Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Rectal Administration of Celecoxib Liquid Suppositories with Enhanced Bioavailability and Safety in Rats

Author(s): Yan Jiao, Shijing Xie*, Abdul Baseer and Fakhar Ud-din

Volume 20, Issue 2, 2023

Published on: 13 July, 2022

Page: [201 - 210] Pages: 10

DOI: 10.2174/1567201819666220513091015

Price: $65

Abstract

Background: Celecoxib is generally used for the treatment of rheumatoid arthritis, however its poor bioavailability and cytotoxicity in pure form have reduced its therapeutic efficacy. This study aims to develop celecoxib liquid suppositories with improved bioavailability and reduced toxicity.

Methods: The celecoxib liquid suppositories were prepared by thoroughly mixing celecoxib, poloxamer 188 and poloxamer 407, and tween-20, respectively used as drug, polymers and surfactant, in triple distilled water using cold technique. The developed liquid suppositories were characterized in terms of their gelation temperature, gelation time, and gel strength. Moreover, the muco-adhesive force was determined for the suppositories. The release behavior of the liquid suppositories was investigated in distilled water and compared with drug suspension. Furthermore, pharmacokinetics and morphological studies were carried out in rats after rectal administration of the celecoxib liquid suppository compared with drug suspension.

Results: Poloxamer 188 and Tween-20 concentrations have significantly reduced the gelation temperature and time; however, the gel strength and bio-adhesive force were significantly enhanced. The concentration of celecoxib has no significant effect on the properties of liquid suppositories. A significantly enhanced and potentially sustained drug release was observed from the celecoxib liquid suppositories as compared with the drug suspension. The optimized formulation was easy to administer rectally because it quickly forms gel upon insertion into the body due to a suitable gelation temperature of about 31.7 °C. After rectal administration in rats, the celecoxib liquid suppository gave a significantly increased pharmacokinetic profile including enhanced plasma concentration and 9.7 fold improved area under the curve (AUC) compared to the drug suspension. Additionally, the morphology study exhibited no toxicity to the rectal tissue, no signs of irritation, or injury after the application of suppository. However, severe rectal tissue toxicity and irritation was observed in the suspension treated rectum.

Conclusion: It can be concluded that the liquid suppository system may significantly enhance the solubilization and bio-availability of sparingly water-soluble drugs as evident in the case of celecoxib with no toxicity at the site of application.

Keywords: Celecoxib, Liquid suppository, Bioavailability, Morphologicalanalysis, Sol -to-gel transformation, BCS.

« Previous
Graphical Abstract

[1]
Jeong, S.C.; Kim, D.S.; Jin, S.G.; Youn, Y.S.; Oh, K.T.; Li, D.X.; Yong, C.S.; Oh Kim, J.; Kim, K.S.; Choi, H.G. Development of a novel celecoxib-loaded nanosuspension using a wet media milling process. Pharmazie, 2018, 73(9), 498-502.
[PMID: 30223931]
[2]
Chakma, S.; Khadka, P.; Jo, K.; Kim, H.; Ro, J.; Park, K.; Karki, S.; Barua, S.; Lee, J. Solubility enhancement of celecoxib using solidified Tween 80 for the formulation of tablet dosage forms. J. Pharm. Investig., 2015, 45(5), 449-460.
[http://dx.doi.org/10.1007/s40005-015-0192-1]
[3]
Ilie, A-R.; Griffin, B.T.; Brandl, M.; Bauer-Brandl, A.; Jacobsen, A.C.; Vertzoni, M.; Kuentz, M.; Kolakovic, R.; Holm, R. Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across Permeapad membrane and in vivo absorption. Eur. J. Pharm., 2020, 152, 105452.
[http://dx.doi.org/10.1016/j.ejps.2020.105452] [PMID: 32622980]
[4]
Ha, E-S.; Ok, J.; Noh, J.; Jeong, H.Y.; Choo, G.H.; Jung, Y.S.; Baek, I.H.; Kim, J.S.; Cho, W.; Hwang, S.J.; Kim, M.S. Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant. Int. J. Biol., 2015, 72, 1473-1478.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.063] [PMID: 25451745]
[5]
Nasr, M. Influence of microcrystal formulation on in vivo absorption of celecoxib in rats. AAPS PharmSciTech, 2013, 14(2), 719-726.
[http://dx.doi.org/10.1208/s12249-013-9957-x] [PMID: 23543607]
[6]
Song, W.H.; Park, J.H.; Yeom, D.W.; Ahn, B.K.; Lee, K.M.; Lee, S.G.; Woo, H.S.; Choi, Y.W. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation. Arch. Pharm. Res., 2013, 36(1), 69-78.
[http://dx.doi.org/10.1007/s12272-013-0011-z] [PMID: 23325487]
[7]
Mushtaq, A.; Baseer, A.; Zaidi, S.S. Fluconazole-loaded thermosensitive system: In vitro release, pharmacokinetics and safety study. J. Drug Deliv. Sci. Technol., 2021, 102972.
[8]
Din, F.U.; Jin, S.G.; Choi, H.G. Particle and gel characterization of irinotecan-loaded double-reverse thermosensitive hydrogel. Polymers (Basel), 2021, 13(4), 551.
[http://dx.doi.org/10.3390/polym13040551] [PMID: 33668441]
[9]
Ud Din, F.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; Choi, H.G. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv., 2017, 24(1), 502-510.
[http://dx.doi.org/10.1080/10717544.2016.1272651] [PMID: 28181835]
[10]
Rabia, S.; Khaleeq, N.; Batool, S.; Dar, M.J.; Kim, D.W.; Din, F.U.; Khan, G.M. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: Passive targeting via topical route. Nanomedicine (Lond.), 2020, 15(2), 183-203.
[http://dx.doi.org/10.2217/nnm-2019-0320] [PMID: 31916472]
[11]
Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E.H.; Jung, K.; Kim, A. Poloxamer-based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules, 2017, 22(2), 246.
[http://dx.doi.org/10.3390/molecules22020246] [PMID: 28178225]
[12]
ud Din, F.; Kim, D.W.; Choi, J.Y. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater., 2017, 54, 239-248.
[13]
Gholizadeh, H.; Messerotti, E.; Pozzoli, M.; Cheng, S.; Traini, D.; Young, P.; Kourmatzis, A.; Caramella, C.; Ong, H.X. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech, 2019, 20(7), 299.
[http://dx.doi.org/10.1208/s12249-019-1517-6] [PMID: 31482286]
[14]
Raymond, J.; Metcalfe, A.; Salazkin, I.; Schwarz, A. Temporary vascular occlusion with poloxamer 407. Biomaterials, 2004, 25(18), 3983-3989.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.085] [PMID: 15046888]
[15]
Xuan, J-J.; Yan, Y-D.; Oh, D.H. Development of thermo-sensitive injectable hydrogel with sustained release of doxorubicin: Rheological characterization and in vivo evaluation in rats. Drug Deliv., 2011, 18(5), 305-311.
[16]
Sabir, F.; Asad, M.I.; Qindeel, M. Polymeric nanogels as versatile nanoplatforms for biomedical applications. J. Nanomater., 2019, 2019, 1526186.
[17]
Yuan, Y.; Cui, Y.; Zhang, L.; Zhu, H.P.; Guo, Y.S.; Zhong, B.; Hu, X.; Zhang, L.; Wang, X.H.; Chen, L. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int. J. Pharm., 2012, 430(1-2), 114-119.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.054] [PMID: 22503953]
[18]
Xing, R.; Mustapha, O.; Ali, T. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int., 2021, 2021, 9968602.
[19]
Fakhar-Ud-Din. Khan, G.M. Development and characterisation of levosulpiride-loaded suppositories with improved bioavailability in vivo. Pharm. Dev. Technol., 2019, 24(1), 63-69.
[http://dx.doi.org/10.1080/10837450.2017.1419256] [PMID: 29251521]
[20]
Choi, H-G.; Oh, Y-K.; Kim, C-K. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: Enhanced bioavailability. Int. J. Pharm., 1998, 165(1), 23-32.
[http://dx.doi.org/10.1016/S0378-5173(97)00385-2]
[21]
Ud Din, F.; Rashid, R.; Mustapha, O. Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Advances, 2015, 5(54), 43687-43694.
[22]
Batool, S.; Zahid, F.; Ud-Din, F.; Naz, S.S.; Dar, M.J.; Khan, M.W.; Zeb, A.; Khan, G.M. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: In vitro and in vivo analyses. Drug Dev. Ind. Pharm., 2021, 47(3), 440-453.
[http://dx.doi.org/10.1080/03639045.2021.1890768] [PMID: 33615936]
[23]
Seo, Y.G.; Kim, D-W.; Yeo, W.H.; Ramasamy, T.; Oh, Y.K.; Park, Y.J.; Kim, J.A.; Oh, D.H.; Ku, S.K.; Kim, J.K.; Yong, C.S.; Kim, J.O.; Choi, H.G. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res., 2013, 30(7), 1860-1870.
[http://dx.doi.org/10.1007/s11095-013-1029-0] [PMID: 23549753]
[24]
Kim, J.S.; Din, F.U.; Lee, S.M.; Kim, D.S.; Woo, M.R.; Cheon, S.; Ji, S.H.; Kim, J.O.; Youn, Y.S.; Oh, K.T.; Lim, S.J.; Jin, S.G.; Choi, H.G. Comparison of three different aqueous microenvironments for enhancing oral bioavailability of sildenafil: Solid self-nanoemulsifying drug delivery system, amorphous microspheres and crystalline microspheres. Int. J. Nanomedicine, 2021, 16, 5797-5810.
[http://dx.doi.org/10.2147/IJN.S324206] [PMID: 34465992]
[25]
Khaleeq, N.; Din, F-U.; Khan, A.S.; Rabia, S.; Dar, J.; Khan, G.M. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J. Microencapsul., 2020, 37(2), 160-169.
[http://dx.doi.org/10.1080/02652048.2020.1713242] [PMID: 31916886]
[26]
Kim, J.S.; Ud Din, F.; Lee, S.M.; Kim, D.S.; Choi, Y.J.; Woo, M.R.; Kim, J.O.; Youn, Y.S.; Jin, S.G.; Choi, H.G. Comparative study between high-pressure homogenisation and shirasu porous glass membrane technique in sildenafil base-loaded solid SNEDDS: Effects on physicochemical properties and in vivo characteristics. Int. J. Pharm., 2021, 592, 120039.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120039] [PMID: 33152479]
[27]
Khan, A.S.; Ud Din, F.; Ali, Z.; Bibi, M.; Zahid, F.; Zeb, A. Mujeeb-Ur-Rehman; Khan, G.M. Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of cutaneous leishmaniasis. Int. J. Pharm., 2021, 593, 120109.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120109] [PMID: 33253802]
[28]
Yu, G.; Ali, Z.; Sajjad Khan, A.; Ullah, K.; Jamshaid, H.; Zeb, A.; Imran, M.; Sarwar, S.; Choi, H.G.; Ud Din, F. Preparation, pharmacokinetics, and antitumor potential of miltefosine-loaded nanostructured lipid carriers. Int. J. Nanomedicine, 2021, 16, 3255-3273.
[http://dx.doi.org/10.2147/IJN.S299443] [PMID: 34012260]
[29]
Zhang, Z.; Pan, Y.; Zhao, Y.; Ren, M.; Li, Y.; Lu, G.; Wu, K.; He, S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int. J. Pharm., 2021, 606, 120871.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120871] [PMID: 34246742]
[30]
Yeo, W.H.; Ramasamy, T.; Kim, D-W.; Cho, H.J.; Kim, Y.I.; Cho, K.H.; Yong, C.S.; Kim, J.O.; Choi, H.G. Docetaxel-loaded thermosensitive liquid suppository: Optimization of rheological properties. Arch. Pharm. Res., 2013, 36(12), 1480-1486.
[http://dx.doi.org/10.1007/s12272-013-0175-6] [PMID: 23771501]
[31]
Yong, C.S.; Choi, J.S.; Quan, Q-Z.; Rhee, J.D.; Kim, C.K.; Lim, S.J.; Kim, K.M.; Oh, P.S.; Choi, H.G. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm., 2001, 226(1-2), 195-205.
[http://dx.doi.org/10.1016/S0378-5173(01)00809-2] [PMID: 11532582]
[32]
Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 2005, 103(3), 609-624.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.019] [PMID: 15820408]
[33]
Choi, H-G.; Kim, D-D.; Jun, H.W.; Yoo, B.K.; Yong, C.S. Improvement of dissolution and bioavailability of nitrendipine by inclusion in hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm., 2003, 29(10), 1085-1094.
[http://dx.doi.org/10.1081/DDC-120025866] [PMID: 14677769]
[34]
Miyazaki, S.; Suisha, F.; Kawasaki, N.; Shirakawa, M.; Yamatoya, K.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release, 1998, 56(1-3), 75-83.
[http://dx.doi.org/10.1016/S0168-3659(98)00079-0] [PMID: 9801431]
[35]
Din, F.; Zeb, A.; Shah, K.U. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J. Drug Deliv. Sci. Technol., 2019, 51, 583-590.
[http://dx.doi.org/10.1016/j.jddst.2019.02.026]
[36]
ud Din, F.; Mustapha, O.; Kim, D.W. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur. J. Pharm. Biopharm., 2015, 94, 64-72.
[37]
Khan, A.U.; Jamshaid, H.; Ud Din, F.; Zeb, A.; Khan, G.M. Designing, optimization and characterization of Trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J. Pharm. Sci., 2022, 111(6), 1798-1811.
[http://dx.doi.org/10.1016/j.xphs.2022.01.010] [PMID: 35081406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy