Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

A Systematic Review of Nonclinical Studies on the Effect of Curcumin in Chemotherapy- induced Cardiotoxicity

Author(s): Maryam Armandeh, Behnaz Bameri, Mahedeh Samadi, Shima Heidari, Roham Foroumadi and Mohammad Abdollahi*

Volume 28, Issue 22, 2022

Published on: 30 June, 2022

Page: [1843 - 1853] Pages: 11

DOI: 10.2174/1381612828666220513125312

Price: $65

Abstract

Background: Various anticancer drugs are effective therapeutic agents for cancer treatment; however, they cause severe toxicity in body organs. Cardiotoxicity is one of the most critical side effects of these drugs. Based on various findings, turmeric extract has positive effects on cardiac cells.

Objective: This study aims to evaluate how curcumin, as the main component of turmeric, may affect chemotherapy- induced cardiotoxicity.

Methods: A database search was performed up to April 2021 using “curcumin OR turmeric OR Curcuma longa” and “chemotherapy-induced cardiac disease”, including their equivalents and similar terms. After screening the total articles obtained from the electronic databases, 25 relevant articles were included in this systematic review.

Results: The studies demonstrate lower body weight and increased mortality rates due to doxorubicin administration. Besides, cancer therapeutic agents induced various morphological and biochemical abnormalities compared to the non-treated groups. Based on most of the obtained results, curcumin at nontoxic doses can protect the cardiac cells mainly through modulating antioxidant capacity, regulation of cell death, and antiinflammatory effects. Nevertheless, according to a minority of findings, curcumin increases the susceptibility of the rat cardiomyoblast cell line (H9C2) to apoptosis triggered by doxorubicin.

Conclusion: According to most nonclinical studies, curcumin could potentially have cardioprotective effects against chemotherapy-induced cardiotoxicity. However, based on limited, contradictory findings demonstrating the function of curcumin in potentiating doxorubicin-induced cardiotoxicity, well-designed studies are needed to evaluate the safety and effectiveness of treatment with new formulations of this compound during cancer therapy.

Keywords: Curcumin, cardiotoxicity, chemotherapy, cyclophosphamide, doxorubicin, irinotecan, turmeric extract.

[1]
Saeidnia S, Abdollahi M. Antioxidants: Friends or foe in prevention or treatment of cancer: The debate of the century. Toxicol Appl Pharmacol 2013; 271(1): 49-63.
[http://dx.doi.org/10.1016/j.taap.2013.05.004 ] [PMID: 23680455]
[2]
Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences. Front Pharmacol 2018; 9: 1394.
[http://dx.doi.org/10.3389/fphar.2018.01394 ] [PMID: 30555327]
[3]
Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245 ] [PMID: 29623040]
[4]
Haghi-Aminjan H, Farhood B, Rahimifard M, et al. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14(9): 937-50.
[http://dx.doi.org/10.1080/17425255.2018.1513492 ] [PMID: 30118646]
[5]
Florescu M, Cinteza M, Vinereanu D. Chemotherapy-induced Cardiotoxicity. Maedica (Buchar) 2013; 8(1): 59-67.
[PMID: 24023601]
[6]
Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 2016; 66(4): 309-25.
[http://dx.doi.org/10.3322/caac.21341 ] [PMID: 26919165]
[7]
Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010; 55(3): 213-20.
[http://dx.doi.org/10.1016/j.jacc.2009.03.095 ] [PMID: 20117401]
[8]
Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: Pathogenesis, monitoring and management. J Clin Med Res 2009; 1(1): 8-12.
[http://dx.doi.org/10.4021/jocmr2009.02.1225 ] [PMID: 22505958]
[9]
Ghorani-Azam A, Sepahi S, Khodaverdi E, Mohajeri SA. Herbal medicine as a promising therapeutic approach for the management of vascular dementia: A systematic literature review. Phytother Res 2018; 32(9): 1720-8.
[http://dx.doi.org/10.1002/ptr.6120 ] [PMID: 29786916]
[10]
Gillespie HS, McGann CJ, Wilson BD. Noninvasive diagnosis of chemotherapy related cardiotoxicity. Curr Cardiol Rev 2011; 7(4): 234-44.
[http://dx.doi.org/10.2174/157340311799960672 ] [PMID: 22758624]
[11]
Babiker HM, McBride A, Newton M, et al. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol 2018; 126: 186-200.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.014 ] [PMID: 29759560]
[12]
Jones RL, Swanton C, Ewer MS. Anthracycline cardiotoxicity. Expert Opin Drug Saf 2006; 5(6): 791-809.
[http://dx.doi.org/10.1517/14740338.5.6.791 ] [PMID: 17044806]
[13]
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2020; 241: 117173.
[http://dx.doi.org/10.1016/j.lfs.2019.117173 ] [PMID: 31843530]
[14]
Habibeh B, Naser J, Shirin NNT, et al. The role of herbal medicine in the side effects of chemotherapy. Rev Latinoam Hipertens 2020; 15(1): 64-70.
[15]
Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of curcumin in disease prevention and treatment. Adv Biomed Res 2018; 7(1): 38.
[http://dx.doi.org/10.4103/abr.abr_147_16 ] [PMID: 29629341]
[16]
Nguyen TA, Friedman AJ. Curcumin: A novel treatment for skin-related disorders. J Drugs Dermatol 2013; 12(10): 1131-7.
[PMID: 24085048]
[17]
Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The effect of curcumin nanoparticles on cisplatin-induced cardiotoxicity in male wistar albino rats. Cardiovasc Toxicol 2021; 21(6): 433-43.
[http://dx.doi.org/10.1007/s12012-021-09636-3 ] [PMID: 33548025]
[18]
Mohammed HS, Hosny EN, Khadrawy YA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis 2020; 1866(5): 165665.
[http://dx.doi.org/10.1016/j.bbadis.2020.165665 ] [PMID: 31918005]
[19]
Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 2011; 49(5): 1102-9.
[http://dx.doi.org/10.1016/j.fct.2011.01.021 ] [PMID: 21295102]
[20]
Mendonça LM, da Silva Machado C, Teixeira CC, de Freitas LA, Bianchi ML, Antunes LM. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology 2013; 34: 205-11.
[http://dx.doi.org/10.1016/j.neuro.2012.09.011 ] [PMID: 23036615]
[21]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann Intern Med 2009; 151(4): W65-94.
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136 ] [PMID: 19622512]
[22]
Yadav YC, Pattnaik S, Swain K. Curcumin loaded mesoporous silica nanoparticles: Assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm 2019; 45(12): 1889-95.
[http://dx.doi.org/10.1080/03639045.2019.1672717 ] [PMID: 31549866]
[23]
El-Sayed EM, et al. Cardioprotective effects of Curcuma longa L. extracts against doxorubicin-induced cardiotoxicity in rats. J Med Plants Res 2011; 5(17): 4049-58.
[24]
Imbaby S, Ewais M, Essawy S, Farag N. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol 2014; 33(8): 800-13.
[http://dx.doi.org/10.1177/0960327114527628 ] [PMID: 24648241]
[25]
Swamy AV, Gulliaya S, Thippeswamy A, Koti BC, Manjula DV. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol 2012; 44(1): 73-7.
[http://dx.doi.org/10.4103/0253-7613.91871 ] [PMID: 22345874]
[26]
Wu R, et al. Zn(ii)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. 2019; 10(9): 5587-604.
[27]
Yu W, Qin X, Zhang Y, et al. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752-69.
[http://dx.doi.org/10.21037/cdt-19-707 ] [PMID: 32968631]
[28]
Zhang D, Xu Q, Wang N, et al. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomedicine 2018; 13: 4549-61.
[http://dx.doi.org/10.2147/IJN.S170067 ] [PMID: 30127606]
[29]
Mohamad RH, El-Bastawesy AM, Zekry ZK, et al. The role of Curcuma longa against doxorubicin (adriamycin)-induced toxicity in rats. J Med Food 2009; 12(2): 394-402.
[http://dx.doi.org/10.1089/jmf.2007.0715 ] [PMID: 19459743]
[30]
Jafarinezhad Z, Rafati A, Ketabchi F, et al. Cardioprotective effects of curcumin and carvacrol in doxorubicin-treated rats: Stereological study. Food Sci Nutr 2019; 7(11): 3581-8.
[http://dx.doi.org/10.1002/fsn3.1210]
[31]
Jain A, Rani V. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts. Mol Cell Biochem 2018; 442(1-2): 81-96.
[http://dx.doi.org/10.1007/s11010-017-3195-6 ] [PMID: 28929270]
[32]
Benzer F, Kandemir FM, Ozkaraca M, et al. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. J Biochem Mol Toxicol 2018; 32(2)
[http://dx.doi.org/10.1002/jbt.22030]
[33]
He H, Luo Y, Qiao Y, et al. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14-3-3γ. Food Funct 2018; 9(8): 4404-18.
[http://dx.doi.org/10.1039/C8FO00466H ] [PMID: 30063064]
[34]
Junkun L, Erfu C, Tony H, et al. Curcumin downregulates phosphate carrier and protects against doxorubicin induced cardiomyocyte apoptosis. BioMed Res Int 2016; 2016: 1980763.
[http://dx.doi.org/10.1155/2016/1980763 ] [PMID: 27127780]
[35]
Namdari M, Eatemadi A. Cardioprotective effects of curcumin-loaded magnetic hydrogel nanocomposite (nanocurcumin) against doxorubicin-induced cardiac toxicity in rat cardiomyocyte cell lines. Artif Cells Nanomed Biotechnol 2017; 45(4): 731-9.
[http://dx.doi.org/10.1080/21691401.2016.1261033 ] [PMID: 27924631]
[36]
Sadzuka Y, Nagamine M, Toyooka T, Ibuki Y, Sonobe T. Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm 2012; 432(1-2): 42-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.062 ] [PMID: 22569233]
[37]
Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 1998; 124(3): 425-7.
[http://dx.doi.org/10.1038/sj.bjp.0701877 ] [PMID: 9647462]
[38]
Hosseinzadeh L, Behravan J, Mosaffa F, et al. Effect of curcumin on doxorubicin-induced cytotoxicity in H9c2 cardiomyoblast cells. Iran J Basic Med Sci 2011; 14(1): 49-56.
[39]
Shokrzadeh M, Ahmadi A, Chabra A, et al. An ethanol extract of Origanum vulgare attenuates cyclophosphamide-induced pulmonary injury and oxidative lung damage in mice. Pharm Biol 2014; 52(10): 1229-36.
[http://dx.doi.org/10.3109/13880209.2013.879908 ] [PMID: 24646304]
[40]
Avci H, Epikmen ET, Ipek E, et al. Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Exp Toxicol Pathol 2017; 69(5): 317-27.
[http://dx.doi.org/10.1016/j.etp.2017.02.002 ] [PMID: 28236505]
[41]
Chakraborty M, Bhattacharjee A, Kamath JV. Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J Pharmacol 2017; 49(1): 65-70.
[PMID: 28458425]
[42]
Komolafe OA, Arayombo BE, Abiodun AA, et al. Immunohistochemical and histological evaluations of cyclophosphamide-induced acute cardiotoxicity in wistar rats: The role of turmeric extract (curcuma). Morphologie 2020; 104(345): 133-42.
[http://dx.doi.org/10.1016/j.morpho.2019.10.047 ] [PMID: 31928923]
[43]
Astolfi L, Ghiselli S, Guaran V, et al. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol Rep 2013; 29(4): 1285-92.
[http://dx.doi.org/10.3892/or.2013.2279 ] [PMID: 23404427]
[44]
Bahadır A, Ceyhan A, Öz Gergin Ö, et al. Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatol J Cardiol 2018; 19(3): 213-21.
[http://dx.doi.org/10.14744/AnatolJCardiol.2018.53059 ] [PMID: 29521316]
[45]
Feridooni T, Mac Donald C, Shao D, Yeung P, Agu RU. Cytoprotective potential of anti-ischemic drugs against chemotherapy-induced cardiotoxicity in H9c2 myoblast cell line. Acta Pharm 2013; 63(4): 493-503.
[http://dx.doi.org/10.2478/acph-2013-0038 ] [PMID: 24451074]
[46]
Ciftci O, Turkmen NB, Taslıdere A. Curcumin protects heart tissue against irinotecan-induced damage in terms of cytokine level alterations, oxidative stress, and histological damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(8): 783-91.
[http://dx.doi.org/10.1007/s00210-018-1495-3 ] [PMID: 29721577]
[47]
Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist 2010; 15(8): 819-25.
[http://dx.doi.org/10.1634/theoncologist.2009-0317 ] [PMID: 20688807]
[48]
Sabet NS, Atashbar S, Khanlou EM, Kahrizi F, Salimi A. Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(8): 1447-57.
[http://dx.doi.org/10.1007/s00210-020-01853-x ] [PMID: 32172286]
[49]
Senkus E, Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev 2011; 37(4): 300-11.
[http://dx.doi.org/10.1016/j.ctrv.2010.11.001 ] [PMID: 21126826]
[50]
Sepahi S, Ghorani-Azam A, Hossieni SM, Mohajeri SA, Khodaverdi E. Pharmacological effects of saffron and its constituents in ocular disorders from in vitro studies to clinical trials: A systematic review. Curr Neuropharmacol 2021; 19(3): 392-401.
[http://dx.doi.org/10.2174/1570159X18666200507083346 ] [PMID: 32379589]
[51]
Abdollahi M, Moridani MY, Aruoma OI, et al. Oxidative stress in aging.Hindawi. 2014. 2014: Article ID 876834.
[52]
Bameri B, Armandeh M, Baeeri M, et al. Electrocardiographic, hemodynamic, and biochemical evidence on the protective effects of exenatide against phosphine-induced cardiotoxicity in rat model. Hum Exp Toxicol 2021; 40(12_suppl.): S381-96.
[http://dx.doi.org/10.1177/09603271211040819 ] [PMID: 34569344]
[53]
Baeeri M, Mohammadi-Nejad S, Rahimifard M, et al. Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Mol Cell Biochem 2018; 441(1-2): 21-33.
[http://dx.doi.org/10.1007/s11010-017-3172-0 ] [PMID: 28887692]
[54]
Guo YL, Li XZ, Kuang CT. Antioxidant pathways and chemical mechanism of curcumin. Adv Mater Res 2011; 2311-4.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.236-238.2311]
[55]
Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid Redox Signal 2005; 7(1-2): 32-41.
[http://dx.doi.org/10.1089/ars.2005.7.32 ] [PMID: 15650394]
[56]
Debatin K-M, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004; 23(16): 2950-66.
[http://dx.doi.org/10.1038/sj.onc.1207558 ] [PMID: 15077156]
[57]
Heydary V, Navaei-Nigjeh M, Rahimifard M, et al. Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes. J Res Med Sci 2015; 20(11): 1021.
[58]
Guo J-J, Ma LL, Shi HT, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Mar Drugs 2016; 14(12): 231.
[http://dx.doi.org/10.3390/md14120231 ] [PMID: 27999379]
[59]
Popgeorgiev N, Jabbour L, Gillet G. Subcellular localization and dynamics of the Bcl-2 family of proteins. Front Cell Dev Biol 2018; 6: 13.
[http://dx.doi.org/10.3389/fcell.2018.00013 ] [PMID: 29497611]
[60]
Shafaee A, Pirayesh Islamian J, Zarei D, et al. Induction of apoptosis by a combination of 2-deoxyglucose and metformin in esophageal squamous cell carcinoma by targeting cancer cell metabolism. Iran J Med Sci 2019; 44(2): 99-107.
[PMID: 30936596]
[61]
Qian P, Yan LJ, Li YQ, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med 2018; 15(2): 1959-65.
[PMID: 29434790]
[62]
Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 2008; 76(11): 1340-51.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031 ] [PMID: 18755156]
[63]
Chong JH, Ghosh AK. Coronary artery vasospasm induced by 5-fluorouracil: Proposed mechanisms, existing management options and future directions. Interv Cardiol 2019; 14(2): 89-94.
[http://dx.doi.org/10.15420/icr.2019.12 ] [PMID: 31178935]
[64]
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21(18): 6619.
[http://dx.doi.org/10.3390/ijms21186619 ] [PMID: 32927725]
[65]
Tang R, Xu J, Zhang B, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 2020; 13(1): 110.
[http://dx.doi.org/10.1186/s13045-020-00946-7 ] [PMID: 32778143]
[66]
Aziz M, Jacob A, Wang P. Revisiting caspases in sepsis. Cell Death Dis 2014; 5(11): e1526-6.
[http://dx.doi.org/10.1038/cddis.2014.488 ] [PMID: 25412304]
[67]
Angosto D, López-Castejón G, López-Muñoz A, et al. Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun 2012; 18(6): 815-24.
[http://dx.doi.org/10.1177/1753425912441956 ] [PMID: 22456941]
[68]
Yu X, He S. GSDME as an executioner of chemotherapy-induced cell death. Sci China Life Sci 2017; 60(11): 1291-4.
[http://dx.doi.org/10.1007/s11427-017-9142-2 ] [PMID: 29134415]
[69]
Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB. From ancient medicine to modern medicine: Ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol 2007; 5(1): 25-37.
[http://dx.doi.org/10.2310/7200.2006.029 ] [PMID: 17309811]
[70]
Mohamed HE, Asker ME, Ali SI, el-Fattah TM. Protection against doxorubicin cardiomyopathy in rats: Role of phosphodiesterase inhibitors type 4. J Pharm Pharmacol 2004; 56(6): 757-68.
[http://dx.doi.org/10.1211/0022357023565 ] [PMID: 15231041]
[71]
El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact 2014; 207: 58-66.
[http://dx.doi.org/10.1016/j.cbi.2013.11.008 ] [PMID: 24291008]
[72]
Samadi M, Haghi-Aminjan H, Sattari M, et al. The role of taurine on chemotherapy-induced cardiotoxicity: A systematic review of non-clinical study. Life Sci 2021; 265: 118813.
[http://dx.doi.org/10.1016/j.lfs.2020.118813 ] [PMID: 33275984]
[73]
Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors 2016; 42(6): 647-64.
[http://dx.doi.org/10.1002/biof.1301 ] [PMID: 27297806]
[74]
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781.
[http://dx.doi.org/10.1016/j.lfs.2019.116781 ] [PMID: 31430455]
[75]
Baeeri M, Bahadar H, Rahimifard M, et al. α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol Res 2019; 141: 214-23.
[http://dx.doi.org/10.1016/j.phrs.2019.01.003 ] [PMID: 30611855]
[76]
Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol 2007; 27(1): 19-35.
[http://dx.doi.org/10.1007/s10875-006-9066-7 ] [PMID: 17211725]
[77]
Baudino TA. Targeted cancer therapy: The next generation of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310 ] [PMID: 26033233]
[78]
Zabernigg A, Gamper EM, Giesinger JM, et al. Taste alterations in cancer patients receiving chemotherapy: A neglected side effect? Oncologist 2010; 15(8): 913-20.
[http://dx.doi.org/10.1634/theoncologist.2009-0333 ] [PMID: 20667968]
[79]
Xu MF, Tang PL, Qian ZM, Ashraf M. Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci 2001; 68(8): 889-901.
[http://dx.doi.org/10.1016/S0024-3205(00)00990-5 ] [PMID: 11213359]
[80]
Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses. FASEB J 1990; 4(13): 3076-86.
[http://dx.doi.org/10.1096/fasebj.4.13.2210154 ] [PMID: 2210154]
[81]
Simbre VC II, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE. Cardiotoxicity of cancer chemotherapy: Implications for children. Paediatr Drugs 2005; 7(3): 187-202.
[http://dx.doi.org/10.2165/00148581-200507030-00005 ] [PMID: 15977964]
[82]
Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div 2008; 3(1): 14.
[http://dx.doi.org/10.1186/1747-1028-3-14 ] [PMID: 18834508]
[83]
Tan BL, Norhaizan ME. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules 2019; 24(14): 2527.
[http://dx.doi.org/10.3390/molecules24142527 ] [PMID: 31295906]
[84]
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267(1): 133-64.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025 ] [PMID: 18462866]
[85]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: From kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016 ] [PMID: 17900536]
[86]
Giri AK, Das SK, Talukder G, Sharma A. Sister chromatid exchange and chromosome aberrations induced by curcumin and tartrazine on mammalian cells in vivo. Cytobios 1990; 62(249): 111-7.
[PMID: 2209081]
[87]
Nair J, Strand S, Frank N, et al. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: Enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 2005; 26(7): 1307-15.
[http://dx.doi.org/10.1093/carcin/bgi073 ] [PMID: 15790590]
[88]
Sakano K, Kawanishi S. Metal-mediated DNA damage induced by curcumin in the presence of human cytochrome P450 isozymes. Arch Biochem Biophys 2002; 405(2): 223-30.
[http://dx.doi.org/10.1016/S0003-9861(02)00302-8 ] [PMID: 12220536]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy