Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Identification and Analysis of Hub Proteins for Designing Novel First-line Anti-seizure Medications

Author(s): Pawan Kumar, Deepak Sheokand, Vandana Saini and Ajit Kumar*

Volume 20, Issue 6, 2023

Published on: 02 August, 2022

Page: [662 - 673] Pages: 12

DOI: 10.2174/1570180819666220512122511

Price: $65

Abstract

Background: Epilepsy is a seizure-related disease with different symptoms and types, depending on the origin and propagation region of the brain. There are several marketed anti-seizure medications (ASMs) available for choice of treatment by clinicians but there is a huge paucity of ideal first-line ASMs.

Objective: The present study was undertaken to identify and get an insight into the major target (hub) proteins, which can be comprehensively used as a platform for designing first-line ASMs.

Methods: Large-scale text mining was done to generate a data warehouse of available ASMs and their MOAs, followed by the identification of specific isoforms of target proteins for designing next-generation ASMs, using network biology and other in-silico approaches.

Results: The study resulted in the identification of 3 major classes of target proteins of major ASMs and their specific isoforms, namely – GABA receptors (GABRA1, GABRB1, and GABARAP); VGSC (α- subunitSCN2A (Nav1.2)) and VGCC (α-subunitCACNA1G (Cav3.1)). The identified proteins were also observed to be concurrent with the target sites of majorly sold ASMs currently.

Conclusion: The predicted hub protein families and their specific isoforms can be further validated and comprehensively used to design next-generation novel first-line ASM(s).

Keywords: Epilepsy, mechanism of action, network biology, protein-protein interaction, FDA, STRING.

Graphical Abstract

[1]
Beghi, E. The epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2)(Suppl. 2), 185-191.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[2]
Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[3]
Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet, 2015, 385(9971), 884-898.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[4]
Fisher, R.S. The new classification of seizures by the international league against epilepsy 2017. Curr. Neurol. Neurosci. Rep., 2017, 17(6), 48.
[http://dx.doi.org/10.1007/s11910-017-0758-6] [PMID: 28425015]
[5]
Permatananda, P.A.N.K.; Kristin, E.; Endarthi, D.; Pinzon, R.T.; Sumada, I.K. The quality of life of patients with epilepsy in denpasar: A cross sectional study. IOP Conf. Series Mater. Sci. Eng., 2018, 434(1), 012327.
[http://dx.doi.org/10.1088/1757-899X/434/1/012327]
[6]
Park, S.P. Depression and anxiety in people with epilepsy: Why should we identify? J. Epileptol., 2016, 24(1)
[http://dx.doi.org/10.1515/joepi-2016-0005]
[7]
Kaplan, D.I.; Isom, L.L.; Petrou, S. Role of sodium channels in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(6)a022814
[http://dx.doi.org/10.1101/cshperspect.a022814] [PMID: 27143702]
[8]
Hebeisen, S.; Pires, N.; Loureiro, A.I.; Bonifácio, M.J.; Palma, N.; Whyment, A.; Spanswick, D.; Soares-da-Silva, P. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: A comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology, 2015, 89, 122-135.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.008] [PMID: 25242737]
[9]
Kobayashi, K.; Endoh, F.; Ohmori, I.; Akiyama, T. Action of antiepileptic drugs on neurons. Brain Dev., 2020, 42(1), 2-5.
[http://dx.doi.org/10.1016/j.braindev.2019.07.006] [PMID: 31351738]
[10]
Schousboe, A.; Wellendorph, P.; Frølund, B.; Clausen, R.P.; Krogsgaard-Larsen, P. Astrocytic GABA Transporters: Pharmacological Properties and Targets for Antiepileptic Drugs. Adv. Neurobiol., 2017, 16, 283-296.
[http://dx.doi.org/10.1007/978-3-319-55769-4_14] [PMID: 28828616]
[11]
Hansen, C.C.; Ljung, H.; Brodtkorb, E.; Reimers, A. Mechanisms underlying aggressive behavior induced by antiepileptic drugs: Focus on topiramate, levetiracetam, and perampanel. Behav. Neurol., 2018, 2018, 2064027.
[http://dx.doi.org/10.1155/2018/2064027] [PMID: 30581496]
[12]
Sankaraneni, R.; Lachhwani, D. Antiepileptic drugs--a review. Pediatr. Ann., 2015, 44(2), e36-e42.
[http://dx.doi.org/10.3928/00904481-20150203-10] [PMID: 25658217]
[13]
Simeone, T. A. Mechanisms of antiepileptic drug action., 2010, 123-141.
[http://dx.doi.org/10.1201/9781420085594-c8]
[14]
Rombo, D.M.; Ribeiro, J.A.; Sebastião, A.M. Role of adenosine receptors in epileptic seizures. Receptors, 2018, 34, 309-350.
[http://dx.doi.org/10.1007/978-3-319-90808-3_13]
[15]
Klaft, Z.J.; Hollnagel, J.O.; Salar, S.; Calişkan, G.; Schulz, S.B.; Schneider, U.C.; Horn, P.; Koch, A.; Holtkamp, M.; Gabriel, S.; Gerevich, Z.; Heinemann, U. Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia, 2016, 57(5), 746-756.
[http://dx.doi.org/10.1111/epi.13360] [PMID: 27087530]
[16]
Groeneveld, G.J.; Martin, J.H. Parasitic pharmacology: A plausible mechanism of action for cannabidiol. Br. J. Clin. Pharmacol., 2020, 86(2), 189-191.
[http://dx.doi.org/10.1111/bcp.14028] [PMID: 31290177]
[17]
Rogawski, M.A.; Tofighy, A.; White, H.S.; Matagne, A.; Wolff, C. Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res., 2015, 110, 189-205.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.11.021] [PMID: 25616473]
[18]
Al-Eitan, L.N.; Al-Dalalah, I.M.; Aljamal, H.A. Effects of GRM4, SCN2A and SCN3B polymorphisms on antiepileptic drugs responsiveness and epilepsy susceptibility. Saudi Pharm. J., 2019, 27(5), 731-737.
[http://dx.doi.org/10.1016/j.jsps.2019.04.009] [PMID: 31297029]
[19]
Li, X.; Zhang, J.; Wu, X.; Yan, H.; Zhang, Y.; He, R.H.; Tang, Y.J.; He, Y.J.; Tan, D.; Mao, X.Y.; Yin, J.Y.; Liu, Z.Q.; Zhou, H.H.; Liu, J. Polymorphisms of ABAT, SCN2A and ALDH5A1 may affect valproic acid responses in the treatment of epilepsy in Chinese. Pharmacogenomics, 2016, 17(18), 2007-2014.
[http://dx.doi.org/10.2217/pgs-2016-0093] [PMID: 27918244]
[20]
Juan, G.; Ochoa, Willise Riche Antiepileptic drugs: Overview, mechanism of action, sodium channel blockers. Available from: https://emedicine.medscape.com/article/1187334-overview#showall(Accessed on January 12, 2021).
[21]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[22]
List of 66 epilepsy medications compared - drugs. Available from: https://www.drugs.com/condition/epilepsy.html(Accessed on January 10, 2021).
[23]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[24]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[25]
Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; Qin, C.; Li, Y.; Li, X.; Chen, Y.; Zhu, F. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res., 2020, 48(D1), D1031-D1041.
[http://dx.doi.org/10.1093/nar/gkz981] [PMID: 31691823]
[26]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[27]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[28]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[29]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[30]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(4)(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[31]
Welcome to AIOCD Pharma Softech Awacs. Available from: aiocdawacs.com/(S(edaddqk4f5xlnipnj34qu3kb))/default.aspx(Accessed: February 14, 2021).
[32]
Savage, K.; Firth, J.; Stough, C.; Sarris, J. GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytother. Res., 2018, 32(1), 3-18.
[http://dx.doi.org/10.1002/ptr.5940] [PMID: 29168225]
[33]
Lorenz-Guertin, J.M.; Jacob, T.C. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev. Neurobiol., 2018, 78(3), 238-270.
[http://dx.doi.org/10.1002/dneu.22536] [PMID: 28901728]
[34]
Savio-Galimberti, E.; Gollob, M.H.; Darbar, D. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front. Pharmacol., 2012, 3, 124.
[http://dx.doi.org/10.3389/fphar.2012.00124] [PMID: 22798951]
[35]
Consortium, T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[36]
Sievers, F.; Higgins, D.G. The clustal omega multiple alignment package. Methods Mol. Biol., 2021, 2231, 3-16.
[http://dx.doi.org/10.1007/978-1-0716-1036-7_1] [PMID: 33289883]
[37]
Taddei, S.; Bruno, R.M. Calcium channel blockers. In: Encyclopedia of Endocrine Diseases; Stat Pearls Publishing Copyright© 2021, Stat Pearls Publishing LLC.: Treasure Island (FL),; , 2018; pp. 689-695.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.65408-9]
[38]
Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J. Physiol., 2016, 594(19), 5369-5390.
[http://dx.doi.org/10.1113/JP272262] [PMID: 27273705]
[39]
Dolphin, A.C. Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain Neurosci. Adv., 2018, 2239821281879480
[http://dx.doi.org/10.1177/2398212818794805] [PMID: 30320224]
[40]
Velghe, S.; Stove, C.P. Volumetric absorptive microsampling as an alternative tool for therapeutic drug monitoring of first-generation anti-epileptic drugs. Anal. Bioanal. Chem., 2018, 410(9), 2331-2341.
[http://dx.doi.org/10.1007/s00216-018-0866-4] [PMID: 29362853]
[41]
Piplani, S.; Verma, P.K.; Kumar, A. Neuroinformatics analyses reveal GABAt and SSADH as major proteins involved in anticonvulsant activity of valproic acid. Biomed. Pharmacother., 2016, 81, 402-410.
[http://dx.doi.org/10.1016/j.biopha.2016.04.036] [PMID: 27261619]
[42]
Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946.
[http://dx.doi.org/10.2174/1570159X17666181227165722] [PMID: 30592252]
[43]
Vogel, K.R.; Ainslie, G.R.; Walters, D.C.; McConnell, A.; Dhamne, S.C.; Rotenberg, A.; Roullet, J-B.; Gibson, K.M. Succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism: An update on pharmacological and enzyme-replacement therapeutic strategies. J. Inherit. Metab. Dis., 2018, 41(4), 699-708.
[http://dx.doi.org/10.1007/s10545-018-0153-8] [PMID: 29460030]
[44]
Gáll, Z.; Orbán-Kis, K.; Szilágyi, T. Differential effects of sodium channel blockers on in vitro induced epileptiform activities. Arch. Pharm. Res., 2017, 40(1), 112-121.
[http://dx.doi.org/10.1007/s12272-015-0676-6] [PMID: 26515967]
[45]
Dokkedal-Silva, V.; Berro, L.F.; Galduróz, J.C.F.; Tufik, S.; Andersen, M.L. Clonazepam: Indications, side effects, and potential for nonmedical use. Harv. Rev. Psychiatry, 2019, 27(5), 279-289.
[http://dx.doi.org/10.1097/HRP.0000000000000227] [PMID: 31385811]
[46]
Alles, S.R.A.; Cain, S.M.; Snutch, T.P. Pregabalin as a pain therapeutic: Beyond calcium channels. Front. Cell. Neurosci., 2020, 14, 83.
[http://dx.doi.org/10.3389/fncel.2020.00083] [PMID: 32351366]
[47]
Manjushree, N.; Chakraborty, A.; Shashidhar, K.; Narayanaswamy, S. A review of the drug pregabalin. Int. J. Basic Clin. Pharmacol., 2015, 4(4), 601-605.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20150359]
[48]
Stockburger, C.; Miano, D.; Baeumlisberger, M.; Pallas, T.; Arrey, T.N.; Karas, M.; Friedland, K.; Müller, W.E. A mitochondrial role of SV2a protein in aging and alzheimer’s disease: Studies with levetiracetam. J. Alzheimers Dis., 2016, 50(1), 201-215.
[http://dx.doi.org/10.3233/JAD-150687] [PMID: 26639968]
[49]
Mruk, A.L.; Garlitz, K.L.; Leung, N.R. Levetiracetam in neonatal seizures: A review. J. Pediatr. Pharmacol. Ther., 2015, 20(2), 76-89.
[http://dx.doi.org/10.5863/1551-6776-20.2.76] [PMID: 25964725]
[50]
Ye, J.; Zou, G.; Zhu, R.; Kong, C.; Miao, C.; Zhang, M.; Li, J.; Xiong, W.; Wang, C. Structural basis of GABARAP-mediated GABAA receptor trafficking and functions on GABAergic synaptic transmission. Nat. Commun., 2021, 12(1), 297.
[http://dx.doi.org/10.1038/s41467-020-20624-z] [PMID: 33436612]
[51]
Mansuy, V.; Boireau, W.; Fraichard, A.; Schlick, J.L.; Jouvenot, M.; Delage-Mourroux, R. GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor. Biochem. Biophys. Res. Commun., 2004, 325(2), 639-648.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.072] [PMID: 15530441]
[52]
Wang, H.; Bedford, F.K.; Brandon, N.J.; Moss, S.J.; Olsen, R.W. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature, 1999, 397(6714), 69-72.
[http://dx.doi.org/10.1038/16264] [PMID: 9892355]

© 2025 Bentham Science Publishers | Privacy Policy