(2), 269-277.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.127] [PMID: 20696194]
[27]
Cheng, R.; Huang, W.; Huang, L. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano, 2014, 8(8), 7746-7754.
[http://dx.doi.org/10.1021/nn5029955] [PMID: 25006696]
[28]
Hu, J.; Huang, W.; Huang, S. ZhuGe Q, Jin K, Zhao Y. Magnetically active Fe3O4 nanorods loaded with tissue plasminogen activator for enhanced thrombolysis. Nano Res., 2016, 9(9), 2652-2661.
[http://dx.doi.org/10.1007/s12274-016-1152-4]
[29]
Hirano, T.; Komatsu, M.; Uenohara, H.; Takahashi, A.; Takayama, K.; Yoshimoto, T. A novel method of drug delivery for fibrinolysis with Ho: YAG laser-induced liquid jet. Lasers Med. Sci., 2002, 17(3), 165-172.
[http://dx.doi.org/10.1007/s101030200026] [PMID: 12181631]
[30]
Holme, M.N.; Fedotenko, I.A.; Abegg, D. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol., 2012, 7(8), 536-543.
[http://dx.doi.org/10.1038/nnano.2012.84] [PMID: 22683843]
[31]
Korin, N.; Kanapathipillai, M.; Matthews, B.D. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science, 2012, 337(6095), 738-742.
[http://dx.doi.org/10.1126/science.1217815] [PMID: 22767894]
[32]
Hu, J.; Huang, S.; Zhu, L. Tissue plasminogen activatorporous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl. Mater. Interfaces, 2018, 10(39), 32988-32997.
[http://dx.doi.org/10.1021/acsami.8b09423] [PMID: 30192506]
[33]
Juenet, M.; Aid-Launais, R.; Li, B. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials, 2018, 156, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[34]
Sun, M.S.; Jin, H.; Sun, X. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell. Longev., 2018, 2018, 3804979.
[35]
Ren, C.; Li, N.; Li, S. Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis., 2018, 9(5), 869-879.
[http://dx.doi.org/10.14336/AD.2017.1106] [PMID: 30271664]
[36]
Astete, C.E.; Dolliver, D.; Whaley, M.; Khachatryan, L.; Sabliov, C.M. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant. ACS Nano, 2011, 5(12), 9313-9325.
[http://dx.doi.org/10.1021/nn102845t] [PMID: 22017172]
[37]
Liu, Y.; Ai, K.; Ji, X. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc., 2017, 139(2), 856-862.
[http://dx.doi.org/10.1021/jacs.6b11013] [PMID: 27997170]
[38]
Zigoneanu, I.G.; Astete, C.E.; Sabliov, C.M. Nanoparticles with entrapped α-tocopherol: Synthesis, characterization, and controlled release. Nanotechnology, 2008, 19(10), 105606-6.
[http://dx.doi.org/10.1088/0957-4484/19/10/105606] [PMID: 21817708]
[39]
Yun, X.; Maximov, V.D.; Yu, J.; Zhu, H.; Vertegel, A.A.; Kindy, M.S. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J. Cereb. Blood Flow Metab., 2013, 33(4), 583-592.
[http://dx.doi.org/10.1038/jcbfm.2012.209] [PMID: 23385198]
[40]
Hira, K.; Ueno, Y.; Tanaka, R. Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D2Synthase. Stroke, 2018, 49(10), 2483-2494.
[http://dx.doi.org/10.1161/STROKEAHA.118.021272] [PMID: 30355116]
[41]
Xin, H.; Katakowski, M.; Wang, F. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 2017, 48(3), 747-753.
[http://dx.doi.org/10.1161/STROKEAHA.116.015204] [PMID: 28232590]
[42]
Tian, T.; Zhang, H.X.; He, C.P. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[43]
Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab., 2013, 33(11), 1711-1715.
[http://dx.doi.org/10.1038/jcbfm.2013.152] [PMID: 23963371]
[44]
Qing, L.; Chen, H.; Tang, J.; Jia, X. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration. Neurorehabil. Neural Repair, 2018, 32(9), 765-776.
[http://dx.doi.org/10.1177/1545968318798955] [PMID: 30223738]
[45]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[46]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[47]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[48]
Krol, S.; Macrez, R.; Docagne, F. Therapeutic benefits from nanoparticles: The potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem. Rev., 2013, 113(3), 1877-1903.
[http://dx.doi.org/10.1021/cr200472g] [PMID: 23157552]
[49]
Bennewitz, M.F.; Saltzman, W.M. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics, 2009, 6(2), 323-336.
[http://dx.doi.org/10.1016/j.nurt.2009.01.018] [PMID: 19332327]
[50]
Ben-Zvi, A.; Lacoste, B.; Kur, E. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature, 2014, 509(7501), 507-511.
[http://dx.doi.org/10.1038/nature13324] [PMID: 24828040]
[51]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[52]
Witt, K.A.; Gillespie, T.J.; Huber, J.D.; Egleton, R.D.; Davis, T.P. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides, 2001, 22(12), 2329-2343.
[http://dx.doi.org/10.1016/S0196-9781(01)00537-X] [PMID: 11786210]
[53]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[54]
Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater., 2018, 30(46), e1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[55]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[56]
Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[57]
Belhadj, Z.; Ying, M.; Cao, X. Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J. Control. Release, 2017, 255, 132-141.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.006] [PMID: 28390902]
[58]
Paul, J.W.; Hua, S.; Ilicic, M. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am. J. Obstet. Gynecol., 2017, 216(3), 283.e1-283.e14.
[http://dx.doi.org/10.1016/j.ajog.2016.08.027] [PMID: 27567564]
[59]
Loureiro, J.A.; Gomes, B.; Fricker, G. Dual ligand immunoliposomes for drug delivery to the brain. Colloids Surf. B Biointerfaces, 2015, 134, 213-219.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.067] [PMID: 26204501]
[60]
Kang, Y-S.; Jung, H.J.; Oh, J.S.; Song, D.Y. Use of PEGylatedimmunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease. CNS Neurosci. Ther., 2016, 22(10), 817-823.
[http://dx.doi.org/10.1111/cns.12580] [PMID: 27350533]
[61]
He, H.; Yao, J.; Zhang, Y. Solid lipid nanoparticles as a drug delivery system to across the blood-brain barrier. Biochem. Biophys. Res. Commun., 2019, 519(2), 385-390.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.017] [PMID: 31519326]
[62]
Graverini, G.; Piazzini, V.; Landucci, E. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 161, 302-313.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.062] [PMID: 29096375]
[63]
Gonzalez, R.; Hamblin, M.H.; Lee, J-P. Neural stem cell transplantation and CNS diseases. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 881-886.
[http://dx.doi.org/10.2174/1871527315666160815164247] [PMID: 27577573]
[64]
Wei, L.; Cui, L.; Snider, B.J. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol. Dis., 2005, 19(1-2), 183-193.
[http://dx.doi.org/10.1016/j.nbd.2004.12.016] [PMID: 15837573]
[65]
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 2015, 17(1), 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[66]
Wu, K.; Huang, D.; Zhu, C. NT3P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res. Ther., 2019, 10(1), 311.
[http://dx.doi.org/10.1186/s13287-019-1428-1] [PMID: 31651375]
[67]
Hu, J.; Chen, L.; Huang, X. Calpain inhibitor MDL28170 improves the transplantation-mediated therapeutic effect of bone marrow-derived mesenchymal stem cells following traumatic brain injury. Stem Cell Res. Ther., 2019, 10(1), 96.
[http://dx.doi.org/10.1186/s13287-019-1210-4] [PMID: 30876457]
[68]
Ni, H.; Yang, S.; Siaw-Debrah, F. Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front. Neurosci., 2019, 13, 14.
[http://dx.doi.org/10.3389/fnins.2019.00014] [PMID: 30733666]
[69]
Hu, C.; Li, L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med., 2018, 22(3), 1428-1442.
[http://dx.doi.org/10.1111/jcmm.13492] [PMID: 29392844]
[70]
Yang, L.; Chueng, S.D.; Li, Y. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat. Commun., 2018, 9(1), 3147-7.
[http://dx.doi.org/10.1038/s41467-018-05599-2] [PMID: 30089775]
[71]
Zhang, Y.; Wang, S.; Yang, P. Effects of graphene-based materials on the behavior of neural stem cells. J. Nanomater., 2020, 2020(12), 1-16.
[http://dx.doi.org/10.1155/2020/2519105]
[72]
Saito, N.; Haniu, H.; Usui, Y. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev., 2014, 114(11), 6040-6079.
[http://dx.doi.org/10.1021/cr400341h] [PMID: 24720563]
[73]
Kam, N.W.S.; Jan, E.; Kotov, N.A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett., 2009, 9(1), 273-278.
[http://dx.doi.org/10.1021/nl802859a] [PMID: 19105649]
[74]
Wang, L.; Kisaalita, W.S. Characterization of micropatterned nanofibrous scaffolds for neural network activity readout for high-throughput screening. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 94(1), 238-249.
[http://dx.doi.org/10.1002/jbm.b.31646] [PMID: 20524200]
[75]
Dhaliwal, A.; Brenner, M.; Wolujewicz, P. Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Acta Biomater., 2016, 45, 98-109.
[http://dx.doi.org/10.1016/j.actbio.2016.08.052] [PMID: 27590870]
[76]
Prabhakaran, M.P.; Venugopal, J.R.; Ramakrishna, S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 2009, 30(28), 4996-5003.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.057] [PMID: 19539369]
[77]
Li, W.; Guo, Y.; Wang, H. Electrospun nanofibers immobilized with collagen for neural stem cells culture. J. Mater. Sci. Mater. Med., 2008, 19(2), 847-854.
[http://dx.doi.org/10.1007/s10856-007-3087-5] [PMID: 17665116]
[78]
Qi, Z.; Chen, X.; Guo, W.; Fu, C.; Pan, S. Theanine-modified graphene oxide composite films for neural stem cells proliferation and differentiation. J. Nanomater., 2020, 2020(4), 1-10.
[http://dx.doi.org/10.1155/2020/3068173]
[79]
Choi, J.I.; Cho, H.T.; Jee, M.K.; Kang, S.K. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials, 2013, 34(21), 4956-4970.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.037] [PMID: 23582861]
[80]
Santos, T.; Ferreira, R.; Maia, J. Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS Nano, 2012, 6(12), 10463-10474.
[http://dx.doi.org/10.1021/nn304541h] [PMID: 23176155]
[81]
Stachowiak, E.K.; Roy, I.; Lee, Y.W. Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain. Integr. Biol., 2009, 1(5-6), 394-403.
[http://dx.doi.org/10.1039/b902617g] [PMID: 20023746]
[82]
Zhou, S.; Zhao, H.; Feng, R. Application of amphiphilic fluorophore-derived nanoparticles to provide contrast to human embryonic stem cells without affecting their pluripotency and to monitor their differentiation into neuron-like cells. Acta Biomater., 2018, 78, 274-284.
[http://dx.doi.org/10.1016/j.actbio.2018.07.051] [PMID: 30071352]
[83]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[84]
Devaraj, N.K.; Keliher, E.J.; Thurber, G.M.; Nahrendorf, M.; Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem., 2009, 20(2), 397-401.
[http://dx.doi.org/10.1021/bc8004649] [PMID: 19138113]
[85]
Meng, X.; Seton, H.C.; Lu, T.; Prior, I.A.; Thanh, N.T.K.; Song, B. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale, 2011, 3(3), 977-984.
[http://dx.doi.org/10.1039/c0nr00846j] [PMID: 21293831]
[86]
Corot, C.; Robert, P.; Idée, J.M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev., 2006, 58(14), 1471-1504.
[http://dx.doi.org/10.1016/j.addr.2006.09.013] [PMID: 17116343]
[87]
Hyafil, F.; Cornily, J.C.; Feig, J.E. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med., 2007, 13(5), 636-641.
[http://dx.doi.org/10.1038/nm1571] [PMID: 17417649]
[88]
Frias, J.C.; Williams, K.J.; Fisher, E.A.; Fayad, Z.A. Recombinant HDL-like nanoparticles: A specific contrast agent for MRI of atherosclerotic plaques. J. Am. Chem. Soc., 2004, 126(50), 16316-16317.
[http://dx.doi.org/10.1021/ja044911a] [PMID: 15600321]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy