Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Spray Drying as an Effective Method in the Development of Solid Self- Emulsifying Drug Delivery Systems

Author(s): Mohit Kumar, Pooja A. Chawla*, Abdul Faruk and Viney Chawla

Volume 20, Issue 5, 2023

Published on: 11 August, 2022

Page: [508 - 525] Pages: 18

DOI: 10.2174/1567201819666220516103042

Price: $65

Abstract

Most of the new drug candidates and present ones are lipophilic, which leads to low bioavailability. Self-emulsifying drug delivery systems (SEDDS) have emerged as promising formulation system for poorly water-soluble drug candidates. Over the last two decades, various such drug compounds were used by researchers for the development of SEDDS. At present, many SEDDS formulations are also available in the market. Though SEDDS offer many advantages but drawbacks like low drug loading, few dosage form choices, difficulty in handling and storage led to the solidification of this system by various methods. Solidification by spray drying technique offers a lot of advantages like scalability and stability. This particular method is the focus of this review. Adsorbent carriers have the most significant role in the fate of this formulation and its compatibility with the drug candidate. This review addresses the advantages, method of development, spray drying specifications, and characterization of S-SEDDS in detail. Furthermore, the prospect of turning spray-dried SEDDS into tablets by punching which offers potential advantages of increased bioavailability and stability has also been discussed.

Keywords: Solid-self emulsifying drug delivery systems, solubility, adsorbent carriers, bioavailability, spray drying, patents.

Graphical Abstract

[1]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[2]
Torjesen, I. Drug development: The journey of a medicine from lab to shelf. Pharm. J., 2015. Available from: https://pharmaceutical-journal.com/article/feature/drug-development-the-journey-of-a-medicine-from-lab-to-shelf
[3]
Tamimi, N.A.M.; Ellis, P. Drug development: From concept to marketing. Nephron Clin. Pract., 2009, 113(3), c125-c131.
[http://dx.doi.org/10.1159/000232592] [PMID: 19729922]
[4]
Sullivan, T. A tough road: Cost to develop one new drug is $2.6 billion; approval rate for drugs entering clinical development is less than 12%. Policy & Medicine; , 2019. Available from: https://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html
[5]
Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, F.J. Lipophilicity in drug design: An overview of lipophilicity descriptors in 3D-QSAR studies. Future Med. Chem., 2019, 11(10), 1177-1193.
[http://dx.doi.org/10.4155/fmc-2018-0435] [PMID: 30799643]
[6]
Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov., 2020, 15(3), 261-263.
[http://dx.doi.org/10.1080/17460441.2020.1691995] [PMID: 31736369]
[7]
Bergström, C.A.S.; Yazdanian, M. Lipophilicity in drug development: Too much or not enough? AAPS J., 2016, 18(5), 1095-1100.
[http://dx.doi.org/10.1208/s12248-016-9947-5] [PMID: 27393481]
[8]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[http://dx.doi.org/10.1124/pr.112.005660]
[9]
Pehlivanov, I. Self-emulsifying drug delivery systems as an approach to improve therapeutic effectiveness of orally administrated drugs. J. IMAB., 2019, 25(2), 2575-2582.
[http://dx.doi.org/10.5272/jimab.2019252.2575]
[10]
Davis, M.; Walker, G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J. Control. Release, 2018, 269, 110-127.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.005] [PMID: 29117503]
[11]
Zhu, Y.; Ye, J.; Zhang, Q. Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization. Pharm. Nanotechnol., 2020, 8(4), 290-301.
[http://dx.doi.org/10.2174/2211738508666200811104240] [PMID: 32781978]
[12]
Tekeli, M.C.; Aktas, Y.; Celebi, N. Oral self-nanoemulsifying formulation of GLP-1 agonist peptide exendin-4: Development, characterization and permeability assessment on Caco-2 cell monolayer. Amino Acids, 2021, 53(1), 73-88.
[http://dx.doi.org/10.1007/s00726-020-02926-0] [PMID: 33398527]
[13]
Abdelmonem, R.; Azer, M.S.; Makky, A.; Zaghloul, A.; El-Nabarawi, M.; Nada, A. Development, characterization, and in-vivo pharmacokinetic study of lamotrigine solid self-nanoemulsifying drug delivery system. Drug Des. Devel. Ther., 2020, 14, 4343-4362.
[http://dx.doi.org/10.2147/DDDT.S263898] [PMID: 33116420]
[14]
Mehanna, M.M.; Mneimneh, A.T. Formulation and applications of lipid-based nanovehicles: Spotlight on self-emulsifying systems. Adv. Pharm. Bull., 2021, 11(1), 56-67.
[http://dx.doi.org/10.34172/apb.2021.006] [PMID: 33747852]
[15]
Zhao, Z.; Cui, X.; Ma, X.; Wang, Z. Preparation, characterization, and evaluation of antioxidant activity and bioavailability of a Self-Nanoemulsifying Drug Delivery System (SNEDDS) for buckwheat flavonoids. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(11), 1265-1274.
[http://dx.doi.org/10.1093/abbs/gmaa124] [PMID: 33216131]
[16]
Buya, A.B.; Beloqui, A.; Memvanga, P.B.; Préat, V. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics, 2020, 12(12), 1194.
[http://dx.doi.org/10.3390/pharmaceutics12121194] [PMID: 33317067]
[17]
Aboul Fotouh, K.; Allam, A.A.; El-Badry, M. Self-emulsifying drug delivery systems: Easy to prepare multifunctional vectors for efficient oral delivery. In: Current and Future Aspects of Nanomedicine; Khalil, I.A.H., Ed.; IntechOpen: London, 2019.
[18]
Porter, C.J.H.; Charman, W.N. Intestinal lymphatic drug transport: An update. Adv. Drug Deliv. Rev., 2001, 50(1-2), 61-80.
[http://dx.doi.org/10.1016/S0169-409X(01)00151-X] [PMID: 11489334]
[19]
Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S93-S98.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[20]
Kazi, M.; Al-Swairi, M.; Ahmad, A.; Raish, M.; Alanazi, F.K.; Badran, M.M.; Khan, A.A.; Alanazi, A.M.; Hussain, M.D. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment. Front. Pharmacol., 2019, 10, 459.
[http://dx.doi.org/10.3389/fphar.2019.00459] [PMID: 31118895]
[21]
Elgart, A.; Cherniakov, I.; Aldouby, Y.; Domb, A.J.; Hoffman, A. Improved oral bioavailability of BCS class 2 compounds by Self Nano-Emulsifying Drug Delivery Systems (SNEDDS): The underlying mechanisms for amiodarone and talinolol. Pharm. Res., 2013, 30(12), 3029-3044.
[http://dx.doi.org/10.1007/s11095-013-1063-y] [PMID: 23686373]
[22]
Friedl, J.D.; Jörgensen, A.M.; Le-Vinh, B.; Braun, D.E.; Tribus, M.; Bernkop-Schnürch, A. Solidification of Self-Emulsifying Drug Delivery Systems (SEDDS): Impact on storage stability of a therapeutic protein. J. Colloid Interface Sci., 2021, 584, 684-697.
[http://dx.doi.org/10.1016/j.jcis.2020.11.051] [PMID: 33234314]
[23]
Kazi, M.; Shahba, A.A.; Alrashoud, S.; Alwadei, M.; Sherif, A.Y.; Alanazi, F.K. Bioactive Self-Nanoemulsifying Drug Delivery Systems (bio-SNEDDS) for combined oral delivery of curcumin and piperine. Molecules, 2020, 25(7), 1703.
[http://dx.doi.org/10.3390/molecules25071703] [PMID: 32276393]
[24]
Andrysek, T. Impact of physical properties of formulations on bioavailability of active substance: Current and novel drugs with cyclosporine. Mol. Immunol., 2003, 39(17-18), 1061-1065.
[http://dx.doi.org/10.1016/S0161-5890(03)00077-4] [PMID: 12835077]
[25]
Mandić J.; Zvonar Pobirk, A.; Vrečer, F.; Gašperlin, M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int. J. Pharm., 2017, 533(2), 335-345.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.036] [PMID: 28528850]
[26]
Mishra, V.; Nayak, P.; Yadav, N.; Singh, M.; Tambuwala, M.M.; Aljabali, A.A.A. Orally administered self-emulsifying drug delivery system in disease management: Advancement and patents. Expert Opin. Drug Deliv., 2021, 18(3), 315-332.
[PMID: 33232184]
[27]
Jaiswal, P.; Aggarwal, G.; Harikumar, S.L.; Singh, K. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int. J. Pharm. Investig., 2014, 4(4), 195-206.
[http://dx.doi.org/10.4103/2230-973X.143123] [PMID: 25426441]
[28]
Truong, D.H.; Tran, T.H.; Ramasamy, T.; Choi, J.Y.; Lee, H.H.; Moon, C.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech, 2016, 17(2), 466-473.
[http://dx.doi.org/10.1208/s12249-015-0370-5] [PMID: 26238806]
[29]
Jannin, V.; Musakhanian, J.; Marchaud, D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv. Drug Deliv. Rev., 2008, 60(6), 734-746.
[http://dx.doi.org/10.1016/j.addr.2007.09.006] [PMID: 18045728]
[30]
Oh, D.H.; Kang, J.H.; Kim, D.W.; Lee, B-J.; Kim, J.O.; Yong, C.S.; Choi, H.G. Comparison of solid Self-Microemulsifying Drug Delivery System (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int. J. Pharm., 2011, 420(2), 412-418.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.007] [PMID: 21944892]
[31]
Poelma, F.G.J.; Breäs, R.; Tukker, J.J.; Crommelin, D.J.A. Intestinal absorption of drugs. The influence of mixed micelles on the disappearance kinetics of drugs from the small intestine of the rat. J. Pharm. Pharmacol., 1991, 43(5), 317-324.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb06697.x] [PMID: 1680173]
[32]
Khan, M.Z.I.; Raušl, D.; Zanoški, R.; Zidar, S. Mikulcić, J.H.; Krizmanić, L.; Eskinja, M.; Mildner, B.; Knezević, Z. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro-in vivo correlation. Biol. Pharm. Bull., 2004, 27(10), 1630-1635.
[http://dx.doi.org/10.1248/bpb.27.1630] [PMID: 15467209]
[33]
Cui, J.; Yu, B.; Zhao, Y.; Zhu, W.; Li, H.; Lou, H.; Zhai, G. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int. J. Pharm., 2009, 371(1-2), 148-155.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.009] [PMID: 19124065]
[34]
Singh, B.; Bandopadhyay, S.; Kapil, R.; Singh, R.; Katare, O. Self-Emulsifying Drug Delivery Systems (SEDDS): Formulation development, characterization, and applications. CRT, 2009, 26(5), 427-521.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10] [PMID: 20136631]
[35]
Tran, P.; Pyo, Y-C.; Kim, D-H.; Lee, S-E.; Kim, J-K.; Park, J-S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 2019, 11(3), 132.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[36]
Seo, Y.G.; Kim, D-W.; Cho, K.H.; Yousaf, A.M.; Kim, D.S.; Kim, J.H.; Kim, J.O.; Yong, C.S.; Choi, H.G. Preparation and pharmaceutical evaluation of new tacrolimus-loaded solid self-emulsifying drug delivery system. Arch. Pharm. Res., 2015, 38(2), 223-228.
[http://dx.doi.org/10.1007/s12272-014-0459-5] [PMID: 25134927]
[37]
Nikolakakis, I.; Partheniadis, I. Self-emulsifying granules and pellets: Composition and formation mechanisms for instant or controlled release. Pharmaceutics, 2017, 9(4), 50.
[http://dx.doi.org/10.3390/pharmaceutics9040050] [PMID: 29099779]
[38]
Marante, T.; Viegas, C.; Duarte, I.; Macedo, A.S.; Fonte, P. An overview on spray-drying of protein-loaded polymeric nanoparticles for dry powder inhalation. Pharmaceutics, 2020, 12(11), 1032.
[http://dx.doi.org/10.3390/pharmaceutics12111032] [PMID: 33137954]
[39]
Rajesh, S.Y.; Singh, S.K.; Pandey, N.K.; Sharma, P.; Bawa, P.; Kumar, B.; Gulati, M.; Jain, S.K.; Gowthamarajan, K.; Singh, S. Impact of various solid carriers and spray drying on pre/post compression properties of solid SNEDDS loaded with glimepiride: In vitro-ex vivo evaluation and cytotoxicity assessment. Drug Dev. Ind. Pharm., 2018, 44(7), 1056-1069.
[http://dx.doi.org/10.1080/03639045.2018.1431656] [PMID: 29360412]
[40]
Kim, D.S.; Kim, J.S.; Lim, S.J.; Kim, J.O.; Yong, C.S.; Choi, H.G.; Jin, S.G. Comparison of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol-loaded self-emulsifying granule and solid self-nanoemulsifying drug delivery system: Powder property, dissolution and oral bioavailability. Pharmaceutics, 2019, 11(8), 415.
[http://dx.doi.org/10.3390/pharmaceutics11080415] [PMID: 31426411]
[41]
Górska, A.; Szulc, K. Ostrowska-Ligęza, E.; Bryś J.; Wirkowska-Wojdyła, M. Effect of composition and drying method on glass transition temperature, water sorption characteristics and surface morphology of newly designed β-lactoglobulin/retinyl palmitate/disaccharides systems. J. Therm. Anal. Calorim., 2017, 130(1), 177-185.
[http://dx.doi.org/10.1007/s10973-017-6392-3]
[42]
Shrestha, A.K.; Ua-arak, T.; Adhikari, B.P.; Howes, T.; Bhandari, B.R. Glass transition behavior of spray dried orange juice powder measured by Differential Scanning Calorimetry (DSC) and Thermal Mechanical Compression Test (TMCT). Int. J. Food Prop., 2007, 10(3), 661-673.
[http://dx.doi.org/10.1080/10942910601109218]
[43]
Broadbent, A.; Bennette, N. A sponsored whitepaper. Fundamentals of spray dried dispersion technology. Broadbent and Bennette - Technology A sponsored whitepaper. Available from: https://cpslne_2015.pdf?mtime=20170701121848
[44]
Sriamornsak, P.; Limmatvapirat, S.; Piriyaprasarth, S.; Mansukmanee, P.; Huang, Z. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution. Asian J. Pharm. Sci., 2015, 10(2), 121-127.
[http://dx.doi.org/10.1016/j.ajps.2014.10.003]
[45]
Kumar, M.; Singh, D.; Bedi, N. Mefenamic acid-loaded solid SMEDDS: An innovative aspect for dose reduction and improved pharmacodynamic profile. Ther. Deliv., 2019, 10(1), 21-36.
[http://dx.doi.org/10.4155/tde-2018-0053] [PMID: 30730824]
[46]
Bezerra-Souza, A.; Fernandez-Garcia, R.; Rodrigues, G.F.; Bolas-Fernandez, F.; Dalastra Laurenti, M.; Passero, L.F.; Lalatsa, A.; Serrano, D.R. Repurposing butenafine as an oral nanomedicine for visceral Leishmaniasis. Pharmaceutics, 2019, 11(7), 353.
[http://dx.doi.org/10.3390/pharmaceutics11070353] [PMID: 31330776]
[47]
Aloisio, C.; Bueno, M.S.; Ponte, M.P.; Paredes, A.; Palma, S.D.; Longhi, M. Development of solid Self-Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility of resveratrol. Ther. Deliv., 2019, 10(10), 626-641.
[http://dx.doi.org/10.4155/tde-2019-0054] [PMID: 31674289]
[48]
Yi, T.; Wan, J.; Xu, H.; Yang, X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur. J. Pharm. Biopharm., 2008, 70(2), 439-444.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.001] [PMID: 18603415]
[49]
Singh, D.; Singh, A.P.; Singh, D.; Kesavan, A.K.; Arora, S.; Tiwary, A.K.; Bedi, N. Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: A novel paradigm. Daru, 2020, 28(1), 191-208.
[http://dx.doi.org/10.1007/s40199-020-00330-3] [PMID: 32034683]
[50]
Kim, D.S.; Cho, J.H.; Park, J.H.; Kim, J.S.; Song, E.S.; Kwon, J.; Giri, B.R.; Jin, S.G.; Kim, K.S.; Choi, H.G.; Kim, D.W. Self-Microemulsifying Drug Delivery System (SMEDDS) for improved oral delivery and photostability of methotrexate. Int. J. Nanomedicine, 2019, 14, 4949-4960.
[http://dx.doi.org/10.2147/IJN.S211014] [PMID: 31308665]
[51]
Park, J.H.; Kim, D.S.; Mustapha, O.; Yousaf, A.M.; Kim, J.S.; Kim, D.W.; Yong, C.S.; Youn, Y.S.; Oh, K.T.; Lim, S.J.; Kim, J.O.; Choi, H.G. Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: Physicochemical characterisation and pharmacokinetics. Colloids Surf. B Biointerfaces, 2018, 162, 420-426.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.017] [PMID: 29248606]
[52]
Goyal, U.; Gupta, A.; Rana, A.C.; Aggarwal, G. Self microemulsifying drug delivery system: A method for enhancement of bioavailability. IJPSR, 2012, 3(1), 66-79.
[53]
Elnaggar, Y.S.R.; El-Massik, M.A.; Abdallah, O.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization. Int. J. Pharm., 2009, 380(1-2), 133-141.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.015] [PMID: 19635537]
[54]
Pol, A.S.; Patel, P.A.; Hegde, D. Peppermint oil based drug delivery system of aceclofenac with improved anti-inflammatory activity and reduced ulcerogenecity. Int. J. Pharm. Biosci. Technol., 2013, 1(2), 89-101.
[55]
Nasr, A.; Gardouh, A.; Ghorab, M. Novel solid Self-Nanoemulsifying Drug Delivery System (s-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics, 2016, 8(3), 20.
[http://dx.doi.org/10.3390/pharmaceutics8030020] [PMID: 27355963]
[56]
Singh, S.K.; Verma, P.R.P.; Razdan, B. Development and characterization of a lovastatin-loaded self-microemulsifying drug delivery system. Pharm. Dev. Technol., 2010, 15(5), 469-483.
[http://dx.doi.org/10.3109/10837450903286537] [PMID: 19793039]
[57]
Khedekar, K. Self emulsifying drug delivery system: A review. IJPSR, 2013, 4(12), 4494-4507.
[58]
Abou Assi, R.; M., Abdulbaqi I.; Seok Ming, T.; Siok Yee, C.; A Wahab, H.; Asif, S.M.; Darwis, Y. Liquid and solid self-emulsifying drug delivery systems (SEDDS) as carriers for the oral delivery of azithromycin: Optimization, in vitro characterization and stability assessment. Pharmaceutics, 2020, 12(11), 1052.
[http://dx.doi.org/10.3390/pharmaceutics12111052] [PMID: 33158058]
[59]
Leichner, C.; Baus, R.A.; Jelkmann, M.; Plautz, M.; Barthelmes, J.; Dünnhaupt, S.; Bernkop-Schnürch, A. In vitro evaluation of a Self-Emulsifying Drug Delivery System (SEDDS) for nasal administration of dimenhydrinate. Drug Deliv. Transl. Res., 2019, 9(5), 945-955.
[http://dx.doi.org/10.1007/s13346-019-00634-1] [PMID: 30877627]
[60]
Ramya, A.R.; Sudheer, P.; Mohameid, A.S.; Das, A.K. Design and evaluation of a self-emulsifying drug delivery system of aripiprazole. Indian J. Pharm. Sci., 2019, 81(6), 1089-1098.
[61]
Rani, S.; Rana, R.; Saraogi, G.K.; Kumar, V.; Gupta, U. Self-emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech, 2019, 20(3), 129.
[http://dx.doi.org/10.1208/s12249-019-1335-x] [PMID: 30815765]
[62]
Wang, L.; Yan, W.; Tian, Y.; Xue, H.; Tang, J.; Zhang, L. Self-microemulsifying drug delivery system of phillygenin: Formulation development, characterization and pharmacokinetic evaluation. Pharmaceutics, 2020, 12(2), 130.
[http://dx.doi.org/10.3390/pharmaceutics12020130] [PMID: 32028742]
[63]
Gumaste, S.G.; Dalrymple, D.M.; Serajuddin, A.T.M. Development of solid SEDDS, v: Compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto neusilin® us2. Pharm. Res., 2013, 30(12), 3186-3199.
[http://dx.doi.org/10.1007/s11095-013-1106-4] [PMID: 23797463]
[64]
Sander, C.; Holm, P. Porous magnesium aluminometasilicate tablets as carrier of a cyclosporine self-emulsifying formulation. AAPS PharmSciTech, 2009, 10(4), 1388-1395.
[http://dx.doi.org/10.1208/s12249-009-9340-0] [PMID: 19936938]
[65]
Singh, D.; Tiwary, A.K.; Bedi, N. Role of porous carriers in the biopharmaceutical performance of solid SMEDDS of canagliflozin. DDF, 2018, 12(3), 179-198.
[http://dx.doi.org/10.2174/1872211312666181008111354] [PMID: 30295193]
[66]
Garg, V.; Kaur, P.; Singh, S.K.; Kumar, B.; Bawa, P.; Gulati, M.; Yadav, A.K. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur. J. Pharm. Sci., 2017, 109, 297-315.
[http://dx.doi.org/10.1016/j.ejps.2017.08.022] [PMID: 28842349]
[67]
Zhang, Y.; He, L.; Yue, S.; Huang, Q.; Zhang, Y.; Yang, J. Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv., 2017, 24(1), 632-640.
[http://dx.doi.org/10.1080/10717544.2017.1284946] [PMID: 28283000]
[68]
Nazzal, S.; Smalyukh, I.I.; Lavrentovich, O.D.; Khan, M.A. Preparation and in vitro characterization of a eutectic based semisolid Self-Nanoemulsified Drug Delivery System (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation. Int. J. Pharm., 2002, 235(1-2), 247-265.
[http://dx.doi.org/10.1016/S0378-5173(02)00003-0] [PMID: 11879759]
[69]
Shao, A.; Chen, G.; Jiang, N.; Li, Y.; Zhang, X.; Wen, L.; Yang, F.; Wei, S. Development and evaluation of self-microemulsifying liquid and granule formulations of Brucea javanica oil. Arch. Pharm. Res., 2013, 36(8), 993-1003.
[http://dx.doi.org/10.1007/s12272-013-0113-7] [PMID: 23595551]
[70]
Singh, K.; Tiwary, A.K.; Rana, V. Spray dried chitosan-EDTA superior microparticles as solid substrate for the oral delivery of amphotericin B. Int. J. Biol. Macromol., 2013, 58, 310-319.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.053] [PMID: 23624284]
[71]
Park, J-B.; Choi, B-K.; Kang, C-Y. Effects of absorbent materials on a self-emulsifying drug delivery system for a poorly water soluble drug. J. Pharm. Investig., 2015, 45(6), 529-539.
[http://dx.doi.org/10.1007/s40005-015-0201-4]
[72]
Kim, M-S.; Ha, E-S.; Choo, G-H.; Baek, I-H. Preparation and in vivo evaluation of a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system. Int. J. Mol. Sci., 2015, 16(5), 10821-10833.
[http://dx.doi.org/10.3390/ijms160510821] [PMID: 25984604]
[73]
Suthar, V.; Butani, S.; Gohel, M. Solid self-emulsified nanostructures of Lercanidipine hydrochloride: A potential approach to improve the fraction of the dose absorbed. J. Drug Deliv. Sci. Technol., 2016, 31, 11-21.
[http://dx.doi.org/10.1016/j.jddst.2015.11.001]
[74]
Yi, T.; Zhang, J. Effects of hydrophilic carriers on structural transitions and in vitro properties of solid self-microemulsifying drug delivery systems. Pharmaceutics, 2019, 11(6), 267.
[http://dx.doi.org/10.3390/pharmaceutics11060267] [PMID: 31181811]
[75]
Schmidts, T.; Dobler, D.; Schlupp, P.; Nissing, C.; Garn, H.; Runkel, F. Development of multiple W/O/W emulsions as dermal carrier system for oligonucleotides: Effect of additives on emulsion stability. Int. J. Pharm., 2010, 398(1-2), 107-113.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.037] [PMID: 20674722]
[76]
von Halling Laier, C.; Sonne Alstrøm, T.; Travers Bargholz, M.; Bjerg Sjøltov, P.; Rades, T.; Boisen, A.; Nielsen, L.H. Evaluation of the effects of spray drying parameters for producing cubosome powder precursors. Eur. J. Pharm. Biopharm., 2019, 135, 44-48.
[http://dx.doi.org/10.1016/j.ejpb.2018.12.008] [PMID: 30576708]
[77]
Garg, V.; Kaur, P.; Gulati, M.; Singh, S.K.; Kumar, B.; Pandey, N.K.; Yadav, A.K.; Kumar, R.; Kuppusamy, G.; De, A.; Puttappa, N.; Wadhwa, S. Coadministration of polypeptide-k and curcumin through solid self-nanoemulsifying drug delivery system for better therapeutic effect against diabetes mellitus: Formulation, optimization, biopharmaceutical characterization, and pharmacodynamic assessment. Assay Drug Dev. Technol., 2019, 17(4), 201-221.
[http://dx.doi.org/10.1089/adt.2018.902] [PMID: 31100018]
[78]
Mustapha, O.; Kim, K.S.; Shafique, S.; Kim, D.S.; Jin, S.G.; Seo, Y.G.; Youn, Y.S.; Oh, K.T.; Lee, B.J.; Park, Y.J.; Yong, C.S.; Kim, J.O.; Choi, H.G. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation. Colloids Surf. B Biointerfaces, 2017, 150, 216-222.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.039] [PMID: 27918966]
[79]
Kim, K.S.; Yang, E.S.; Kim, D.S.; Kim, D.W.; Yoo, H.H.; Yong, C.S.; Youn, Y.S.; Oh, K.T.; Jee, J.P.; Kim, J.O.; Jin, S.G.; Choi, H.G. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol. Drug Deliv., 2017, 24(1), 1018-1025.
[http://dx.doi.org/10.1080/10717544.2017.1344335] [PMID: 28675315]
[80]
Bhandari, S.; Bhandari, V.; Sood, J.; Jaswal, S.; Rana, V.; Bedi, N.; Sehgal, R.; Tiwary, A.K. Improved pharmacokinetic and pharmacodynamic attributes of artemether-lumefantrine-loaded solid SMEDDS for oral administration. J. Pharm. Pharmacol., 2017, 69(11), 1437-1446.
[http://dx.doi.org/10.1111/jphp.12795] [PMID: 28809448]
[81]
Dening, T.J.; Rao, S.; Thomas, N.; Prestidge, C.A. Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro. Eur. J. Pharm. Biopharm., 2016, 101, 33-42.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.010] [PMID: 26812284]
[82]
Sou, T.; Meeusen, E.N.; de Veer, M.; Morton, D.A.V.; Kaminskas, L.M.; McIntosh, M.P. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol., 2011, 29(4), 191-198.
[http://dx.doi.org/10.1016/j.tibtech.2010.12.009] [PMID: 21255854]
[83]
Inugala, S.; Eedara, B.B.; Sunkavalli, S.; Dhurke, R.; Kandadi, P.; Jukanti, R.; Bandari, S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2015, 74, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2015.03.024] [PMID: 25845633]
[84]
Chalikwar, S.S.; Surana, S.J.; Goyal, S.N.; Chaturvedi, K.K.; Dangre, P.V. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: Assessment of biopharmaceutical attributes and shelf-life. J. Microencapsul., 2021, 38(1), 61-79.
[http://dx.doi.org/10.1080/02652048.2020.1851788] [PMID: 33245007]
[85]
Agrawal, A.G.; Kumar, A.; Gide, P.S. Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf. B Biointerfaces, 2015, 126, 553-560.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.022] [PMID: 25576032]
[86]
Czajkowska-Kośnik, A.; Szekalska, M.; Amelian, A.; Szymańska, E.; Winnicka, K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules, 2015, 20(12), 21010-21022.
[http://dx.doi.org/10.3390/molecules201219745] [PMID: 26610464]
[87]
Nepal, P.R.; Han, H-K.; Choi, H-K. Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q(10). Eur. J. Pharm. Sci., 2010, 39(4), 224-232.
[http://dx.doi.org/10.1016/j.ejps.2009.12.004] [PMID: 20035865]
[88]
Beg, S.; Katare, O.P.; Saini, S.; Garg, B.; Khurana, R.K.; Singh, B. Solid self-nanoemulsifying systems of olmesartan medoxomil: Formulation development, micromeritic characterization, in vitro and in vivo evaluation. Powder Technol., 2016, 294, 93-104.
[http://dx.doi.org/10.1016/j.powtec.2016.02.023]
[89]
Abbaspour, M.; Jalayer, N.; Sharif, M.B. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization. Adv. Pharm. Bull., 2014, 4(2), 113-119.
[PMID: 24511474]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy