Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Probiotics as an Adjuvant for Management of Gastrointestinal Cancers through their Anti-inflammatory Effects: A Mechanistic Review

Author(s): Hossein Javid, Mehdi Karimi-Shahri, Malihe Khorramdel, Alireza S. Mashhad, Ayda T. Tabrizi, Thozhukat Sathyapalan, Amir R. Afshari and Amirhossein Sahebkar*

Volume 30, Issue 4, 2023

Published on: 09 September, 2022

Page: [390 - 406] Pages: 17

DOI: 10.2174/0929867329666220511185745

Price: $65

Abstract

The immune system's role in maintaining the health of the gastrointestinal (GI) system is like a double-edged sword. Simultaneously, it could reduce the risk of pathogen invasion by the inflammatory response. However, if regulated improperly, it could also propagate oncogenic signaling that transfers a normal cell into the malignant counterpart. Thus, several mechanisms have been proposed, such as the immune system could disturb the GI homeostasis and increase the survival and proliferative capacity of cells, leading to the formation of a wide range of malignancies. Among the endless list of these mechanisms, inflammatory responses are currently fascinating research areas, as this response regulation is by the gut microbiota. Given this, microbiota manipulation might be a convenient and efficient way to prevent GI cancer. Probiotics could potentially achieve this by overturning the milieu in favor of normal gut homeostasis. In addition to the safety of the use of probiotics, along with their potential ability to interact with immune system responses, these bacteria are also being analyzed from the perspective of dietary supplements. In the present review, we aimed to look into the mechanisms through which probiotics modulate immune response to stimulate anti-inflammatory responses and promote immune surveillance against neoplastic cells.

Keywords: Gastrointestinal cancer, inflammatory responses, probiotics, gut microbiota, epigenetics, colorectal cancer.

[1]
Ghoncheh, M.; Salehiniya, H. Inequality in the incidence and mortality of all cancers in the world. Iran. J. Public Health, 2016, 45(12), 1675-1677.
[PMID: 28053942]
[2]
Pourhoseingholi, M.A.; Vahedi, M.; Baghestani, A.R. Burden of gastrointestinal cancer in Asia; an overview. Gastroenterol. Hepatol. Bed Bench, 2015, 8(1), 19-27.
[PMID: 25584172]
[3]
Hashemian, P.; Javid, H.; Tadayyon Tabrizi, A.; Hashemy, S.I. The role of tachykinins in the initiation and progression of gastrointestinal cancers: A review. Int. J. Cancer Manag., 2020, 13(5)
[http://dx.doi.org/10.5812/ijcm.100717]
[4]
Pellatt, A.J.; Wolff, R.K.; Lundgreen, A.; Cawthon, R.; Slattery, M.L. Genetic and lifestyle influence on telomere length and subsequent risk of colon cancer in a case control study. Int. J. Mol. Epidemiol. Genet., 2012, 3(3), 184-194.
[PMID: 23050049]
[5]
Javanmard, A.; Ashtari, S.; Sabet, B.; Davoodi, S.H.; Rostami-Nejad, M.; Akbari, E.M.; Niaz, A.; Mortazavian, A.M. Probiotics and their role in gastrointestinal cancers prevention and treatment; an overview. Gastroenterol. Hepatol. Bed Bench, 2018, 11(4), 284-295.
[PMID: 30425806]
[6]
Javid, H.; Asadi, J.; Avval, Z.F.; Afshari, A.R.; Hashemy, S.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol. Biol. Rep., 2020, 47(3), 2253-2263.
[http://dx.doi.org/10.1007/s11033-020-05330-9] [PMID: 32072401]
[7]
Li, J.; Perez-Perez, G.I. Helicobacter pylori the latent human pathogen or an ancestral commensal organism. Front. Microbiol., 2018, 9, 609.
[http://dx.doi.org/10.3389/fmicb.2018.00609] [PMID: 29666614]
[8]
Nagaraju, G.P.; El-Rayes, B.F. Cyclooxygenase-2 in gastrointestinal malignancies. Cancer, 2019, 125(8), 1221-1227.
[http://dx.doi.org/10.1002/cncr.32010] [PMID: 30747998]
[9]
Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol., 2013, 11(1), 118.
[http://dx.doi.org/10.1186/1477-7819-11-118] [PMID: 23718886]
[10]
Babbs, C.F. Free radicals and the etiology of colon cancer. Free Radic. Biol. Med., 1990, 8(2), 191-200.
[http://dx.doi.org/10.1016/0891-5849(90)90091-V] [PMID: 2185144]
[11]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[12]
Slattery, M.L.; Lundgreen, A.; Kadlubar, S.A.; Bondurant, K.L.; Wolff, R.K. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol. Carcinog., 2013, 52(2), 155-166.
[http://dx.doi.org/10.1002/mc.21841] [PMID: 22121102]
[13]
Keshavarz Shahbaz, S.; Koushki, K.; Ayati, S.H.; Bland, A.R.; Bezsonov, E.E.; Sahebkar, A. Inflammasomes and colorectal cancer. Cells, 2021, 10(9), 2172.
[http://dx.doi.org/10.3390/cells10092172] [PMID: 34571825]
[14]
Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158.
[http://dx.doi.org/10.1186/s12943-018-0900-3] [PMID: 30447690]
[15]
Husain, S.S.; Szabo, I.L.; Tamawski, A.S. NSAID inhibition of GI cancer growth: Clinical implications and molecular mechanisms of action. Am. J. Gastroenterol., 2002, 97(3), 542-553.
[http://dx.doi.org/10.1111/j.1572-0241.2002.05528.x] [PMID: 11922545]
[16]
Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, 16(4), 343-353.
[http://dx.doi.org/10.1038/ni.3123] [PMID: 25789684]
[17]
Costantini, S; Sharma, A; Colonna, G The value of the cytokinome profile. In: Inflammatory diseases–a modern perspective; Intechopen, 2011.
[http://dx.doi.org/10.5772/25707]
[18]
Nailwal, H.; Chan, F.K-M. Necroptosis in anti-viral inflammation. Cell Death Differ., 2019, 26(1), 4-13.
[http://dx.doi.org/10.1038/s41418-018-0172-x] [PMID: 30050058]
[19]
Haanen, C.; Vermes, I. Apoptosis and inflammation. Mediators Inflamm., 1995, 4(1), 5-15.
[http://dx.doi.org/10.1155/S0962935195000020] [PMID: 18475609]
[20]
Yang, Y.; Jiang, G.; Zhang, P.; Fan, J. Programmed cell death and its role in inflammation. Mil. Med. Res., 2015, 2(1), 12.
[http://dx.doi.org/10.1186/s40779-015-0039-0] [PMID: 26045969]
[21]
Levin, B.R.; Antia, R. Why we don’t get sick: The within-host population dynamics of bacterial infections. Science, 2001, 292(5519), 1112-1115.
[http://dx.doi.org/10.1126/science.1058879] [PMID: 11352067]
[22]
Yu, L. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19. Indian J. Microbiol., 2021, 61(1), 1-4.
[http://dx.doi.org/10.1007/s12088-020-00913-3] [PMID: 33424043]
[23]
van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav., 2008, 94(2), 231-241.
[http://dx.doi.org/10.1016/j.physbeh.2007.11.049] [PMID: 18222498]
[24]
Higashizono, K.; Fukatsu, K.; Watkins, A.; Watanabe, T.; Noguchi, M.; Tominaga, E.; Ri, M.; Murakoshi, S.; Yasuhara, H.; Seto, Y. Effects of short-term fasting on gut-associated lymphoid tissue and intestinal morphology in mice. Clin. Nutr. Exp., 2018, 18, 6-14.
[http://dx.doi.org/10.1016/j.yclnex.2017.12.002]
[25]
Papavramidis, T.; Kaidoglou, K.; Grosomanidis, V.; Kazamias, P.; Anagnostopoulos, T.; Paramythiotis, D. Short-term fasting-induced jejunal mucosa atrophy in rats-the role of probiotics during refeeding. Ann. Gastroenterol., 2009, 268-274.
[26]
Yu, B.; Yu, L.; Klionsky, D.J. Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med. Hypotheses, 2021, 155, 110668.
[http://dx.doi.org/10.1016/j.mehy.2021.110668] [PMID: 34467856]
[27]
Eaton, K.A.; Mefford, M.; Thevenot, T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J. Immunol., 2001, 166(12), 7456-7461.
[http://dx.doi.org/10.4049/jimmunol.166.12.7456] [PMID: 11390498]
[28]
Whalen, M.B.; Massidda, O. Helicobacter pylori: Enemy, commensal or, sometimes, friend? J. Infect. Dev. Ctries., 2015, 9(6), 674-678.
[http://dx.doi.org/10.3855/jidc.7186] [PMID: 26142681]
[29]
Reshetnyak, V.I.; Burmistrov, A.I.; Maev, I.V. Helicobacter pylori: Commensal, symbiont or pathogen? World J. Gastroenterol., 2021, 27(7), 545-560.
[http://dx.doi.org/10.3748/wjg.v27.i7.545] [PMID: 33642828]
[30]
Roth, K.A.; Kapadia, S.B.; Martin, S.M.; Lorenz, R.G. Cellular immune responses are essential for the development of Helicobacter fecalis-associated gastric pathology. J. Immunol., 1999, 163(3), 1490-1497.
[PMID: 10415051]
[31]
Jackson, P.A.; Green, M.A.; Marks, C.G.; King, R.J.; Hubbard, R.; Cook, M.G. Lymphocyte subset infiltration patterns and HLA antigen status in colorectal carcinomas and adenomas. Gut, 1996, 38(1), 85-89.
[http://dx.doi.org/10.1136/gut.38.1.85] [PMID: 8566865]
[32]
Osawa, E.; Nakajima, A.; Fujisawa, T.; Kawamura, Y.I.; Toyama-Sorimachi, N.; Nakagama, H.; Dohi, T. Predominant T helper type 2-inflammatory responses promote murine colon cancers. Int. J. Cancer, 2006, 118(9), 2232-2236.
[http://dx.doi.org/10.1002/ijc.21639] [PMID: 16331625]
[33]
Strasly, M.; Cavallo, F.; Geuna, M.; Mitola, S.; Colombo, M.P.; Forni, G.; Bussolino, F. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J. Immunol., 2001, 166(6), 3890-3899.
[http://dx.doi.org/10.4049/jimmunol.166.6.3890] [PMID: 11238633]
[34]
Del Vecchio, M.; Bajetta, E.; Canova, S.; Lotze, M.T.; Wesa, A.; Parmiani, G.; Anichini, A. Interleukin-12: Biological properties and clinical application. Clin. Cancer Res., 2007, 13(16), 4677-4685.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0776] [PMID: 17699845]
[35]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[36]
Shibata, M.; Nezu, T.; Kanou, H.; Abe, H.; Takekawa, M.; Fukuzawa, M. Decreased production of interleukin-12 and type 2 immune responses are marked in cachectic patients with colorectal and gastric cancer. J. Clin. Gastroenterol., 2002, 34(4), 416-420.
[http://dx.doi.org/10.1097/00004836-200204000-00006] [PMID: 11907352]
[37]
Kettunen, H.L.; Kettunen, A.S.; Rautonen, N.E. Intestinal immune responses in wild-type and Apcmin/+ mouse, a model for colon cancer. Cancer Res., 2003, 63(16), 5136-5142.
[PMID: 12941845]
[38]
Pagès, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte, D.; Meatchi, T.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Galon, J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med., 2005, 353(25), 2654-2666.
[http://dx.doi.org/10.1056/NEJMoa051424] [PMID: 16371631]
[39]
Endo, Y; Marusawa, H; Kou, T; Nakase, H; Fujii, S; Fujimori, T Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology, 2008, 135(3), 889-898. e3.
[http://dx.doi.org/10.1053/j.gastro.2008.06.091]
[40]
Fouser, L.A.; Wright, J.F.; Dunussi-Joannopoulos, K.; Collins, M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol. Rev., 2008, 226(1), 87-102.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00712.x] [PMID: 19161418]
[41]
Th17 cells: Effector T cells with inflammatory properties. Semin. Immunol., 2007, 19(6), 362-371.
[42]
Yen, D.; Cheung, J.; Scheerens, H.; Poulet, F.; McClanahan, T.; McKenzie, B.; Kleinschek, M.A.; Owyang, A.; Mattson, J.; Blumenschein, W.; Murphy, E.; Sathe, M.; Cua, D.J.; Kastelein, R.A.; Rennick, D. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest., 2006, 116(5), 1310-1316.
[http://dx.doi.org/10.1172/JCI21404] [PMID: 16670770]
[43]
Macarthur, M.; Hold, G.L.; El-Omar, E.M. Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 286(4), G515-G520.
[http://dx.doi.org/10.1152/ajpgi.00475.2003] [PMID: 15010360]
[44]
Soukhtanloo, M; Mohtashami, E; Maghrouni, A; Mollazadeh, H; Mousavi, SH; Roshan, MK Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacol. Rep., 2020, 72(2), 285-295.
[http://dx.doi.org/10.1007/s43440-020-00081-7]
[45]
Sokolova, O.; Naumann, M. NF-κB signaling in gastric cancer. Toxins (Basel), 2017, 9(4), 119.
[http://dx.doi.org/10.3390/toxins9040119] [PMID: 28350359]
[46]
Mohammadi, F.; Javid, H.; Afshari, A.R.; Mashkani, B.; Hashemy, S.I. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol. Biol. Rep., 2020, 47(6), 4263-4272.
[http://dx.doi.org/10.1007/s11033-020-05532-1] [PMID: 32436041]
[47]
Sherman, M.P.; Zaghouani, H.; Niklas, V. Gut microbiota, the immune system, and diet influence the neonatal gut brain axis. Pediatr Res, 2015, 77(1), 127-135.
[48]
Maslowski, K.M.; Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol., 2011, 12(1), 5-9.
[49]
Collins, D.; Hogan, A.M.; Winter, D.C. Microbial and viral pathogens in colorectal cancer. Lancet Oncol., 2011, 12(5), 504-512.
[http://dx.doi.org/10.1016/S1470-2045(10)70186-8] [PMID: 21067973]
[50]
Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev., 2014, 38(5), 996-1047.
[http://dx.doi.org/10.1111/1574-6976.12075] [PMID: 24861948]
[51]
Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One, 2013, 8(8), e70803.
[http://dx.doi.org/10.1371/journal.pone.0070803] [PMID: 23940645]
[52]
Wu, N.; Yang, X.; Zhang, R.; Li, J.; Xiao, X.; Hu, Y.; Chen, Y.; Yang, F.; Lu, N.; Wang, Z.; Luan, C.; Liu, Y.; Wang, B.; Xiang, C.; Wang, Y.; Zhao, F.; Gao, G.F.; Wang, S.; Li, L.; Zhang, H.; Zhu, B. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol., 2013, 66(2), 462-470.
[http://dx.doi.org/10.1007/s00248-013-0245-9] [PMID: 23733170]
[53]
Cheng, W.; Zhang, C.; Ren, X.; Jiang, Y.; Han, S.; Liu, Y.; Cai, J.; Li, M.; Wang, K.; Liu, Y.; Hu, H.; Li, Q.; Yang, P.; Bao, Z.; Wu, A. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. J. Neurosurg., 2017, 126(1), 249-259.
[http://dx.doi.org/10.3171/2015.11.JNS15432] [PMID: 26967788]
[54]
Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer, 2013, 13(11), 800-812.
[http://dx.doi.org/10.1038/nrc3610] [PMID: 24132111]
[55]
Karimian, A.; Mir, S.M.; Parsian, H.; Refieyan, S.; Mirza-Aghazadeh-Attari, M.; Yousefi, B.; Majidinia, M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J. Cell. Biochem., 2019, 120(6), 10248-10272.
[http://dx.doi.org/10.1002/jcb.28309] [PMID: 30592328]
[56]
Nakad, R.; Schumacher, B. DNA damage response and immune defense: Links and mechanisms. Front. Genet., 2016, 7, 147.
[http://dx.doi.org/10.3389/fgene.2016.00147] [PMID: 27555866]
[57]
Indian Council of Medical Research Task Force; Co-ordinating Unit ICMR; Co-ordinating Unit DBT. ICMR-DBT guidelines for evaluation of probiotics in food. Indian J. Med. Res., 2011, 134(1), 22-25.
[PMID: 21808130]
[58]
Floch, M.H.; Walker, W.A.; Madsen, K.; Sanders, M.E.; Macfarlane, G.T.; Flint, H.J.; Dieleman, L.A.; Ringel, Y.; Guandalini, S.; Kelly, C.P.; Brandt, L.J. Recommendations for probiotic use-2011 update. J. Clin. Gastroenterol., 2011, 45(Suppl.), S168-S171.
[http://dx.doi.org/10.1097/MCG.0b013e318230928b] [PMID: 21992958]
[59]
Mcfall-Ngai, M.; Bosch, T.C.; Hadfield, M.; Carey, H.V.; DomazetLošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; Hentschel, U.; King, N.; Kjelleberg, S.; Knoll, A.H.; Kremer, N.; Mazmanian, S.K.; Metcalf, J.L.; Nealson, K.; Pierce, N.E.; Rawls, J.F.; Reid, A.; Ruby, E.G.; Rumpho, M.; Sanders, J.G.; Tautz, D.; Wernegreen, J.J. Animals in a bacterial world, a new imperative for the life sciences. In: PNAS; , 2013; 110, pp. (9)3229-3236.
[60]
Davoodvandi, A.; Fallahi, F.; Tamtaji, O.R.; Tajiknia, V.; Banikazemi, Z.; Fathizadeh, H.; Abbasi-Kolli, M.; Aschner, M.; Ghandali, M.; Sahebkar, A.; Taghizadeh, M.; Mirzaei, H. An update on the effects of probiotics on gastrointestinal cancers. Front. Pharmacol., 2021, 12, 680400.
[http://dx.doi.org/10.3389/fphar.2021.680400] [PMID: 34992527]
[61]
Atabati, H.; Yazdanpanah, E.; Mortazavi, H. Immunoregulatory effects of tolerogenic probiotics in multiple sclerosis. Adv. Exp. Med. Biol., 2021, 1286, 87-105.
[62]
Davoodvandi, A.; Marzban, H.; Goleij, P.; Sahebkar, A.; Morshedi, K.; Rezaei, S.; Mahjoubin-Tehran, M.; Tarrahimofrad, H.; Hamblin, M.R.; Mirzaei, H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun. Signal., 2021, 19(1), 4.
[http://dx.doi.org/10.1186/s12964-020-00668-w] [PMID: 33430873]
[63]
Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev., 2004, 28(4), 405-440.
[http://dx.doi.org/10.1016/j.femsre.2004.01.003] [PMID: 15374659]
[64]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[65]
Holzapfel, W.H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 365S-373S.
[http://dx.doi.org/10.1093/ajcn/73.2.365s] [PMID: 11157343]
[66]
Marco, M.L.; Pavan, S.; Kleerebezem, M. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol., 2006, 17(2), 204-210.
[http://dx.doi.org/10.1016/j.copbio.2006.02.005] [PMID: 16510275]
[67]
Kumar, M.; Kumar, A.; Nagpal, R.; Mohania, D.; Behare, P.; Verma, V.; Kumar, P.; Poddar, D.; Aggarwal, P.K.; Henry, C.J.; Jain, S.; Yadav, H. Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr., 2010, 61(5), 473-496.
[http://dx.doi.org/10.3109/09637480903455971] [PMID: 20187714]
[68]
Lee, J.W.; Shin, J.G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.G.; Woo, H.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci., 2004, 5(1), 41-48.
[http://dx.doi.org/10.4142/jvs.2004.5.1.41] [PMID: 15028884]
[69]
Baldwin, C.; Millette, M.; Oth, D.; Ruiz, M.T.; Luquet, F.M.; Lacroix, M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr. Cancer, 2010, 62(3), 371-378.
[http://dx.doi.org/10.1080/01635580903407197] [PMID: 20358475]
[70]
Russo, F.; Orlando, A.; Linsalata, M.; Cavallini, A.; Messa, C. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr. Cancer, 2007, 59(1), 106-114.
[http://dx.doi.org/10.1080/01635580701365084] [PMID: 17927509]
[71]
Orlando, A.; Refolo, M.G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer, 2012, 64(7), 1103-1111.
[http://dx.doi.org/10.1080/01635581.2012.717676] [PMID: 23061912]
[72]
Kim, Y.; Lee, D.; Kim, D.; Cho, J.; Yang, J.; Chung, M.; Kim, K.; Ha, N. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res., 2008, 31(4), 468-473.
[http://dx.doi.org/10.1007/s12272-001-1180-y] [PMID: 18449504]
[73]
Hatakka, K.; Holma, R.; El-Nezami, H.; Suomalainen, T.; Kuisma, M.; Saxelin, M.; Poussa, T.; Mykkänen, H.; Korpela, R. The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int. J. Food Microbiol., 2008, 128(2), 406-410.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.09.010] [PMID: 18945506]
[74]
Worthley, D.L.; Le Leu, R.K.; Whitehall, V.L.; Conlon, M.; Christophersen, C.; Belobrajdic, D.; Mallitt, K.A.; Hu, Y.; Irahara, N.; Ogino, S.; Leggett, B.A.; Young, G.P. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: Effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am. J. Clin. Nutr., 2009, 90(3), 578-586.
[http://dx.doi.org/10.3945/ajcn.2009.28106] [PMID: 19640954]
[75]
Ohara, T.; Yoshino, K.; Kitajima, M. Possibility of preventing colorectal carcinogenesis with probiotics. Hepatogastroenterology, 2010, 57(104), 1411-1415.
[PMID: 21443095]
[76]
Kotzampassi, K.; Stavrou, G.; Damoraki, G.; Georgitsi, M.; Basdanis, G.; Tsaousi, G.; Giamarellos-Bourboulis, E.J. A four-probiotics regimen reduces postoperative complications after colorectal surgery: A randomized, double-blind, placebo-controlled study. World J. Surg., 2015, 39(11), 2776-2783.
[http://dx.doi.org/10.1007/s00268-015-3071-z] [PMID: 25894405]
[77]
Osterlund, P; Ruotsalainen, T; Korpela, R Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer. a randomised study. Br J Cancer, 2007, 97(8), 1028-1034.
[78]
Lopez, M.; Li, N.; Kataria, J.; Russell, M.; Neu, J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J. Nutr., 2008, 138(11), 2264-2268.
[http://dx.doi.org/10.3945/jn.108.093658] [PMID: 18936229]
[79]
Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Modeo, M.E. Effect of Lactobacillus casei supplementation on the effectiveness and tolerability of a new second-line 10-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. Med. Sci. Monit., 2004, 10(12), CR662-CR666.
[PMID: 15567983]
[80]
Cremonini, F.; Di Caro, S.; Covino, M.; Armuzzi, A.; Gabrielli, M.; Santarelli, L.; Nista, E.C.; Cammarota, G.; Gasbarrini, G.; Gasbarrini, A. Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: A parallel group, triple blind, placebo-controlled study. Am. J. Gastroenterol., 2002, 97(11), 2744-2749.
[http://dx.doi.org/10.1111/j.1572-0241.2002.07063.x] [PMID: 12425542]
[81]
Sýkora, J.; Valecková, K.; Amlerová, J.; Siala, K.; Dedek, P.; Watkins, S.; Varvarovská, J.; Stozický, F.; Pazdiora, P.; Schwarz, J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: A prospective randomized double-blind study. J. Clin. Gastroenterol., 2005, 39(8), 692-698.
[http://dx.doi.org/10.1097/01.mcg.0000173855.77191.44] [PMID: 16082279]
[82]
Sheu, B.S.; Cheng, H.C.; Kao, A.W.; Wang, S.T.; Yang, Y.J.; Yang, H.B.; Wu, J.J. Pretreatment with Lactobacillus- and Bifidobacterium-containing yogurt can improve the efficacy of quadruple therapy in eradicating residual Helicobacter pylori infection after failed triple therapy. Am. J. Clin. Nutr., 2006, 83(4), 864-869.
[http://dx.doi.org/10.1093/ajcn/83.4.864] [PMID: 16600940]
[83]
Goldman, C.G.; Barrado, D.A.; Balcarce, N.; Rua, E.C.; Oshiro, M.; Calcagno, M.L.; Janjetic, M.; Fuda, J.; Weill, R.; Salgueiro, M.J.; Valencia, M.E.; Zubillaga, M.B.; Boccio, J.R. Effect of a probiotic food as an adjuvant to triple therapy for eradication of Helicobacter pylori infection in children. Nutrition, 2006, 22(10), 984-988.
[http://dx.doi.org/10.1016/j.nut.2006.06.008] [PMID: 16978844]
[84]
Kita, A.; Fujiya, M.; Konishi, H.; Tanaka, H.; Kashima, S.; Iwama, T.; Ijiri, M.; Murakami, Y.; Takauji, S.; Goto, T.; Sakatani, A.; Ando, K.; Ueno, N.; Ogawa, N.; Okumura, T. Probiotic-derived ferrichrome inhibits the growth of refractory pancreatic cancer cells. Int. J. Oncol., 2020, 57(3), 721-732.
[http://dx.doi.org/10.3892/ijo.2020.5096] [PMID: 32705165]
[85]
Chen, S-M.; Chieng, W-W.; Huang, S-W.; Hsu, L-J.; Jan, M-S. The synergistic tumor growth-inhibitory effect of probiotic Lactobacillus on transgenic mouse model of pancreatic cancer treated with gemcitabine. Sci. Rep., 2020, 10(1), 20319.
[http://dx.doi.org/10.1038/s41598-020-77322-5] [PMID: 33230218]
[86]
Jan, M.-S.; Chen, W.-T.; Chen, Y.-J.; Lin, C.-W.; Chang, W.-W.; Tsai, C.-H. Probiotics ameliorate Porphyromonas gingivalis-promoted pancreatic cancer progression in oncogenic Kras transgenic mice. In: AACR; , 2017; 77, p. (Suppl. 13)235.
[87]
Nada, H.G.; Sudha, T.; Darwish, N.H.; Mousa, S.A. Lactobacillus acidophilus and Bifidobacterium longum exhibit antiproliferation, anti-angiogenesis of gastric and bladder cancer: Impact of COX2 inhibition. PharmaNutrition, 2020, 14, 100219.
[http://dx.doi.org/10.1016/j.phanu.2020.100219]
[88]
Heydari, Z.; Rahaie, M.; Alizadeh, A.M. Different anti-inflammatory effects of Lactobacillus acidophilus and Bifidobactrum bifidioum in hepatocellular carcinoma cancer mouse through impact on microRNAs and their target genes. J. Nutr. Intermed. Metab., 2019, 16, 100096.
[http://dx.doi.org/10.1016/j.jnim.2019.100096]
[89]
Nistal, E; Fernández-Fernández, N; Vivas, S; Olcoz, JL Factors determining colorectal cancer: The role of the intestinal microbiota. Front. Oncol., 2015, 5, 220.
[90]
Yoon, K.; Kim, N. The effect of microbiota on colon carcinogenesis. J. Cancer Prev., 2018, 23(3), 117-125.
[http://dx.doi.org/10.15430/JCP.2018.23.3.117] [PMID: 30370256]
[91]
Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The role of probiotics in cancer prevention. Cancers (Basel), 2020, 13(1), 20.
[http://dx.doi.org/10.3390/cancers13010020] [PMID: 33374549]
[92]
De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol., 2007, 13(4), 194-199.
[http://dx.doi.org/10.1159/000104752] [PMID: 17827969]
[93]
Horinaka, M.; Yoshida, T.; Kishi, A.; Akatani, K.; Yasuda, T.; Kouhara, J.; Wakada, M.; Sakai, T. Lactobacillus strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Lett., 2010, 584(3), 577-582.
[http://dx.doi.org/10.1016/j.febslet.2009.12.004] [PMID: 19995562]
[94]
Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Santarmaki, V.; Aindelis, G.; Tompoulidou, E.; Lamprianidou, E.E.; Saxami, G.; Ypsilantis, P.; Lampri, E.S.; Simopoulos, C.; Kotsianidis, I.; Galanis, A.; Kourkoutas, Y.; Dimitrellou, D.; Chlichlia, K. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One, 2016, 11(2), e0147960.
[http://dx.doi.org/10.1371/journal.pone.0147960] [PMID: 26849051]
[95]
Kim, Y.; Oh, S.; Yun, H.S.; Oh, S.; Kim, S.H. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett. Appl. Microbiol., 2010, 51(2), 123-130.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02859.x] [PMID: 20536712]
[96]
Altonsy, M.O.; Andrews, S.C.; Tuohy, K.M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway. Int. J. Food Microbiol., 2010, 137(2-3), 190-203.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.11.015] [PMID: 20036023]
[97]
Jan, G.; Belzacq, A.S.; Haouzi, D.; Rouault, A.; Métivier, D.; Kroemer, G.; Brenner, C. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ., 2002, 9(2), 179-188.
[http://dx.doi.org/10.1038/sj.cdd.4400935] [PMID: 11840168]
[98]
Cousin, F.J.; Jouan-Lanhouet, S.; Dimanche-Boitrel, M.T.; Corcos, L.; Jan, G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One, 2012, 7(3), e31892.
[http://dx.doi.org/10.1371/journal.pone.0031892] [PMID: 22442660]
[99]
La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Proteins, 2018, 10(1), 11-21.
[http://dx.doi.org/10.1007/s12602-017-9322-6] [PMID: 28861741]
[100]
Galdeano, M.C.; Cazorla, S.I.; Dumit, L.J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, 74(2), 115-124.
[http://dx.doi.org/10.1159/000496426] [PMID: 30673668]
[101]
Hoffmann, A.; Kleniewska, P.; Pawliczak, R. Antioxidative activity of probiotics. Arch. Med. Sci., 2019, 17(3), 792-804.
[http://dx.doi.org/10.5114/aoms.2019.89894] [PMID: 34025850]
[102]
Jacouton, E.; Chain, F.; Sokol, H.; Langella, P.; Bermúdez-Humarán, L.G. Probiotic Strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front. Immunol., 2017, 8, 1553.
[http://dx.doi.org/10.3389/fimmu.2017.01553] [PMID: 29209314]
[103]
Monteros, M.J.M.; Galdeano, C.M.; Balcells, M.F.; Weill, R.; De Paula, J.A.; Perdigón, G.; Cazorla, S.I. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci. Rep., 2021, 11(1), 571.
[http://dx.doi.org/10.1038/s41598-020-80482-z] [PMID: 33436961]
[104]
Hardy, H.; Harris, J.; Lyon, E.; Beal, J.; Foey, A.D. Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. Nutrients, 2013, 5(6), 1869-1912.
[http://dx.doi.org/10.3390/nu5061869] [PMID: 23760057]
[105]
Rosenberg, J.; Huang, J. CD8+ T cells and NK cells: Parallel and complementary soldiers of immunotherapy. Curr. Opin. Chem. Eng., 2018, 19, 9-20.
[http://dx.doi.org/10.1016/j.coche.2017.11.006] [PMID: 29623254]
[106]
Mojka, K. Probiotics, prebiotics and synbiotics-characteristics and functions. Probl. Hig. Epidemiol., 2014, 95, 541-549.
[107]
Gutzeit, C.; Magri, G.; Cerutti, A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev., 2014, 260(1), 76-85.
[http://dx.doi.org/10.1111/imr.12189] [PMID: 24942683]
[108]
Galdeano, C.M.; Perdigón, G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol., 2006, 13(2), 219-226.
[http://dx.doi.org/10.1128/CVI.13.2.219-226.2006] [PMID: 16467329]
[109]
Bakker-Zierikzee, A.M.; Tol, E.A.; Kroes, H.; Alles, M.S.; Kok, F.J.; Bindels, J.G. Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr. Allergy Immunol., 2006, 17(2), 134-140.
[http://dx.doi.org/10.1111/j.1399-3038.2005.00370.x] [PMID: 16618363]
[110]
Gitto, S.B.; Beardsley, J.M.; Nakkina, S.P.; Oyer, J.L.; Cline, K.A.; Litherland, S.A.; Copik, A.J.; Khaled, A.S.; Fanaian, N.; Arnoletti, J.P.; Altomare, D.A. Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells. Cell Commun. Signal., 2020, 18(1), 95.
[http://dx.doi.org/10.1186/s12964-020-00594-x] [PMID: 32552827]
[111]
Jacobsen, E.A.; Ochkur, S.I.; Doyle, A.D.; LeSuer, W.E.; Li, W.; Protheroe, C.A.; Colbert, D.; Zellner, K.R.; Shen, H.H.; Irvin, C.G.; Lee, J.J.; Lee, N.A. Lung pathologies in a chronic inflammation mouse model are independent of eosinophil degranulation. Am. J. Respir. Crit. Care Med., 2017, 195(10), 1321-1332.
[http://dx.doi.org/10.1164/rccm.201606-1129OC] [PMID: 27922744]
[112]
Azad, M.; Kalam, A.; Sarker, M.; Wan, D. Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res. Int., 2018, 2018, 8063647.
[http://dx.doi.org/10.1155/2018/8063647]
[113]
Bai, A.P.; Ouyang, Q.; Xiao, X.R.; Li, S.F. Probiotics modulate inflammatory cytokine secretion from inflamed mucosa in active ulcerative colitis. Int. J. Clin. Pract., 2006, 60(3), 284-288.
[http://dx.doi.org/10.1111/j.1368-5031.2006.00833.x] [PMID: 16494642]
[114]
Hills, R.D., Jr; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome: Profound implications for diet and disease. Nutrients, 2019, 11(7), E1613.
[http://dx.doi.org/10.3390/nu11071613] [PMID: 31315227]
[115]
Kahouli, I.; Malhotra, M.; Alaoui-Jamali, M.; Prakash, S. In-vitro characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer. J. Cancer Sci. Ther., 2015, 7(7), 224-235.
[116]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[117]
Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA, 2014, 111(6), 2247-2252.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[118]
Ménard, S.; Candalh, C.; Bambou, J.C.; Terpend, K.; Cerf-Bensussan, N.; Heyman, M. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut, 2004, 53(6), 821-828.
[http://dx.doi.org/10.1136/gut.2003.026252] [PMID: 15138208]
[119]
Kim, J.M.; Kim, J.S.; Kim, Y.J.; Oh, Y.K.; Kim, I.Y.; Chee, Y.J.; Han, J.S.; Jung, H.C. Conjugated linoleic acids produced by Lactobacillus dissociates IKK-γ and Hsp90 complex in Helicobacter pylori-infected gastric epithelial cells. Lab. Invest., 2008, 88(5), 541-552.
[http://dx.doi.org/10.1038/labinvest.2008.16] [PMID: 18347582]
[120]
Dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.D. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19.
[http://dx.doi.org/10.1016/j.nutres.2016.11.009] [PMID: 28215310]
[121]
Szanto, A.; Nagy, L. The many faces of PPARgamma: Anti-inflammatory by any means? Immunobiology, 2008, 213(9-10), 789-803.
[http://dx.doi.org/10.1016/j.imbio.2008.07.015] [PMID: 18926294]
[122]
Dubuquoy, L.; Rousseaux, C.; Thuru, X.; Peyrin-Biroulet, L.; Romano, O.; Chavatte, P.; Chamaillard, M.; Desreumaux, P. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut, 2006, 55(9), 1341-1349.
[http://dx.doi.org/10.1136/gut.2006.093484] [PMID: 16905700]
[123]
Mirpuri, J.; Raetz, M.; Sturge, C.R.; Wilhelm, C.L.; Benson, A.; Savani, R.C.; Hooper, L.V.; Yarovinsky, F. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes, 2014, 5(1), 28-39.
[http://dx.doi.org/10.4161/gmic.26489] [PMID: 24637807]
[124]
Silva, J.P.B.; Navegantes-Lima, K.C.; Oliveira, A.L.B.; Rodrigues, D.V.S.; Gaspar, S.L.F.; Monteiro, V.V.S.; Moura, D.P.; Monteiro, M.C. Protective mechanisms of butyrate on inflammatory bowel disease. Curr. Pharm. Des., 2018, 24(35), 4154-4166.
[http://dx.doi.org/10.2174/1381612824666181001153605] [PMID: 30277149]
[125]
Kelly, D.; Campbell, J.I.; King, T.P.; Grant, G.; Jansson, E.A.; Coutts, A.G.; Pettersson, S.; Conway, S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol., 2004, 5(1), 104-112.
[http://dx.doi.org/10.1038/ni1018] [PMID: 14691478]
[126]
Bassaganya-Riera, J.; Viladomiu, M.; Pedragosa, M.; De Simone, C.; Carbo, A.; Shaykhutdinov, R.; Jobin, C.; Arthur, J.C.; Corl, B.A.; Vogel, H.; Storr, M.; Hontecillas, R. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. PLoS One, 2012, 7(2), e31238.
[http://dx.doi.org/10.1371/journal.pone.0031238] [PMID: 22363592]
[127]
Ewaschuk, J.B.; Walker, J.W.; Diaz, H.; Madsen, K.L. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J. Nutr., 2006, 136(6), 1483-1487.
[http://dx.doi.org/10.1093/jn/136.6.1483] [PMID: 16702308]
[128]
Dubey, V.; Ghosh, A. Probiotics cross talk with multi cell signaling in colon carcinogenesis. J. Probiotics Health, 2013, 1(109), 2-5.
[http://dx.doi.org/10.4172/2329-8901.1000109]
[129]
Teresi, R.E.; Waite, K.A. PPARγ, PTEN, and the fight against cancer. PPAR Res., 2008, 2008, 932632.
[130]
Hu, M.; Zhu, S.; Xiong, S.; Xue, X.; Zhou, X. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review). Oncol. Rep., 2019, 41(3), 1439-1454.
[http://dx.doi.org/10.3892/or.2019.6962] [PMID: 30628706]
[131]
Liu, X.; Zhang, P.; Xie, C.; Sham, K.W.Y.; Ng, S.S.M.; Chen, Y.; Cheng, C.H.K. Activation of PTEN by inhibition of TRPV4 suppresses colon cancer development. Cell Death Dis., 2019, 10(6), 460.
[http://dx.doi.org/10.1038/s41419-019-1700-4] [PMID: 31189890]
[132]
Saud, B; Adhikari, S. Probiotics: A promising anti-cancer agent. assessment, 88(11), 1744-1748.
[133]
Sivamaruthi, BS; Kesika, P; Chaiyasut, C The role of probiotics in colorectal cancer management. Evid.-Based Complemen. Altern. Med., 2020, 2020, 3535982.
[http://dx.doi.org/10.1155/2020/3535982]
[134]
Maleki-Kakelar, H.; Dehghani, J.; Barzegari, A.; Barar, J.; Shirmohamadi, M.; Sadeghi, J.; Omidi, Y. Lactobacillus plantarum induces apoptosis in gastric cancer cells via modulation of signaling pathways in Helicobacter pylori. Bioimpacts, 2020, 10(2), 65-72.
[http://dx.doi.org/10.34172/bi.2020.09] [PMID: 32363150]
[135]
Kaeid Sharaf, L.; Shukla, G. Probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus GG) in Conjunction with Celecoxib (selective COX-2 inhibitor) modulated DMH-induced early experimental colon carcinogenesis. Nutr. Cancer, 2018, 70(6), 946-955.
[http://dx.doi.org/10.1080/01635581.2018.1490783] [PMID: 30183370]
[136]
Silva, A.M.; Barbosa, F.H.; Duarte, R.; Vieira, L.Q.; Arantes, R.M.; Nicoli, J.R. Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J. Appl. Microbiol., 2004, 97(1), 29-37.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02265.x] [PMID: 15186439]
[137]
Di Giacinto, C.; Marinaro, M.; Sanchez, M.; Strober, W.; Boirivant, M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. J. Immunol., 2005, 174(6), 3237-3246.
[http://dx.doi.org/10.4049/jimmunol.174.6.3237] [PMID: 15749854]
[138]
Corr, S.C.; Gahan, C.G.; Hill, C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol., 2007, 50(3), 380-388.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00264.x] [PMID: 17537177]
[139]
Hart, A.L.; Lammers, K.; Brigidi, P.; Vitali, B.; Rizzello, F.; Gionchetti, P.; Campieri, M.; Kamm, M.A.; Knight, S.C.; Stagg, A.J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut, 2004, 53(11), 1602-1609.
[http://dx.doi.org/10.1136/gut.2003.037325] [PMID: 15479680]
[140]
Pronio, A.; Montesani, C.; Butteroni, C.; Vecchione, S.; Mumolo, G.; Vestri, A.; Vitolo, D.; Boirivant, M. Probiotic administration in patients with ileal pouch-anal anastomosis for ulcerative colitis is associated with expansion of mucosal regulatory cells. Inflamm. Bowel Dis., 2008, 14(5), 662-668.
[http://dx.doi.org/10.1002/ibd.20369] [PMID: 18240282]
[141]
Sawant, D.V.; Yano, H.; Chikina, M.; Zhang, Q.; Liao, M.; Liu, C.; Callahan, D.J.; Sun, Z.; Sun, T.; Tabib, T.; Pennathur, A.; Corry, D.B.; Luketich, J.D.; Lafyatis, R.; Chen, W.; Poholek, A.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol., 2019, 20(6), 724-735.
[http://dx.doi.org/10.1038/s41590-019-0346-9] [PMID: 30936494]
[142]
de Moreno de LeBlanc, A.; Del Carmen, S.; Zurita-Turk, M.; Santos Rocha, C.; Van de Guchte, M.; Azevedo, V. Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN gastroenterology, 2011, 2011, 892971.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy