Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Synthetic Approaches and Pharmacological Attributes of Benzosuberone Skeleton

Author(s): Syed Nasir Abbas Bukhari*

Volume 23, Issue 1, 2023

Published on: 17 August, 2022

Page: [3 - 23] Pages: 21

DOI: 10.2174/1389557522666220511141357

Price: $65

Abstract

Background: Benzocycloheptanone is the main structural feature of numerous famous natural pharmacophores such as Colchicine and Theaflavins. It has gained popularity in the field of medicinal chemistry, attributing to its broad-spectrum effect.

Objective: Numerous research publications addressing the derivatization of the benzosuberone molecule have been published, and their biological and pharmacological features have been extensively addressed. Numerous derivatives have been discovered as lead compounds for the development of novel medications. Thus, the goal of this article is to summarize and analyze all published findings on the synthesis and biological assessment of the benzosuberone skeleton.

Methods: All main databases including SciFinder, PubMed and google scholar were used with appropriate keywords to select related reported literature, and further bibliography in related literature was also used to find linked reports.

Results: Synthetic routes to benzosuberone-based ring systems were identified from the literature and explained stepwise and after this, pharmacological activities of all benzosuberone derivatives are listed target-wise and a detailed structure-activity relationship is developed.

Conclusion: The current review discusses numerous synthetic approaches for the synthesis of benzosuberone skeleton and its applications in many domains of medical chemistry. Compounds possessing the benzosuberone skeleton play an important role in the drug development process due to their wide range of biological actions such as anti-cancer, antibacterial, antifungal, antiinflammatory, and so on. The results of antibacterial screening and Structure-Activity Relationship (SAR) revealed that the compounds containing this skeleton with the piperazine and morpholine rings have antimicrobial potential when compared to the commercial antibiotic Norfloxacin. Despite extensive study to date, there is still room for the development of novel and efficient pharmacophores using the structure-based drug design technique.

Keywords: Structural modifications, human cancer cell lines, anti-tumor, anti-malarial, anti-inflammatory, anti-tubercular.

Graphical Abstract

[1]
Molinari, G. Natural products in drug discovery: Present status and perspectives. Adv. Exp. Med. Biol., 2009, 655, 13-27.
[http://dx.doi.org/10.1007/978-1-4419-1132-2_2] [PMID: 20047031]
[2]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[3]
Paterson, I.; Anderson, E.A. Chemistry. The renaissance of natural products as drug candidates. Science, 2005, 310(5747), 451-453.
[http://dx.doi.org/10.1126/science.1116364] [PMID: 16239465]
[5]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961-961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[6]
Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[7]
Jantan, I.; Bukhari, S.N.A.; Adekoya, O.A.; Sylte, I. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and pro-inflammatory cytokines. Drug Des. Devel. Ther., 2014, 8, 1405-1418.
[http://dx.doi.org/10.2147/DDDT.S67370] [PMID: 25258510]
[8]
Bukhari, S.N.; Tajuddin, Y.; Benedict, V.J.; Lam, K.W.; Jantan, I.; Jalil, J.; Jasamai, M. Synthesis and evaluation of chalcone derivatives as inhibitors of neutrophils’ chemotaxis, phagocytosis and production of reactive oxygen species. Chem. Biol. Drug Des., 2014, 83(2), 198-206.
[http://dx.doi.org/10.1111/cbdd.12226] [PMID: 24433224]
[9]
Jantan, I.; Bukhari, S.N.A.; Lajis, N.H.; Abas, F.; Wai, L.K.; Jasamai, M. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. J. Pharm. Pharmacol., 2012, 64(3), 404-412.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01423.x] [PMID: 22309272]
[10]
Bukhari, S.N.; Jasamai, M.; Jantan, I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev. Med. Chem., 2012, 12(13), 1394-1403.
[PMID: 22876958]
[11]
Sehrawat, H.; Kumar, N.; Tomar, R.; Kumar, L.; Tomar, V.; Madan, J.; Dass, S.K.; Chandra, R. Synthesis and characterization of novel 1,3-benzodioxole tagged noscapine based ionic liquids with in silico and in vitro cytotoxicity analysis on HeLa cells. J. Mol. Liq., 2020, 302, 112525.
[http://dx.doi.org/10.1016/j.molliq.2020.112525]
[12]
Tomar, V.; Kumar, N.; Tomar, R.; Sood, D.; Dhiman, N.; Dass, S.K.; Prakash, S.; Madan, J.; Chandra, R. Biological evaluation of noscapine analogues as potent and microtubule-targeted anticancer agents. Sci. Rep., 2019, 9(1), 19542.
[http://dx.doi.org/10.1038/s41598-019-55839-8] [PMID: 31862933]
[13]
Kumar, N.; Chugh, H.; Sood, D.; Singh, S.; Singh, A.; Awasthi, A.D.; Tomar, R.; Tomar, V.; Chandra, R. Biology of heme: Drug interactions and adverse drug reactions with CYP450. Curr. Top. Med. Chem., 2019, 18(23), 2042-2055.
[http://dx.doi.org/10.2174/1568026619666181129124638] [PMID: 30499388]
[14]
Kumar, N.; Chugh, H.; Tomar, R.; Tomar, V.; Singh, V.K.; Chandra, R. Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 658-668.
[http://dx.doi.org/10.1080/21691401.2017.1350188] [PMID: 28687059]
[15]
Kumar, N.; Sood, D.; Gupta, A.; Jha, N.K.; Jain, P.; Chandra, R. Cytotoxic T-lymphocyte elicited therapeutic vaccine candidate targeting cancer against MAGE-A11 carcinogenic protein. Biosci. Rep., 2020, 40(12), BSR20202349.
[http://dx.doi.org/10.1042/BSR20202349] [PMID: 33169789]
[16]
Ghosh, A.K.; Ray, C.; Ghatak, U.R. First total synthesis of the novel cytotoxic benzocycloheptenes (±)-deoxofaveline and (±)-faveline methyl ether. Tetrahedron Lett., 1992, 33(5), 655-658.
[http://dx.doi.org/10.1016/S0040-4039(00)92335-9]
[17]
Yang, C.S.; Lambert, J.D.; Ju, J.; Lu, G.; Sang, S. Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol., 2007, 224(3), 265-273.
[http://dx.doi.org/10.1016/j.taap.2006.11.024] [PMID: 17234229]
[18]
Pan, E.; Harinantenaina, L.; Brodie, P.J.; Miller, J.S.; Callmander, M.W.; Rakotonandrasana, S.; Rakotobe, E.; Rasamison, V.E.; Kingston, D.G. Four diphenylpropanes and a cycloheptadibenzofuran from Bussea sakalava from the Madagascar dry forest. J. Nat. Prod., 2010, 73(11), 1792-1795.
[http://dx.doi.org/10.1021/np100411d] [PMID: 20942441]
[19]
Farghaly, T.A.; Gomha, S.M.; Dawood, K.M.; Shaaban, M.R. Synthetic routes to benzosuberone-based fused-and spiro-heterocyclic ring systems. RSC Adv., 2016, 6(22), 17955-17979.
[http://dx.doi.org/10.1039/C5RA26474J]
[20]
Kasaboina, S.; Bollu, R.; Ramineni, V.; Gomedhika, P.M.; Korra, K.; Basaboina, S.R.; Holagunda, U.D.; Nagarapu, L.; Dumala, N.; Grover, P.; Bathini, R.; Vijjulatha, M. Novel benzosuberone conjugates as potential anti-proliferative agents: Design, synthesis and molecular docking studies. J. Mol. Struct., 2019, 1180, 355-362.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.072]
[21]
Behbehani, H.; Dawood, K.M.; Farghaly, T.A. Biological evaluation of benzosuberones. Expert Opin. Ther. Pat., 2018, 28(1), 5-29.
[http://dx.doi.org/10.1080/13543776.2018.1389898] [PMID: 28994619]
[22]
Boulos, L.S.; Abdel-Malek, H.A.; El-Sayed, N.F. Synthesis of novel Benzosuberone derivatives using organophosphorus reagents and their antitumor activities. Z. Naturforsch. B. J. Chem. Sci., 2012, 67(3), 243-252.
[http://dx.doi.org/10.1515/znb-2012-0311]
[23]
Althagafi, I.; Farghaly, T.A.; Abbas, E.M.; Harras, M.F. Benzosuberone as precursor for synthesis of antimicrobial agents: Synthesis, antimicrobial activity, and molecular docking. Polycycl. Aromat. Compd., 2019, 1-21.
[24]
Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg. Med. Chem. Lett., 2015, 25(10), 2220-2224.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.032] [PMID: 25827522]
[25]
Large, B.; Prim, D. Unraveling the C−H Arylation of benzo-fused cycloalkanones: Combined experimental and computational evidence. Adv. Synth. Catal., 2021, 363(6), 1685-1694.
[http://dx.doi.org/10.1002/adsc.202001349]
[26]
Tilekar, K.; Shelke, O.; Upadhyay, N.; Lavecchia, A.; Ramaa, C.S. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J. Mol. Struct., 2022, 1250, 131767.
[http://dx.doi.org/10.1016/j.molstruc.2021.131767]
[27]
Alharbi, H.; Elsherbini, M.; Qurban, J.; Wirth, T. Axial chiral hypervalent iodine reagents, C-N. C-N axial chiral hypervalent iodine reagents: Catalytic stereoselective α-oxytosylation of ketones. Chemistry, 2021, 27(13), 4317-4321.
[http://dx.doi.org/10.1002/chem.202005253] [PMID: 33428245]
[28]
Brandão, P.; Marques, C.S.; Carreiro, E.P.; Pineiro, M.; Burke, A.J. Engaging isatins in multicomponent reactions (MCRs) - Easy access to structural diversity. Chem. Rec., 2021, 21(4), 924-1037.
[http://dx.doi.org/10.1002/tcr.202000167] [PMID: 33599390]
[29]
Touge, T.; Nara, H.; Kida, M.; Matsumura, K.; Kayaki, Y. Convincing catalytic performance of oxo-tethered ruthenium complexes for asymmetric transfer hydrogenation of cyclic α-halogenated ketones through dynamic kinetic resolution. Org. Lett., 2021, 23(8), 3070-3075.
[http://dx.doi.org/10.1021/acs.orglett.1c00739] [PMID: 33780258]
[30]
Truong, D.; Howard, B.L.; Thompson, P.E. Regioselection in the synthesis of 4-benzyltetral-1-ones and the new 4-arylbenzosuber-1-ones. Tetrahedron, 2021, 85, 132034.
[http://dx.doi.org/10.1016/j.tet.2021.132034]
[31]
Nasri, S.; Bayat, M.; Mirzaei, F. Recent strategies in the synthesis of spiroindole and spirooxindole scaffolds. Top. Curr. Chem. (Cham), 2021, 379(4), 25.
[http://dx.doi.org/10.1007/s41061-021-00337-7] [PMID: 34002298]
[32]
Jamshaid, S.; Mohandoss, S.; Lee, Y.R. Indium(iii)-catalyzed solvent-free multicomponent [2 + 2 + 1 + 1]-annulation to polycyclic functionalized fused pyridines as potential optical chemosensors. Green Chem., 2021, 23(14), 5113-5119.
[http://dx.doi.org/10.1039/D1GC01332G]
[33]
Kikuchi, T.; Yamada, K.; Yasui, T.; Yamamoto, Y. Synthesis of benzo-fused cyclic ketones via metal-free ring expansion of cyclopropanols enabled by proton-coupled electron transfer. Org. Lett., 2021, 23(12), 4710-4714.
[http://dx.doi.org/10.1021/acs.orglett.1c01436] [PMID: 34060855]
[34]
Subhashini, N.; Jilla, L.; Kolluri, P.K. Novel benzosuberonequinazolinone derivatives: Synthesis and antitumour activity. Russ. J. Gen. Chem., 2020, 90(10), 1960-1967.
[http://dx.doi.org/10.1134/S1070363220100199]
[35]
Slobodnick, A.; Shah, B.; Krasnokutsky, S.; Pillinger, M.H. Update on colchicine, 2017. Rheumatology (Oxford), 2018, 57(Suppl. 1), i4-i11.
[http://dx.doi.org/10.1093/rheumatology/kex453] [PMID: 29272515]
[36]
Warrell, D. Poisonous plants and aquatic animals: Poisonous aquatic animals. In: Hunter’s Tropical Medicine and Emerging Infectious Disease; Magill, A.J.; Solomon, T.; Hill, D.R.; Ryan, E.T., Eds.; Saunders: Philadelphia, 2013; pp. 923-937.
[37]
Roberts, E.; Cartwright, R.; Oldschool, M. The phenolic substances of manufactured tea. I.-Fractionation and paper chromatography of water‐soluble substances. J. Sci. Food Agric., 1957, 8(2), 72-80.
[http://dx.doi.org/10.1002/jsfa.2740080203]
[38]
de Oliveira, A.; Prince, D.; Lo, C-Y.; Lee, L.H.; Chu, T-C. Antiviral activity of theaflavin digallate against herpes simplex virus type 1. Antiviral Res., 2015, 118, 56-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.009] [PMID: 25818500]
[39]
Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z-Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 131(9), 2248-2251.
[http://dx.doi.org/10.1093/jn/131.9.2248] [PMID: 11533262]
[40]
Sang, S.; Lambert, J.D.; Tian, S.; Hong, J.; Hou, Z.; Ryu, J-H.; Stark, R.E.; Rosen, R.T.; Huang, M-T.; Yang, C.S.; Ho, C.T. Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorg. Med. Chem., 2004, 12(2), 459-467.
[http://dx.doi.org/10.1016/j.bmc.2003.10.024] [PMID: 14723964]
[41]
Bartelt, R.J.; Cossé, A.A.; Zilkowski, B.W.; Weisleder, D.; Momany, F.A. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J. Chem. Ecol., 2001, 27(12), 2397-2423.
[http://dx.doi.org/10.1023/A:1013667229345] [PMID: 11789948]
[42]
Khatua, A.; Pal, S.; Das, M.K.; Bisai, V. Asymmetric total syntheses of (–)-arturmerone,(–)-dihydro-arturmerone,(–)-ardehydr-ocurcumene, and (–)-arhimachalene via a key allylic oxidative rearrangement. Tetrahedron Lett., 2021, 73, 153105.
[http://dx.doi.org/10.1016/j.tetlet.2021.153105]
[43]
Spielmann, K.; de Figueiredo, R.M.; Campagne, J-M. stereospecific hydrogenolysis of lactones: Application to the total syntheses of (R)-ar-himachalene and (R)-curcumene. J. Org. Chem., 2017, 82(9), 4737-4743.
[http://dx.doi.org/10.1021/acs.joc.7b00419] [PMID: 28398050]
[44]
El Had, M.A.; Oukhrib, A.; Zaki, M.; Urrutigoïty, M.; Benharref, A.; Chauvin, R. Versatile synthesis of cadalene and iso-cadalene from himachalene mixtures: Evidence and application of unprecedented rearrangements. Chin. Chem. Lett., 2020, 31(7), 1851-1854.
[http://dx.doi.org/10.1016/j.cclet.2020.03.008]
[45]
Heaney, H. The intramolicular aromatic Friedel-crafts reaction. In: Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds.; Pergamon: Oxford, UK, 1991; 2, p. 753.
[46]
Pletnev, A.A.; Larock, R.C. Carbopalladation of nitriles: Synthesis of benzocyclic ketones and cyclopentenones via Pd-catalyzed cyclization of ω-(2-iodoaryl)alkanenitriles and related compounds. J. Org. Chem., 2002, 67(26), 9428-9438.
[http://dx.doi.org/10.1021/jo0262006] [PMID: 12492349]
[47]
Chavan, S.P.; Khatod, H.S. Enantioselective synthesis of the essential oil and pheromonal component ar-himachalene by a chiral pool and chirality induction approach. Tetrahedron Asymmetry, 2012, 23(18-19), 1410-1415.
[http://dx.doi.org/10.1016/j.tetasy.2012.09.008]
[48]
Bowman, W.R.; Westlake, P.J. Ring expansion of benzocyclic ketones via transient alkoxyl radicals: The side chain incorporation approach. Tetrahedron, 1992, 48(19), 4027-4038.
[http://dx.doi.org/10.1016/S0040-4020(01)88482-9]
[49]
Zhang, T.; Huang, X.; Xue, J.; Sun, S. Ring expansion reaction of α-sulfonyl cyclic ketones via insertion of arynes into C–C: A facile and mild access to medium-and large-sized benzannulated carbocycles. Tetrahedron Lett., 2009, 50(12), 1290-1294.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.001]
[50]
Uozumi, Y.; Hamasaka, G. Aerobic oxidation of alcohols with Ru@ PMO-IL. Synfacts, 2013, 9(01), 0117-0117.
[51]
Shen, D.; Miao, C.; Xu, D.; Xia, C.; Sun, W. Highly efficient oxidation of secondary alcohols to ketones catalyzed by manganese complexes of N4 ligands with H2O2. Org. Lett., 2015, 17(1), 54-57.
[http://dx.doi.org/10.1021/ol5032156] [PMID: 25513725]
[52]
Kunisu, T.; Oguma, T.; Katsuki, T. Aerobic oxidative kinetic resolution of secondary alcohols with naphthoxide-bound iron(salan) complex. J. Am. Chem. Soc., 2011, 133(33), 12937-12939.
[http://dx.doi.org/10.1021/ja204426s] [PMID: 21780821]
[53]
Shallcross, L.J.; Howard, S.J.; Fowler, T.; Davies, S.C. Tackling the threat of antimicrobial resistance: From policy to sustainable action. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2015, 370(1670), 20140082.
[http://dx.doi.org/10.1098/rstb.2014.0082]
[54]
English, B.K.; Gaur, A.H. The use and abuse of antibiotics and the development of antibiotic resistance. Adv. Exp. Med. Biol., 2010, 659, 73-82.
[55]
Farghaly, T.A.; Abbas, E.M. Hydrazonoyl halides as precursors for synthesis of novel bioactive thiazole and formazan derivatives. J. Chem. Res., 2012, 36(11), 660-664.
[http://dx.doi.org/10.3184/174751912X13491094428620]
[56]
El-Salam, O.I.A.; Alsayed, A.S.; Ali, K.A.; Elwahab, A.A.A.; El-Galil, E.; Amr, A.; Awad, H.M. Synthesis and antimicrobial evaluation of a new series of heterocyclic systems bearing a benzosuberone scaffold. Molecules, 2015, 20(11), 20434-20447.
[http://dx.doi.org/10.3390/molecules201119701] [PMID: 26580591]
[57]
Rao, J.V.; Reddy, V.K.; Bhavani, R.; Bhavani, B. Novel benzosuberone derivatives: Synthesis, characterization and antibacterial activity. Orient. J. Chem., 2015, 31(4), 2253-2258.
[http://dx.doi.org/10.13005/ojc/310451]
[58]
Naikal James Prameela, S.; Jilla, L.; Vanguru, S. Synthesis of novel piperazine tethered benzocycloheptenone hybrids and their antimicrobial evaluation. J. Heterocycl. Chem., 2020, 57(1), 308-316.
[http://dx.doi.org/10.1002/jhet.3778]
[59]
Jilla, L.; Kolluri, P.K.; Bujji, S.J.P.; Naikal, S. Synthesis and antimicrobial agents of thiazolidinone derivatives from benzocyclohepetenone. J. Heterocycl. Chem., 2020, 57(11), 4078-4087.
[http://dx.doi.org/10.1002/jhet.4117]
[60]
Omar, M.A.; Masaret, G.S.; Abbas, E.M.H.; Abdel-Aziz, M.M.; Harras, M.F.; Farghaly, T.A. Novel anti-tubercular and antibacterial based benzosuberone-thiazole moieties: Synthesis, molecular docking analysis, DNA gyrase supercoiling and ATPase activity. Bioorg. Chem., 2020, 104, 104316.
[http://dx.doi.org/10.1016/j.bioorg.2020.104316] [PMID: 33022549]
[61]
Lin, J.-F.; Liu, P.-H.; Huang, T.-P.; Lien, A.S.-Y.; Ou, L.-S.; Yu, C.-H.; Yang, S.-L.; Chang, H.-H.; Yen, H.-R.J.C.T.i.M. Characteristics and prescription patterns of traditional Chinese medicine in atopic dermatitis patients: Ten-year experiences at a medical center in Taiwan. 2014, 22(1), 141-147.
[http://dx.doi.org/10.1016/j.ctim.2013.12.003]
[62]
Çevik, U.A.; Osmaniye, D.; Levent, S.; Sağlik, B.N.; Çavuşoğlu, B.K.; Özkay, Y.; Kaplancikl, Z.A. Synthesis and characterization of a new series of thiadiazole derivatives as potential anticancer agents. Heterocycl. Commun., 2020, 26(1), 6-13.
[http://dx.doi.org/10.1515/hc-2020-0002]
[63]
Lee, M.M-L.; Chan, B.D.; Wong, W-Y.; Leung, T-W.; Qu, Z.; Huang, J.; Zhu, L.; Lee, C-S.; Chen, S.; Tai, W.C-S. Synthesis and evaluation of novel anticancer compounds derived from the natural product Brevilin A. ACS Omega, 2020, 5(24), 14586-14596.
[http://dx.doi.org/10.1021/acsomega.0c01276] [PMID: 32596596]
[64]
Chow, A.Y. Cell cycle control by oncogenes and tumor suppressors: Driving the transformation of normal cells into cancerous cells. Nature Education, 2010, 3(9), 7.
[65]
Sidow, A.; Spies, N. Concepts in solid tumor evolution. Trends Genet., 2015, 31(4), 208-214.
[http://dx.doi.org/10.1016/j.tig.2015.02.001] [PMID: 25733351]
[66]
Tanpure, R.P.; George, C.S.; Sriram, M.; Strecker, T.E.; Tidmore, J.K.; Hamel, E.; Charlton-Sevcik, A.K.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. An amino-benzosuberene analogue that inhibits tubulin assembly and demonstrates remarkable cytotoxicity. MedChemComm, 2012, 3(6), 720-724.
[http://dx.doi.org/10.1039/c2md00318j] [PMID: 23772309]
[67]
Sriram, M.; Hall, J.J.; Grohmann, N.C.; Strecker, T.E.; Wootton, T.; Franken, A.; Trawick, M.L.; Pinney, K.G. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem., 2008, 16(17), 8161-8171.
[http://dx.doi.org/10.1016/j.bmc.2008.07.050] [PMID: 18722127]
[68]
Tanpure, R.P.; George, C.S.; Strecker, T.E.; Devkota, L.; Tidmore, J.K.; Lin, C-M.; Herdman, C.A.; Macdonough, M.T.; Sriram, M.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents. Bioorg. Med. Chem., 2013, 21(24), 8019-8032.
[http://dx.doi.org/10.1016/j.bmc.2013.08.035] [PMID: 24183586]
[69]
Nagarapu, L.; Yadagiri, B.; Bantu, R.; Kumar, C.G.; Pombala, S.; Nanubolu, J. Studies on the synthetic and structural aspects of benzosuberones bearing 2, 4-thiazolidenone moiety as potential anti-cancer agents. Eur. J. Med. Chem., 2014, 71, 91-97.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.078] [PMID: 24287557]
[70]
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive com-pounds. Molecules, 2018, 23(2), 250.
[http://dx.doi.org/10.3390/molecules23020250] [PMID: 29382051]
[71]
Moreira, N.M.; Martelli, L.S.R.; Corrêa, A.G. Asymmetric organocatalyzed synthesis of coumarin derivatives. Beilstein J. Org. Chem., 2021, 17(1), 1952-1980.
[http://dx.doi.org/10.3762/bjoc.17.128] [PMID: 34386105]
[72]
Sahoo, C.R.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Sahu, P.K.; Dehury, B.; Padhy, R.N.; Paidesetty, S.K. Coumarin derivatives as promising antibacterial agent (s). Arab. J. Chem., 2021, 14(2), 102922.
[http://dx.doi.org/10.1016/j.arabjc.2020.102922]
[73]
Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. ChemistrySelect, 2021, 6(24), 5848-5870.
[http://dx.doi.org/10.1002/slct.202101346]
[74]
Yadagiri, B.; Holagunda, U.D.; Bantu, R.; Nagarapu, L.; Kumar, C.G.; Pombala, S.; Sridhar, B. Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. Eur. J. Med. Chem., 2014, 79, 260-265.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.015] [PMID: 24742385]
[75]
Popiołek, Ł. Updated information on antimicrobial activity of hydrazide-hydrazones. Int. J. Mol. Sci., 2021, 22(17), 9389.
[http://dx.doi.org/10.3390/ijms22179389] [PMID: 34502297]
[76]
Zebbiche, Z.; Tekin, S.; Küçükbay, H.; Yüksel, F.; Boumoud, B. Synthesis and anticancer properties of novel hydrazone derivatives in-corporating pyridine and isatin moieties. Arch. Pharm. (Weinheim), 2021, 354(5), e2000377.
[http://dx.doi.org/10.1002/ardp.202000377] [PMID: 33368627]
[77]
Wu, J.; Wang, J.; Han, Y.; Lin, Y.; Wang, J.; Bu, M. Synthesis and cytotoxic activity of novel betulin derivatives containing hydrazide-hydrazone moieties. Nat. Prod. Commun., 2021, 16(10), 1934578X211055345.
[78]
Yadagiri, B.; Holagunda, U.D.; Bantu, R.; Nagarapu, L.; Guguloth, V.; Polepally, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel benzosuberone tethered with hydrazide-hydrazones. Bioorg. Med. Chem. Lett., 2014, 24(21), 5041-5044.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.018] [PMID: 25264072]
[79]
Özdemir, A.; Sever, B.; Altıntop, M.D.; Temel, H.E.; Atlı, Ö.; Baysal, M.; Demirci, F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules, 2017, 22(7), 1109.
[http://dx.doi.org/10.3390/molecules22071109] [PMID: 28677624]
[80]
Megally Abdo, N.Y.; Kamel, M.M. Synthesis and anticancer evaluation of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and Man-nich bases. Chem. Pharm. Bull. (Tokyo), 2015, 63(5), 369-376.
[http://dx.doi.org/10.1248/cpb.c15-00059] [PMID: 25948330]
[81]
Waghamale, S.; Piste, P. Pharmacological activities of triazole, oxadiazole and thiadiazole. Int. J. Pharma Bio Sci., 2013, 4, 310-332.
[82]
Herdman, C.A.; Devkota, L.; Lin, C-M.; Niu, H.; Strecker, T.E.; Lopez, R.; Liu, L.; George, C.S.; Tanpure, R.P.; Hamel, E.; Chaplin, D.J.; Mason, R.P.; Trawick, M.L.; Pinney, K.G. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg. Med. Chem., 2015, 23(24), 7497-7520.
[http://dx.doi.org/10.1016/j.bmc.2015.10.012] [PMID: 26775540]
[83]
Vanguru, S.; Jilla, L.; Sajja, Y.; Bantu, R.; Nagarapu, L.; Nanubolu, J.B.; Bhaskar, B.; Jain, N.; Sivan, S.; Manga, V. A novel piperazine linked β-amino alcohols bearing a benzosuberone scaffolds as anti-proliferative agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 792-796.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.031] [PMID: 28117204]
[84]
Vijay, K.; Devi, C.B.P. Synthesis and in-vitro antiproliferative activity of substituted-2, 3-dimethyl-N-(3-(4-phenyl piperazin-1-YL) propyl)-6, 7-dihydro-5h-benzo [7] annulene-8-carboxylic acids. Int. J. Pharm. Sci. Res., 2018, 9(10), 4343-4348.
[85]
Shashi, R.; Prasad, N.; Begum, N.S. Synthesis and crystal structure of thiazolopyrimidine derivatives: Insights into weak interactions. Crystallogr. Rep., 2020, 65(7), 1161-1168.
[http://dx.doi.org/10.1134/S1063774520070202]
[86]
Al-Rashood, S.T.; Elshahawy, S.S.; El-Qaias, A.M.; El-Behedy, D.S.; Hassanin, A.A.; El-Sayed, S.M.; El-Messery, S.M.; Shaldam, M.A.; Hassan, G.S. New thiazolopyrimidine as anticancer agents: Synthesis, biological evaluation, DNA binding, molecular modeling and ADMET study. Bioorg. Med. Chem. Lett., 2020, 30(23), 127611.
[http://dx.doi.org/10.1016/j.bmcl.2020.127611] [PMID: 33068712]
[87]
Kasaboina, S.; Bollu, R.; Gomedhika, P.M.; Ramineni, V.; Nagarapu, L.; Dumala, N.; Grover, P.; Nanubolu, J.B. A green protocol for one pot synthesis of benzosuberone tethered thiadiazolopyrimidine-6-carboxylates using PEG-400 as potent anti-proliferative agents. Tetrahedron Lett., 2018, 59(31), 3015-3019.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.068]
[88]
Devi, C.B.P.; Vijay, K.; Babu, B.H.; Adil, S.F.; Alam, M.M.; Vijjulatha, M.; Ansari, M.B. CuSO4/sodium ascorbate catalysed synthesis of benzosuberone and 1, 2, 3-triazole conjugates: Design, synthesis and in vitro anti-proliferative activity. J. Saudi Chem. Soc., 2019, 23(7), 980-991.
[http://dx.doi.org/10.1016/j.jscs.2019.05.002]
[89]
Mishra, S. Quinazolinone and quinazoline derivatives: Synthesis and biological application. In: Quinazolinone and Quinazoline Derivatives; Al-Kaf, A.G., Ed.; IntechOpen: London, UK, 2020; p. 10.
[90]
Al-kaf, A.G. Quinazolinone and Quinazoline Derivatives; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.85315]
[91]
Behbehani, H.; Aryan, F.A.; Dawood, K.M.; Ibrahim, H.M. High pressure assisted synthetic approach for novel 6, 7-dihydro-5 H-benzo [6, 7] cyclohepta [1, 2-b] pyridine and 5, 6-dihydrobenzo [h] quinoline derivatives and their assessment as anticancer agents. Sci. Rep., 2020, 10(1), 1-17.
[http://dx.doi.org/10.1038/s41598-020-78590-x] [PMID: 31913322]
[92]
Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast cell: A multi-functional master cell. Front. Immunol., 2016, 6, 620.
[http://dx.doi.org/10.3389/fimmu.2015.00620] [PMID: 26779180]
[93]
Chadwick, S.J. Principles of allergy management. Krouse, J.H.; Derebery, M.J.; Chadwick, S.J., Eds.Managing the Allergic Patient; W.B. Saunders: Edinburgh, 2008, p. 19-72.
[http://dx.doi.org/10.1016/B978-141603677-7.50006-6]
[94]
Barlow, J.W.; Zhang, T.; Woods, O.; Byrne, A.J.; Walsh, J.J. Novel mast cell-stabilising amine derivatives of 3,4 dihydronaphthalen-1(2H)-one and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one. Med. Chem., 2011, 7(3), 213-223.
[http://dx.doi.org/10.2174/157340611795564222] [PMID: 21486212]
[95]
Martz, K.E.; Dorn, A.; Baur, B.; Schattel, V.; Goettert, M.I.; Mayer-Wrangowski, S.C.; Rauh, D.; Laufer, S.A. Targeting the hinge glycine flip and the activation loop: Novel approach to potent p38α inhibitors. J. Med. Chem., 2012, 55(17), 7862-7874.
[http://dx.doi.org/10.1021/jm300951u] [PMID: 22897496]
[96]
Baur, B.; Storch, K.; Martz, K.E.; Goettert, M.I.; Richters, A.; Rauh, D.; Laufer, S.A. Metabolically stable dibenzo[b,e]oxepin-11(6H)-ones as highly selective p38 MAP kinase inhibitors: Optimizing anti-cytokine activity in human whole blood. J. Med. Chem., 2013, 56(21), 8561-8578.
[http://dx.doi.org/10.1021/jm401276h] [PMID: 24131218]
[97]
Fischer, S.; Wentsch, H.K.; Mayer-Wrangowski, S.C.; Zimmermann, M.; Bauer, S.M.; Storch, K.; Niess, R.; Koeberle, S.C.; Grütter, C.; Boeckler, F.M.; Rauh, D.; Laufer, S.A. Dibenzosuberones as p38 mitogen-activated protein kinase inhibitors with low ATP competitiveness and outstanding whole blood activity. J. Med. Chem., 2013, 56(1), 241-253.
[http://dx.doi.org/10.1021/jm301539x] [PMID: 23270382]
[98]
Sajja, Y.; Vulupala, H.R.; Bantu, R.; Nagarapu, L.; Vasamsetti, S.B.; Kotamraju, S.; Nanubolu, J.B. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2016, 26(3), 858-863.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.078] [PMID: 26748696]
[99]
Mohamed, N.R.; El-Saidi, M.M.T.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem., 2007, 15(18), 6227-6235.
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[100]
Mohana, K.N.; Kumar, B.N.P.; Mallesha, L. Synthesis and biological activity of some pyrimidine derivatives. Drug Invent. Today, 2013, 5(3), 216-222.
[101]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[102]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[103]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q-C.; Chang, L.; Lv, Z-S.; Feng, L-S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[104]
Farghaly, T.A.; Gomha, S.M.; Abbas, E.M.; Abdalla, M.M. Hydrazonoyl halides as precursors for new fused heterocycles of 5α-reductase inhibitors. Arch. Pharm. (Weinheim), 2012, 345(2), 117-122.
[http://dx.doi.org/10.1002/ardp.201100212] [PMID: 21997851]
[105]
Santiago, C.; Mudgal, G.; Reguera, J.; Recacha, R.; Albrecht, S.; Enjuanes, L.; Casasnovas, J.M. Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Sci. Rep., 2017, 7(1), 46045.
[http://dx.doi.org/10.1038/srep46045] [PMID: 28393915]
[106]
Jenkins, C.; Mills, K.; Pepper, C.; Alan, B. Cellular aminopeptidase inhibition as a target for the therapy of AML by the novel agent CHR 2797. Blood, 2007, 110(11), 1608.
[107]
Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J-M. Amino-benzosuberone: A novel warhead for selective inhibition of human aminopeptidase-N/CD13. Bioorg. Med. Chem., 2011, 19(4), 1434-1449.
[http://dx.doi.org/10.1016/j.bmc.2011.01.008] [PMID: 21292493]
[108]
Maiereanu, C.; Schmitt, C.; Schifano-Faux, N.; Le Nouën, D.; Defoin, A.; Tarnus, C. A novel amino-benzosuberone derivative is a picomolar inhibitor of mammalian aminopeptidase N/CD13. Bioorg. Med. Chem., 2011, 19(18), 5716-5733.
[http://dx.doi.org/10.1016/j.bmc.2011.06.089] [PMID: 21843945]
[109]
Albrecht, S.; Salomon, E.; Defoin, A.; Tarnus, C. Rapid and efficient synthesis of a novel series of substituted aminobenzosuberone derivatives as potent, selective, non-peptidic neutral aminopeptidase inhibitors. Bioorg. Med. Chem., 2012, 20(16), 4942-4953.
[http://dx.doi.org/10.1016/j.bmc.2012.06.041] [PMID: 22796349]
[110]
Al-Lakkis-Wehbe, M.; Chaillou, B.; Defoin, A.; Albrecht, S.; Tarnus, C. Synthesis of amino-hydroxy-benzocycloheptenones as potent, selective, non-peptidic dinuclear zinc metalloaminopeptidase inhibitors. Bioorg. Med. Chem., 2013, 21(21), 6447-6455.
[http://dx.doi.org/10.1016/j.bmc.2013.08.044] [PMID: 24055078]
[111]
Revelant, G.; Al-Lakkis-Wehbe, M.; Schmitt, M.; Alavi, S.; Schmitt, C.; Roux, L.; Al-Masri, M.; Schifano-Faux, N.; Maiereanu, C.; Tarnus, C.; Albrecht, S. Exploring S1 plasticity and probing S1′ subsite of mammalian aminopeptidase N/CD13 with highly potent and selective aminobenzosuberone inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3192-3207.
[http://dx.doi.org/10.1016/j.bmc.2015.04.066] [PMID: 25982416]
[112]
Bounaadja, L.; Schmitt, M.; Albrecht, S.; Mouray, E.; Tarnus, C.; Florent, I. Selective inhibition of PfA-M1, over PfA-M17, by an amino-benzosuberone derivative blocks malaria parasites development intramolicular in vitro and in vivo. Malar. J., 2017, 16(1), 382.
[http://dx.doi.org/10.1186/s12936-017-2032-4] [PMID: 28934959]
[113]
Sajja, Y.; Vanguru, S.; Jilla, L.; Vulupala, H.R.; Bantu, R.; Yogeswari, P.; Sriram, D.; Nagarapu, L. A convenient synthesis and screening of benzosuberone bearing 1,2,3-triazoles against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2016, 26(17), 4292-4295.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.039] [PMID: 27476139]
[114]
Sajja, Y.; Vanguru, S.; Vulupala, H.R.; Bantu, R.; Yogeswari, P.; Sriram, D.; Nagarapu, L. Design, synthesis and in vitro anti-tuberculosis activity of benzo[6,7]cyclohepta[1,2-b]pyridine-1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2017, 27(23), 5119-5121.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.071] [PMID: 29113761]
[115]
Teitelbaum, A.M.; Meissner, A.; Harding, R.A.; Wong, C.A.; Aldrich, C.C.; Remmel, R.P. Synthesis, pH-dependent, and plasma stability of meropenem prodrugs for potential use against drug-resistant tuberculosis. Bioorg. Med. Chem., 2013, 21(17), 5605-5617.
[http://dx.doi.org/10.1016/j.bmc.2013.05.024] [PMID: 23845282]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy