Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave-Assisted: An Efficient Aqueous Suzuki-Miyaura Cross- Coupling Reaction of the Substituted 1H-1,2,3-Triazoles

Author(s): Satya Kumar Avula, Najeeb Ur Rehman, Rene Csuk, Biswanath Das and Ahmed Al-Harrasi*

Volume 9, Issue 2, 2022

Published on: 10 August, 2022

Page: [90 - 98] Pages: 9

DOI: 10.2174/2213335609666220516112247

open access plus

Abstract

Background: A variety of natural products reveal the presence of the 1H-1,2,3-triazole moiety in their chemical structures. In general, these molecules also play a significant role in the agrochemical, medicinal and pharmaceutical industries. Microwave-assisted reactions have attracted great interest for researchers to synthesize 1H-1,2,3-triazole compounds in shorter times with increased yields.

Objective: The objective of this study is to optimize the purity and yield of the product, shorter the reaction time, and make the reaction more eco-friendly with the help of microwave-assisted organic synthesis.

Methods: The present work elucidates a very simple but efficient and rapid, highly productive synthesis of various substituted 1H-1,2,3-triazole series, using the Suzuki-Miyaura cross-coupling reaction, employing microwave irradiation in water with tetrabutylammonium bromide (TBAB). Utilizing (S)- (-) ethyl lactate as the starting material, the synthesis of the substituted 1H-1,2,3- triazole aryl bromide (1) was achieved.

Results: This compound (1) was subjected to the Suzuki-Miyaura cross-coupling reaction under microwave irradiation, using a variety of aryl boronic acids in an aqueous medium, to attain high yields of the target products, namely 3a-w. Overall, this is an environmentally benign, very efficient technique under microwave irradiations as a green and eco-friendly source. Only those methodologies that involve microwave-assisted reactions during synthesis in a related manner have been reviewed.

Conclusion: Microwave-assisted Suzuki-Miyaura cross-coupling reactions in the water of substituted 1H-1,2,3-triazole series can be employed to quickly explore and increase molecular diversity in synthetic chemistry. In this respect, microwave-mediated methods help researchers to make helpful studies.

Keywords: Synthesis, 1H-1, 2, 3-triazole, suzuki–miyaura cross-coupling, microwave-irradiation, chemical structures, chemists.

« Previous
Graphical Abstract

[1]
Anastas, P.T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[2]
Matlack, A.S. Introduction to Green Chemistry; Oxford University Press: New York, 2001.
[3]
Lancaster, M. Green chemistry: An introductory text. R. Soc. Chem., 20003, 80(10), 1141.
[4]
Clark, J.H. Hand Book of Green Chemistry & Technology; Blackwell Publ.: Oxford, 2002.
[http://dx.doi.org/10.1002/9780470988305]
[5]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[6]
Herrero, M.A.; Kremsner, J.M.; Kappe, C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem., 2008, 73(1), 36-47.
[http://dx.doi.org/10.1021/jo7022697] [PMID: 18062704]
[7]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[8]
Bai, L.; Wang, J-X.; Zhang, Y. Rapid microwave-promoted Suzuki cross coupling reaction in water. Green Chem., 2003, 5, 615-617.
[http://dx.doi.org/10.1039/b305191a]
[9]
Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis – a critical technology overview. Green Chem., 2004, 6, 128-141.
[http://dx.doi.org/10.1039/B310502D]
[10]
Pironti, V.; Colonna, S. Microwave-promoted synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides in water. Green Chem., 2005, 7, 43-45.
[http://dx.doi.org/10.1039/B413811B]
[11]
Leadbeater, N.E. Fast, easy, clean chemistry by using water as a solvent and microwave heating: The Suzuki coupling as an illustration. Chem. Commun. (Camb.), 2005, (23), 2881-2902.
[http://dx.doi.org/10.1039/b500952a] [PMID: 15957019]
[12]
Greico, P.A. Organic Synthesis in Water; Blackie Academic & Professional: London, 1998.
[http://dx.doi.org/10.1007/978-94-011-4950-1]
[13]
Li, C-J.; Chen, T-H. Organic Reactions in Aqueous Media; Klewer Acad. Publ.: Dordrecht, The Netherlands, 1997.
[14]
Cornils, B.; Herrmann, W. A. Aqueous-Phase Organomettalic Catalysis, Concepts and Applications; Wiley-VCH: Weinherin, Germany, 1998.
[15]
Shaughnessy, K.H. Beyond TPPTS: New approaches to the development of efficient palladium-catalyzed aqueous-phase cross-coupling reactions. Eur. J. Org. Chem., 2006, 2006, 1827-1835.
[http://dx.doi.org/10.1002/ejoc.200500972]
[16]
Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11, 513-519.
[http://dx.doi.org/10.1080/00397918108063618]
[17]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[18]
Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem., 1999, 576, 147-168.
[http://dx.doi.org/10.1016/S0022-328X(98)01055-9]
[19]
Pierre Genet, J.; Savignac, M. Recent developments of palladium(0) catalyzed reactions in aqueous medium. J. Organomet. Chem., 1999, 576, 305-317.
[http://dx.doi.org/10.1016/S0022-328X(98)01088-2]
[20]
Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron, 2002, 58, 9633-9695.
[http://dx.doi.org/10.1016/S0040-4020(02)01188-2]
[21]
Suzuki, A. Cross-coupling reactions via organoboranes. J. Organomet. Chem., 2002, 653, 83-90.
[http://dx.doi.org/10.1016/S0022-328X(02)01269-X]
[22]
Schnürch, M.; Flasik, R.; Khan, A.F.; Spina, M.; Mihovilovic, M.D.; Stanetty, P. Cross-coupling reactions on azoles with two and more heteroatoms. Eur. J. Org. Chem., 2006, 2006, 3283-3307.
[http://dx.doi.org/10.1002/ejoc.200600089]
[23]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; Verhoeven, T.R.; Reider, P.J.; Lo, Y.S.; Rossano, L.T.; Brookes, A.S.; Meloni, D.; Moore, J.R.; Arnett, J.F. Efficient synthesis of losartan, A nonpeptide angiotensin II receptor antagonist. J. Org. Chem., 1994, 59, 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[24]
Ward, P.; Armour, D.R.; Bays, D.E.; Evans, B.; Giblin, G.M.P.; Heron, N.; Hubbard, T.; Liang, K.; Middlemiss, D.; Mordaunt, J. Discovery of an orally bioavailable NK1 receptor antagonist, (2S,3S)-(2-methoxy-5-tetrazol-1-ylbenzyl)(2-phenylpiperidin-3-yl)amine (GR203040), with potent antiemetic activity. J. Med. Chem., 1995, 38(26), 4985-4992.
[http://dx.doi.org/10.1021/jm00026a005] [PMID: 8544174]
[25]
Hallock, Y.F.; Manfredi, K.P.; Blunt, J.W.; Cardellina, J.H.; Schaeffer, M.; Gulden, K-P.; Bringmann, G.; Lee, A.Y.; Clardy, J. Korupensamines A-D, novel antimalarial alkaloids from ancistrocladus korupensis. J. Org. Chem., 1994, 59, 6349-6355.
[http://dx.doi.org/10.1021/jo00100a042]
[26]
Cohen, A.; Crozet, M.D.; Rathelot, P.; Vanelle, P. An efficient aqueous microwave-assisted Suzuki–Miyaura cross-coupling reaction in the thiazole series. Green Chem., 2009, 11, 1736-1742.
[http://dx.doi.org/10.1039/b916123f]
[27]
Blettner, C.G.; König, W.A.; Stenzel, W.; Schotten, T. Microwave-assisted aqueous suzuki cross-coupling reactions. J. Org. Chem., 1999, 64, 3885-3890.
[http://dx.doi.org/10.1021/jo982135h]
[28]
Villemin, D.; Gómez-Escalonilla, M.J.; Saint-Clair, J-F. Palladium-catalysed phenylation of heteroaromatics in water or methylformamide under microwave irradiation. Tetrahedron Lett., 2001, 42, 635-637.
[http://dx.doi.org/10.1016/S0040-4039(00)02026-8]
[29]
Leadbeater, N.E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett., 2002, 4(17), 2973-2976.
[http://dx.doi.org/10.1021/ol0263907] [PMID: 12182602]
[30]
Solodenko, W.; Schön, U.; Messinger, J.; Glinschert, A.; Kirschning, A. Microwave-assisted Suzuki-Miyaura reactions with an insoluble pyridine-aldoxime Pd-catalyst. Synlett, 2004, 1699-1702.
[31]
Crozet, M.D.; Castera-Ducros, C.; Vanelle, P. An efficient microwave-assisted Suzuki cross-coupling reaction of imidazo[1,2-a]pyridines in aqueous medium. Tetrahedron Lett., 2006, 47, 7061-7065.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.098]
[32]
Gulyás, H.; Szöllősy, Á.; Hanson, B.E.; Bakos, J. A direct approach to selective sulfonation of triarylphosphines. Tetrahedron Lett., 2002, 43, 2543-2546.
[http://dx.doi.org/10.1016/S0040-4039(02)00319-2]
[33]
Brauer, D.J.; Hingst, M.; Kottsieper, K.W.; Liek, C.; Nickel, T.; Tepper, M.; Stelzer, O.; Sheldrick, W.S. Water soluble phosphines: Part XV. Syntheses of multiply functionalized and chiral phosphine ligands by Pd-catalyzed PC and CC coupling reactions. J. Organomet. Chem., 2002, 645, 14-26.
[http://dx.doi.org/10.1016/S0022-328X(01)01371-7]
[34]
Katritzky, A.R.; Nichols, D.A.; Siskin, M.; Murugan, R.; Balasubramanian, M. Reactions in high-temperature aqueous media. Chem. Rev., 2001, 101(4), 837-892.
[http://dx.doi.org/10.1021/cr960103t] [PMID: 11709860]
[35]
Castera, C.; Crozet, M.D.; Vanelle, P. An efficient synthetic route to new imidazo[1,2-a]pyridines by cross-coupling reactions in aqueous medium. Heterocycles, 2005, 65, 2979-2989.
[http://dx.doi.org/10.3987/COM-05-10548]
[36]
Verhaeghe, P.; Rathelot, P.; Gellis, A.; Rault, S.; Vanelle, P. Highly efficient microwave assisted α-trichlorination reaction of α-methylated nitrogen containing heterocycles. Tetrahedron, 2006, 62, 8173-8176.
[http://dx.doi.org/10.1016/j.tet.2006.05.081]
[37]
Verhaeghe, P.; Azas, N.; Gasquet, M.; Hutter, S.; Ducros, C.; Laget, M.; Rault, S.; Rathelot, P.; Vanelle, P. Synthesis and antiplasmodial activity of new 4-aryl-2-trichloromethylquinazolines. Bioorg. Med. Chem. Lett., 2008, 18(1), 396-401.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.027] [PMID: 17981462]
[38]
Gellis, A.; Boufatah, N.; Vanelle, P. Rapid microwave-promoted synthesis of new sulfonylmethylbenzothiazoles in water. Green Chem., 2006, 8, 483-487.
[http://dx.doi.org/10.1039/b601452f]
[39]
Kabri, Y.; Gellis, A.; Vanelle, P. Microwave-assisted synthesis in aqueous medium of new quinazoline derivatives as anticancer agent precursors. Green Chem., 2009, 11, 201-208.
[http://dx.doi.org/10.1039/B816723K]
[40]
Prokopcová, H.; Kappe, C.O. Palladium(0)-catalyzed, copper(I)-mediated coupling of boronic acids with cyclic thioamides. selective carbon-carbon bond formation for the functionalization of heterocycles. J. Org. Chem., 2007, 72(12), 4440-4448.
[http://dx.doi.org/10.1021/jo070408f] [PMID: 17497803]
[41]
Worm-Leonhard, K.; Meldal, M. Green catalysts: Solid-phase peptide carbene ligands in aqueous transition-metal catalysis. Eur. J. Org. Chem., 2008, 2008, 5244-5253.
[http://dx.doi.org/10.1002/ejoc.200800633]
[42]
Arimitsu, S.; Jacobsen, J.M.; Hammond, G.B. Synthesis of 2,4,5-trisubstituted 3-fluorofurans via sequential iodocyclization and cross-coupling of gem-difluorohomopropargyl alcohols. J. Org. Chem., 2008, 73(7), 2886-2889.
[http://dx.doi.org/10.1021/jo800088y] [PMID: 18327955]
[43]
Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E.A. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem., 2012, 52, 263-268.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.023] [PMID: 22480494]
[44]
Singh, N.; Pandey, S.K.; Tripathi, R.P. Regioselective [3+2] cycloaddition of chalcones with a sugar azide: Easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles. Carbohydr. Res., 2010, 345(12), 1641-1648.
[http://dx.doi.org/10.1016/j.carres.2010.04.019] [PMID: 20579636]
[45]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[46]
Avula, S.K.; Khan, A.; Rehman, N.U.; Anwar, M.U.; Al-Abri, Z.; Wadood, A.; Riaz, M.; Csuk, R.; Al-Harrasi, A. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg. Chem., 2018, 81, 98-106.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.008] [PMID: 30118991]
[47]
Avula, S.K.; Das, B.; Csuk, R.; Al-Rawahi, A.; Al-Harrasi, A. Total synthesis of surinamensinols A and B. SynOpen, 2020, 04, 84-88.
[http://dx.doi.org/10.1055/s-0040-1707325]
[48]
Kim, K.H.; Moon, E.; Kim, H.K.; Oh, J.Y.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Phenolic constituents from the rhizomes of Acorus gramineus and their biological evaluation on antitumor and anti-inflammatory activities. Bioorg. Med. Chem. Lett., 2012, 22(19), 6155-6159.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.016] [PMID: 22951040]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy