Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Compositional Analysis of Essential Oils from Two Mentha Species and in silico Study on their Major Volatile Constituents against Polycystic Ovary Syndrome

Author(s): Bahman Nickavar* and Azar Nickavar

Volume 20, Issue 2, 2023

Published on: 30 June, 2022

Page: [201 - 212] Pages: 12

DOI: 10.2174/1570180819666220512140651

Price: $65

Abstract

Background: Polycystic ovarian syndrome (PCOS) is defined by excessive production and/or secretion of androgenic hormones in women. This disease has a complicated nature, so its control is difficult and challenging. Therefore, many women use complementary therapies to support medical treatment, one of which is the consumption of mint plants.

Objectives: This study aimed to characterize the chemical composition of peppermint (Mentha piperita L.) and spearmint (Mentha spicata L.) oils, to assess the binding of constituents of the oils to the androgen receptor as well as their pharmacokinetic features.

Methods: The essential oils were isolated by water distillation and then analyzed using GC-MS and GCFID. Thereafter, in silico binding studies were performed between the main volatile constituents and human androgen receptors using Autodock Vina. Besides, the pharmacokinetic properties of the selected compounds were evaluated using SwissADME.

Results: GC analyses showed the presence of 19 and 23 constituents out of the total components (accounting for 94.7% and 97.6%, respectively), with carvone (73.0%), and menthone (33.1%) and menthol (29.3%) as the major compounds in spearmint and peppermint oils, respectively. Moreover, molecular docking studies revealed that carvone has the lowest binding energy to the androgen receptor. On the other hand, all tested compounds finally exhibited favorable pharmacokinetic parameters.

Conclusion: The present study virtually indicated that the main volatile constituent in the spearmint oil, i.e., carvone, could probably cause a beneficial effect on PCOS.

Keywords: Essential oil, in silico studies, Mentha piperita, Mentha spicata, polycystic ovary syndrome, androgen receptor.

Graphical Abstract

[1]
Allahbadia, G.N.; Merchant, R. Polycystic ovary syndrome and impact on health. Middle East Fertil. Soc. J., 2011, 16(1), 19-37.
[http://dx.doi.org/10.1016/j.mefs.2010.10.002]
[2]
Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. J. Endocr. Soc., 2019, 3(8), 1545-1573.
[http://dx.doi.org/10.1210/js.2019-00078] [PMID: 31384717]
[3]
Sirmans, S.M.; Pate, K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol., 2013, 6(1), 1-13.
[http://dx.doi.org/10.2147/CLEP.S37559] [PMID: 24379699]
[4]
Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of polycystic ovary oyndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev., 2016, 37(5), 467-520.
[http://dx.doi.org/10.1210/er.2015-1104] [PMID: 27459230]
[5]
Sheehan, M.T. Polycystic ovarian syndrome: Diagnosis and management. Clin. Med. Res., 2004, 2(1), 13-27.
[http://dx.doi.org/10.3121/cmr.2.1.13] [PMID: 15931331]
[6]
Buggs, C.; Rosenfield, R.L. Polycystic ovary syndrome in adolescence. Endocrinol. Metab. Clin. North Am., 2005, 34(3), 677-705.
[http://dx.doi.org/10.1016/j.ecl.2005.04.005] [PMID: 16085166]
[7]
Abasian, Z.; Rostamzadeh, A.; Mohammadi, M.; Hosseini, M.; Rafieian-kopaei, M. A review on role of medicinal plants in polycystic ovarian syndrome: Pathophysiology, neuroendocrine signaling, therapeutic status and future prospects. Middle East Fertil. Soc. J., 2018, 23(4), 255-262.
[http://dx.doi.org/10.1016/j.mefs.2018.04.005]
[8]
Ashkar, F.; Rezaei, S.; Salahshoornezhad, S.; Vahid, F.; Gholamalizadeh, M.; Dahka, S.M.; Doaei, S. The Role of medicinal herbs in treatment of insulin resistance in patients with Polycystic Ovary Syndrome: A literature review. Biomol. Concepts, 2020, 11(1), 57-75.
[http://dx.doi.org/10.1515/bmc-2020-0005]
[9]
Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.H.; Rehman, N.U. Mentha: A genus rich in vital nutra-pharmaceuticals-A review. Phytother. Res., 2019, 33(10), 2548-2570.
[http://dx.doi.org/10.1002/ptr.6423] [PMID: 31286590]
[10]
Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Dinparast, L.; Bahadori, M.B.; Hasanzadeh, A.; Cucchiarini, M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab. J. Chem., 2021, 14(5), 103106.
[http://dx.doi.org/10.1016/j.arabjc.2021.103106]
[11]
Akdoğan, M.; Tamer, M.N.; Cüre, E.; Cüre, M.C.; Köroğlu, B.K.; Delibaş, N. Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism. Phytother. Res., 2007, 21(5), 444-447.
[http://dx.doi.org/10.1002/ptr.2074] [PMID: 17310494]
[12]
Grant, P. Spearmint herbal tea has significant anti-androgen effects in polycystic ovarian syndrome. A randomized controlled trial. Phytother. Res., 2010, 24(2), 186-188.
[http://dx.doi.org/10.1002/ptr.2900] [PMID: 19585478]
[13]
Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; Pezzani, R. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules, 2021, 26(4), 1118.
[http://dx.doi.org/10.3390/molecules26041118] [PMID: 33672486]
[14]
Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)-A review. Phytother. Res., 2020, 34(9), 2088-2139.
[http://dx.doi.org/10.1002/ptr.6664] [PMID: 32173933]
[15]
Mahendran, G.; Verma, S.K.; Rahman, L.U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol., 2021, 278, 114266.
[http://dx.doi.org/10.1016/j.jep.2021.114266] [PMID: 34087400]
[16]
Mahboubi, M. Mentha spicata L. essential oil, phytochemistry and its effectiveness in flatulence. J. Tradit. Complement. Med., 2018, 11(2), 75-81.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.011] [PMID: 33728265]
[17]
Nickavar, B.; Adeli, A.; Nickavar, A. TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of Trachyspermum copticum essential oil. Iran. J. Pharm. Res., 2014, 13(1), 127-133.
[PMID: 24734063]
[18]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed; Allured Pub Corp.: IL, USA, 2007.
[19]
Nickavar, B. Effect of organosulfur compounds from different garlic preparations on hyperlipidemia: An in-silico approach. Biointerface Res. Appl. Chem., 2022, 12(3), 4048-4061.
[20]
Nikolić, M.; Jovanović, K.K.; Marković, T.; Marković, D.; Gligorijević, N.; Radulović, S.; Soković, M. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind. Crops Prod., 2014, 61, 225-232.
[http://dx.doi.org/10.1016/j.indcrop.2014.07.011]
[21]
Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules, 2010, 15(11), 7825-7839.
[http://dx.doi.org/10.3390/molecules15117825] [PMID: 21060291]
[22]
Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med., 2003, 69(5), 413-419.
[http://dx.doi.org/10.1055/s-2003-39704] [PMID: 12802721]
[23]
Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci., 2019, 31(4), 528-533.
[http://dx.doi.org/10.1016/j.jksus.2017.07.013]
[24]
Bishr, M.M.; Salama, O.M. Inter and intra GC-MS differential analysis of the essential oils of three Mentha species growing in Egypt. Future J. Pharm. Sci., 2018, 4(1), 53-56.
[http://dx.doi.org/10.1016/j.fjps.2017.08.003]
[25]
Saeidi, K.; Mirfakhraie, S. Chemical composition and insecticidal activity Mentha piperita L. essential oil against the cowpea seed beetle Callosobruchus maculatus F. (Coleoptera: Bruchidae). J. Entomol. Acarol. Res., 2017, 49(3), 127-134.
[http://dx.doi.org/10.4081/jear.2017.6769]
[26]
Tsai, M.L.; Wu, C.T.; Lin, T.F.; Lin, W.C.; Huang, Y.C.; Yang, C.H. Chemical composition and biological properties of essential oils of two mint species. Trop. J. Pharm. Res., 2013, 12(4), 577-582.
[http://dx.doi.org/10.4314/tjpr.v12i4.20]
[27]
Rohloff, J. Monoterpene composition of essential oil from peppermint (Mentha x piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem., 1999, 47(9), 3782-3786.
[http://dx.doi.org/10.1021/jf981310s] [PMID: 10552722]
[28]
Orav, A.; Kapp, K.; Raal, A. Chemosystematic markers for the essential oils in leaves of Mentha species cultivated or growing naturally in Estonia. Proc. Est. Acad. Sci., 2013, 62(3), 175-186.
[http://dx.doi.org/10.3176/proc.2013.3.03]
[29]
Nilo, M.C.S.; Riachi, L.G.; Simas, D.L.R.; Coelho, G.C.; da Silva, A.J.R.; Costa, D.C.M.; Alviano, D.S.; Alviano, C.S.; De Maria, C.A.B. Chemical composition and antioxidant and antifungal properties of mentha x piperita L. (peppermint) and Mentha arvensis L. (cornmint) samples. Food Res., 2017, 1(5), 147-156.
[http://dx.doi.org/10.26656/fr.2017.5.104]
[30]
Sharma, V.; Sharma, N.; Pathania, V.; Malik, A.R.; Singh, B.; Gupta, C.R. GC-MS analysis and anti-microbial activity of essential oil of Mentha Piperita L. from Kullu-A North Indian region of higher altitude Himalayas. Int. J. Drug Dev. Res., 2010, 2(4), 40-46.
[31]
Chauhan, R.S.; Kaul, M.K.; Shahi, A.K.; Kumar, A.; Ram, G.; Tawa, A. Chemical composition of essential oils in Mentha spicata L. accession [IIIM(J)26] from North-West Himalayan region, India. Ind. Crops Prod., 2009, 29(2-3), 654-656.
[http://dx.doi.org/10.1016/j.indcrop.2008.12.003]
[32]
Younis, Y.M.H.; Beshir, S.M. Carvone-rich essential oils from Mentha longifolia (L.) Huds. ssp. schimperi Briq. and Mentha spicata L. grown in Sudan. J. Essent. Oil Res., 2004, 16(6), 539-541.
[http://dx.doi.org/10.1080/10412905.2004.9698792]
[33]
de Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, T.G.P.; Craveiro, A.A.; dos Santos Fontenelle, R.O.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod., 2015, 76, 557-564.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.004]
[34]
Boukhebti, H.; Chaker, A.N.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Pharm. Lett., 2011, 3(4), 267-275.
[35]
Chowdhury, J.U.; Nandi, N.C.; Uddin, M.; Rahman, M. Chemical constituents of essential oils from two types of spearmint (Mentha spicata L. and M. cardiaca L.) introduced in Bangladesh. Bangladesh J. Sci. Ind. Res., 2007, 42(1), 79-82.
[http://dx.doi.org/10.3329/bjsir.v42i1.359]
[36]
Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res., 2021, 35(6), 993-999.
[http://dx.doi.org/10.1080/14786419.2019.1610755] [PMID: 31321997]
[37]
Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules, 2009, 14(1), 238-249.
[http://dx.doi.org/10.3390/molecules14010238] [PMID: 19136911]
[38]
Vian, M.A.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J. Chromatogr. A, 2008, 1190(1-2), 14-17.
[http://dx.doi.org/10.1016/j.chroma.2008.02.086] [PMID: 18343393]
[39]
Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules, 2019, 24(15), E2825.
[http://dx.doi.org/10.3390/molecules24152825] [PMID: 31382468]
[40]
Shahbazi, Y.; Shavisi, N. Interactions of Ziziphora clinopodioides and Mentha spicata essential oils with chitosan and ciprofloxacin against common food-related pathogens. Lebensm. Wiss. Technol., 2016, 71, 364-369.
[http://dx.doi.org/10.1016/j.lwt.2016.04.011]
[41]
Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.Ι; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; Pappa, A. Phytochemical profile and evaluation of the biological activities of essential oils derived from the greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules, 2016, 21(8), E1069.
[http://dx.doi.org/10.3390/molecules21081069] [PMID: 27537869]
[42]
Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric., 2010, 90(11), 1827-1836.
[http://dx.doi.org/10.1002/jsfa.4021] [PMID: 20602517]
[43]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[44]
Tamura, H.; Ishimoto, Y.; Fujikawa, T.; Aoyama, H.; Yoshikawa, H.; Akamatsu, M. Structural basis for androgen receptor agonists and antagonists: Interaction of SPEED 98-listed chemicals and related compounds with the androgen receptor based on an in vitro reporter gene assay and 3D-QSAR. Bioorg. Med. Chem., 2006, 14(21), 7160-7174.
[http://dx.doi.org/10.1016/j.bmc.2006.06.064] [PMID: 16876421]
[45]
Tamura, H.; Yoshioka, M.; Hasegawa, M.; Hosoda, A.; Matsugi, M.; Akamatsu, M. The systematic structure-activity relationship to predict how flavones bind to human androgen receptor for their antagonistic activity. Bioorg. Med. Chem., 2013, 21(11), 2968-2974.
[http://dx.doi.org/10.1016/j.bmc.2013.03.060] [PMID: 23611768]
[46]
Mahmoud, S.S.; Croteau, R.B. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc. Natl. Acad. Sci. USA, 2003, 100(24)(Suppl. 2), 14481-14486.
[http://dx.doi.org/10.1073/pnas.2436325100] [PMID: 14623962]
[47]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[48]
Yaginuma, T.; Izumi, R.; Yasui, H.; Arai, T.; Kawabata, M. Effect of traditional herbal medicine on serum testosterone levels and its induction of regular ovulation in hyperandrogenic and oligomenorrheic women (author’s transl). Nippon Sanka Fujinka Gakkai Zasshi, 1982, 34(7), 939-944.
[PMID: 7108310]
[49]
Takahashi, K.; Kitao, M. Effect of TJ-68 (shakuyaku-kanzo-to) on polycystic ovarian disease. Int. J. Fertil. Menopausal Stud., 1994, 39(2), 69-76.
[PMID: 8012442]
[50]
Armanini, D.; Mattarello, M.J.; Fiore, C.; Bonanni, G.; Scaroni, C.; Sartorato, P.; Palermo, M. Licorice reduces serum testosterone in healthy women. Steroids, 2004, 69(11-12), 763-766.
[http://dx.doi.org/10.1016/j.steroids.2004.09.005] [PMID: 15579328]
[51]
Armanini, D.; Castello, R.; Scaroni, C.; Bonanni, G.; Faccini, G.; Pellati, D.; Bertoldo, A.; Fiore, C.; Moghetti, P. Treatment of polycystic ovary syndrome with spironolactone plus licorice. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 131(1), 61-67.
[http://dx.doi.org/10.1016/j.ejogrb.2006.10.013] [PMID: 17113210]
[52]
Khani, B.; Mehrabian, F.; Khalesi, E.; Eshraghi, A. Effect of soy phytoestrogen on metabolic and hormonal disturbance of women with polycystic ovary syndrome. J. Res. Med. Sci., 2011, 16(3), 297-302.
[PMID: 22091248]
[53]
Jamilian, M.; Asemi, Z. The effects of soy isoflavones on metabolic status of patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2016, 101(9), 3386-3394.
[http://dx.doi.org/10.1210/jc.2016-1762] [PMID: 27490918]
[54]
Wang, J.G.; Anderson, R.A.; Graham, G.M., III; Chu, M.C.; Sauer, M.V.; Guarnaccia, M.M.; Lobo, R.A. The effect of cinnamon extract on insulin resistance parameters in polycystic ovary syndrome: A pilot study. Fertil. Steril., 2007, 88(1), 240-243.
[http://dx.doi.org/10.1016/j.fertnstert.2006.11.082] [PMID: 17296187]

© 2025 Bentham Science Publishers | Privacy Policy