Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

ZFPM2-AS1: An Oncogenic Long Non-coding RNA in Multiple Cancer Types

Author(s): Fangshun Tan*

Volume 23, Issue 1, 2023

Published on: 18 August, 2022

Page: [88 - 98] Pages: 11

DOI: 10.2174/1389557522666220516125842

Price: $65

Abstract

Long non-coding RNA (lncRNA) is a novel kind of RNA transcript with lengths greater than 200 nucleotides. Functionally, lncRNAs lack the potential to encode peptides or proteins. Previous studies unveiled that lncRNA participated in numerous physiological and pathological processes, including cancer, aging, and immune responses. Newly discovered long noncoding RNA zinc finger protein, Friend of GATA (FOG) family member 2-antisense 1 (ZFPM2-AS1), located on the 8q23 chromosome, acts as a tumor stimulator in various cancer types, including Breast Cancer (BC), Colorectal Cancer (CRC), Esophageal Squamous Cell Carcinoma (ESCC), Gastric Cancer (GC), glioma, hepatocellular carcinoma (HCC), Lung Adenocarcinoma (LUAD), melanoma, non-small cell lung cancer (NSCLC), Retinoblastoma (RB), Small Cell Lung Cancer (SCLC) and thyroid cancer. Accumulative evidence also elucidated that ZFPM2-AS1 dysregulation was related to tumor proliferative, migratory, invasive, anti-apoptotic, and pro-epithelial-tomesenchymal Transition (EMT) effects, larger tumor volume, higher tumor weight, advanced tumor stage, high rates of lymphatic metastasis, distant metastasis, poor prognosis, histological differentiation, higher TNM (tumor, node, metastases) stage, depth of tumor invasion, reduced overall and disease- free survival, vein invasion, and shorter 5-year overall survival. Mechanistically, ZFPM2-AS1 acted as a ceRNA to play its oncogenic role. Thus, this study summarized the specific mechanisms of the lncRNA ZFPM2-AS1 in the aforementioned cancer types to reveal its novel application in cancer diagnosis, treatment, and prognosis.

Keywords: Cancer, diagnosis, prognosis, lncRNA, target, treatment, ZFPM2-AS1, Oncogenic.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Chan, J.J.; Tay, Y. Noncoding RNA:RNA regulatory networks in cancer. Int. J. Mol. Sci., 2018, 19(5), 19.
[http://dx.doi.org/10.3390/ijms19051310] [PMID: 29702599]
[3]
Fang, Y.; Fullwood, M.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics, 2016, 14(1), 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[4]
Kornienko, A.E.; Guenzl, P.M.; Barlow, D.P.; Pauler, F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol., 2013, 11(1), 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[5]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[6]
Lau, E. Non-coding RNA: Zooming in on lncRNA functions. Nat. Rev. Genet., 2014, 15(9), 574-575.
[http://dx.doi.org/10.1038/nrg3795] [PMID: 25048169]
[7]
Huang, J.Z.; Chen, M.; Chen, D.; Gao, X.C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 2017, 68(1), 171-184.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015] [PMID: 28985503]
[8]
Matsumoto, A.; Pasut, A.; Matsumoto, M.; Yamashita, R.; Fung, J.; Monteleone, E.; Saghatelian, A.; Nakayama, K.I.; Clohessy, J.G.; Pan-dolfi, P.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541(7636), 228-232.
[http://dx.doi.org/10.1038/nature21034] [PMID: 28024296]
[9]
Charles Richard, J.L.; Eichhorn, P.J.A. Platforms for investigating lncRNA functions. SLAS Technol., 2018, 23(6), 493-506.
[http://dx.doi.org/10.1177/2472630318780639] [PMID: 29945466]
[10]
Rafiee, A.; Riazi-Rad, F.; Havaskary, M.; Nuri, F. Long noncoding RNAs: Regulation, function and cancer. Biotechnol. Genet. Eng. Rev., 2018, 34(2), 153-180.
[http://dx.doi.org/10.1080/02648725.2018.1471566] [PMID: 30071765]
[11]
Chi, Y.; Wang, D.; Wang, J.; Yu, W.; Yang, J. Long non-coding RNA in the pathogenesis of cancers. Cells, 2019, 8(9), 8.
[http://dx.doi.org/10.3390/cells8091015] [PMID: 31480503]
[12]
Ulitsky, I.; Bartel, D.P. lincRNAs: Genomics, evolution, and mechanisms. Cell, 2013, 154(1), 26-46.
[http://dx.doi.org/10.1016/j.cell.2013.06.020] [PMID: 23827673]
[13]
Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.; Suzuki, M.; Kawai, J.; Suzuki, H.; Carninci, P.; Hayashizaki, Y.; Wells, C.; Frith, M.; Ravasi, T.; Pang, K.C.; Hallinan, J.; Mattick, J.; Hume, D.A.; Lipovich, L.; Batalov, S.; Engström, P.G.; Mizuno, Y.; Faghihi, M.A.; Sandelin, A.; Chalk, A.M.; Mottagui-Tabar, S.; Liang, Z.; Lenhard, B.; Wahlestedt, C.; Group, R.G.E.R.; Genome Science, G.; Consortium, F. Antisense transcription in the mammalian transcriptome. Science, 2005, 309(5740), 1564-1566.
[http://dx.doi.org/10.1126/science.1112009] [PMID: 16141073]
[14]
Villegas, V.E.; Zaphiropoulos, P.G. Neighboring gene regulation by antisense long non-coding RNAs. Int. J. Mol. Sci., 2015, 16(2), 3251-3266.
[http://dx.doi.org/10.3390/ijms16023251] [PMID: 25654223]
[15]
St Laurent, G.; Wahlestedt, C.; Kapranov, P. The landscape of long noncoding RNA classification. Trends Genet., 2015, 31(5), 239-251.
[http://dx.doi.org/10.1016/j.tig.2015.03.007] [PMID: 25869999]
[16]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[17]
Guenzl, P.M.; Barlow, D.P. Macro lncRNAs: A new layer of cis-regulatory information in the mammalian genome. RNA Biol., 2012, 9(6), 731-741.
[http://dx.doi.org/10.4161/rna.19985] [PMID: 22617879]
[18]
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3] [PMID: 33812473]
[19]
Zhao, Y.F.; Li, L.; Li, H.J.; Yang, F.R.; Liu, Z.K.; Hu, X.W.; Wang, Q. LncRNA ZFPM2-AS1 aggravates the malignant development of breast cancer via upregulating JMJD6. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11139-11147.
[PMID: 33215431]
[20]
Vishnubalaji, R.; Alajez, N.M. Epigenetic regulation of Triple Negative Breast Cancer (TNBC) by TGF-β signaling. Sci. Rep., 2021, 11(1), 15410.
[http://dx.doi.org/10.1038/s41598-021-94514-9] [PMID: 34326372]
[21]
Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer - a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[22]
Xiao, M.; Liang, Z.; Yin, Z. Long non coding RNA ZFPM2 AS1 promotes colorectal cancer progression by sponging miR 137 to regulate TRIM24. Mol. Med. Rep., 2021, 23(2), 23.
[PMID: 33300060]
[23]
Tarazi, M.; Chidambaram, S.; Markar, S.R. Risk factors of esophageal squamous cell carcinoma beyond alcohol and smoking. Cancers (Basel), 2021, 13(5), 13.
[http://dx.doi.org/10.3390/cancers13051009] [PMID: 33671026]
[24]
Sun, G.; Wu, C. ZFPM2-AS1 facilitates cell growth in esophageal squamous cell carcinoma via up-regulating TRAF4. Biosci. Rep., 2020, 40(4), 40.
[http://dx.doi.org/10.1042/BSR20194352] [PMID: 32065218]
[25]
Guan, X.; Yao, Y.; Bao, G.; Wang, Y.; Zhang, A.; Zhong, X. Diagnostic model of combined ceRNA and DNA methylation related genes in esophageal carcinoma. PeerJ, 2020, 8, e8831.
[http://dx.doi.org/10.7717/peerj.8831] [PMID: 32266120]
[26]
Chandra, R.; Balachandar, N.; Wang, S.; Reznik, S.; Zeh, H.; Porembka, M. The changing face of gastric cancer: Epidemiologic trends and advances in novel therapies. Cancer Gene Ther., 2021, 28(5), 390-399.
[http://dx.doi.org/10.1038/s41417-020-00234-z] [PMID: 33009508]
[27]
Kong, F.; Deng, X.; Kong, X.; Du, Y.; Li, L.; Zhu, H.; Wang, Y.; Xie, D.; Guha, S.; Li, Z.; Guan, M.; Xie, K. ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene, 2018, 37(45), 5982-5996.
[http://dx.doi.org/10.1038/s41388-018-0387-9] [PMID: 29985481]
[28]
Chen, R.; Smith-Cohn, M.; Cohen, A.L.; Colman, H. Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14(2), 284-297.
[http://dx.doi.org/10.1007/s13311-017-0519-x] [PMID: 28281173]
[29]
Zhang, Y.; Zhang, Y.; Wang, S.; Li, Q.; Cao, B.; Huang, B.; Wang, T.; Guo, R.; Liu, N. SP1-induced lncRNA ZFPM2 antisense RNA 1 (ZFPM2-AS1) aggravates glioma progression via the miR-515-5p/Superoxide dismutase 2 (SOD2) axis. Bioengineered, 2021, 12(1), 2299-2310.
[http://dx.doi.org/10.1080/21655979.2021.1934241] [PMID: 34077295]
[30]
Craig, A.J.; von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 139-152.
[http://dx.doi.org/10.1038/s41575-019-0229-4] [PMID: 31792430]
[31]
He, H.; Wang, Y.; Ye, P.; Yi, D.; Cheng, Y.; Tang, H.; Zhu, Z.; Wang, X.; Jin, S. Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 159.
[http://dx.doi.org/10.1186/s13046-020-01664-1] [PMID: 32795316]
[32]
Liu, W.; Zhang, G.Q.; Zhu, D.Y.; Wang, L.J.; Li, G.T.; Xu, J.G.; Jin, X.L.; Zhu, Y.M.; Yang, X.Y. Long noncoding RNA ZFPM2-AS1 regu-lates ITGB1 by miR-1226-3p to promote cell proliferation and invasion in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7612-7620.
[PMID: 32744687]
[33]
Song, Y.; Jin, X.; Liu, Y.; Wang, S.; Bian, F.; Zhao, Q.; Shi, H.; Gao, Z. Long noncoding RNA ZFPM2-AS1 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by regulating the miR-576-3p/HIF-1α axis. Anticancer Drugs, 2021, 32(8), 812-821.
[http://dx.doi.org/10.1097/CAD.0000000000001070] [PMID: 34102651]
[34]
Zhang, X.W.; Li, Q.H.; Xu, Z.D.; Dou, J.J. STAT1-induced regulation of lncRNA ZFPM2-AS1 predicts poor prognosis and contributes to hepatocellular carcinoma progression via the miR-653/GOLM1 axis. Cell Death Dis., 2021, 12(1), 31.
[http://dx.doi.org/10.1038/s41419-020-03300-4] [PMID: 33414427]
[35]
Chen, Z.A.; Tian, H.; Yao, D.M.; Zhang, Y.; Feng, Z.J.; Yang, C.J. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma. Front. Oncol., 2021, 11, 738477.
[http://dx.doi.org/10.3389/fonc.2021.738477] [PMID: 34568075]
[36]
Luo, Y.; Wang, X.; Ma, L.; Ma, Z.; Li, S.; Fang, X.; Ma, X. Bioinformatics analyses and biological function of lncRNA ZFPM2-AS1 and ZFPM2 gene in hepatocellular carcinoma. Oncol. Lett., 2020, 19(6), 3677-3686.
[http://dx.doi.org/10.3892/ol.2020.11485] [PMID: 32382322]
[37]
Wu, H.; Liu, T.; Qi, J.; Qin, C.; Zhu, Q. Four autophagy-related lncRNAs predict the prognosis of HCC through coexpression and ceRNA Mechanism. BioMed Res. Int., 2020, 2020, 3801748.
[http://dx.doi.org/10.1155/2020/3801748] [PMID: 33102579]
[38]
Wu, J.; Ren, X.; Wang, N.; Zhou, R.; Chen, M.; Cai, Y.; Lin, S.; Zhang, H.; Xie, X.; Dang, C.; Zhang, S.; Zhou, Z. A mutation-related long noncoding RNA signature of genome instability predicts immune infiltration and hepatocellular carcinoma prognosis. Front. Genet., 2021, 12, 779554.
[http://dx.doi.org/10.3389/fgene.2021.779554] [PMID: 34880908]
[39]
Xu, Z.; Peng, B.; Liang, Q.; Chen, X.; Cai, Y.; Zeng, S.; Gao, K.; Wang, X.; Yi, Q.; Gong, Z.; Yan, Y. Construction of a ferroptosis-related nine-lncRNA signature for predicting prognosis and immune response in hepatocellular carcinoma. Front. Immunol., 2021, 12, 719175.
[http://dx.doi.org/10.3389/fimmu.2021.719175] [PMID: 34603293]
[40]
Yan, J.; Zhou, C.; Guo, K.; Li, Q.; Wang, Z. A novel seven-lncRNA signature for prognosis prediction in hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(1), 213-223.
[http://dx.doi.org/10.1002/jcb.27321] [PMID: 30206981]
[41]
Ruiz-Cordero, R.; Devine, W.P. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg. Pathol. Clin., 2020, 13(1), 17-33.
[http://dx.doi.org/10.1016/j.path.2019.11.002] [PMID: 32005431]
[42]
Myers, D.J.; Wallen, J.M. Lung Adenocarcinoma. StatPearls; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[43]
Xue, M.; Tao, W.; Yu, S.; Yan, Z.; Peng, Q.; Jiang, F.; Gao, X. lncRNA ZFPM2-AS1 promotes proliferation via miR-18b-5p/VMA21 axis in lung adenocarcinoma. J. Cell. Biochem., 2020, 121(1), 313-321.
[http://dx.doi.org/10.1002/jcb.29176] [PMID: 31297866]
[44]
Li, J.; Ge, J.; Yang, Y.; Liu, B.; Zheng, M.; Shi, R. Long noncoding RNA ZFPM2-AS1 is involved in lung adenocarcinoma via miR-511-3p/AFF4 pathway. J. Cell. Biochem., 2020, 121(3), 2534-2542.
[http://dx.doi.org/10.1002/jcb.29476] [PMID: 31692047]
[45]
Han, S.; Cao, D.; Sha, J.; Zhu, X.; Chen, D. LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Mol. Oncol., 2020, 14(5), 1074-1088.
[http://dx.doi.org/10.1002/1878-0261.12631] [PMID: 31919993]
[46]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[47]
Wang, X.; Tang, J.; Zhao, J.; Lou, B.; Li, L. ZFPM2-AS1 promotes the proliferation, migration, and invasion of human non-small cell lung cancer cells involving the JAK-STAT and AKT pathways. PeerJ, 2020, 8, e10225.
[http://dx.doi.org/10.7717/peerj.10225] [PMID: 33173620]
[48]
Raso, M.G.; Bota-Rabassedas, N.; Wistuba, I.I. Pathology and classification of SCLC. Cancers (Basel), 2021, 13(4), 13.
[http://dx.doi.org/10.3390/cancers13040820] [PMID: 33669241]
[49]
Yan, Z.; Yang, Q.; Xue, M.; Wang, S.; Hong, W.; Gao, X. YY1-induced lncRNA ZFPM2-AS1 facilitates cell proliferation and invasion in small cell lung cancer via upregulating of TRAF4. Cancer Cell Int., 2020, 20(1), 108.
[http://dx.doi.org/10.1186/s12935-020-1157-7] [PMID: 32280300]
[50]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[51]
Liu, W.; Hu, X.; Mu, X.; Tian, Q.; Gao, T.; Ge, R.; Zhang, J. ZFPM2-AS1 facilitates cell proliferation and migration in cutaneous malignant melanoma through modulating miR-650/NOTCH1 signaling. Dermatol. Ther., 2021, 34(2), e14751.
[http://dx.doi.org/10.1111/dth.14751] [PMID: 33406278]
[52]
Fabian, I.D.; Onadim, Z.; Karaa, E.; Duncan, C.; Chowdhury, T.; Scheimberg, I.; Ohnuma, S.I.; Reddy, M.A.; Sagoo, M.S. The manage-ment of retinoblastoma. Oncogene, 2018, 37(12), 1551-1560.
[http://dx.doi.org/10.1038/s41388-017-0050-x] [PMID: 29321667]
[53]
Ni, W.; Li, Z.; Ai, K. lncRNA ZFPM2-AS1 promotes retinoblastoma progression by targeting microRNA miR-511-3p/paired box protein 6 (PAX6) axis. Bioengineered, 2022, 13(1), 1637-1649.
[http://dx.doi.org/10.1080/21655979.2021.2021346] [PMID: 34989314]
[54]
Lyv, X.; Wu, F.; Zhang, H.; Lu, J.; Wang, L.; Ma, Y. Long noncoding RNA ZFPM2-AS1 knockdown restrains the development of retino-blastoma by modulating the microRNA-515/HOXA1/Wnt/β-catenin axis. Invest. Ophthalmol. Vis. Sci., 2020, 61(6), 41.
[http://dx.doi.org/10.1167/iovs.61.6.41] [PMID: 32561925]
[55]
Paulson, V.A.; Rudzinski, E.R.; Hawkins, D.S. Thyroid cancer in the pediatric population. Genes (Basel), 2019, 10(9), 10.
[http://dx.doi.org/10.3390/genes10090723] [PMID: 31540418]
[56]
Ren, R.; Du, Y.; Niu, X.; Zang, R. ZFPM2-AS1 transcriptionally mediated by STAT1 regulates thyroid cancer cell growth, migration and invasion via miR-515-5p/TUSC3. J. Cancer, 2021, 12(11), 3393-3406.
[http://dx.doi.org/10.7150/jca.51437] [PMID: 33976749]
[57]
Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs: From clinical genetics to therapeutic targets? J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[58]
Maes, M.E.; Colombo, G.; Schulz, R.; Siegert, S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci. Lett., 2019, 707, 134310.
[http://dx.doi.org/10.1016/j.neulet.2019.134310] [PMID: 31158432]
[59]
Cockrell, A.S.; Kafri, T. Gene delivery by lentivirus vectors. Mol. Biotechnol., 2007, 36(3), 184-204.
[http://dx.doi.org/10.1007/s12033-007-0010-8] [PMID: 17873406]
[60]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[61]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), 367.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy