Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Transcriptomic and Epigenomic Assessment Reveals Epigenetic Regulation of WRKY Genes in Response to Magnaporthe oryzae Infection in Rice

Author(s): Yan Xu, Yuanxin Miao, Xuejun Tian, Qihai Wang, Yongfeng Hu* and Qiong Luo*

Volume 23, Issue 3, 2022

Published on: 02 June, 2022

Page: [182 - 194] Pages: 13

DOI: 10.2174/1389202923666220510195910

Price: $65

Abstract

Background: Histone acetylations acting as active hallmarks for gene transcription is involved in regulating numerous developmental and stress-responsive gene expression.

Methods: The data from chromatin immunoprecipitation sequencing (ChIP-seq) was performed by using histone H3 lysine 9 acetylation (H3K9ac) antibody, and RNA sequencing (RNA-seq) utilizing rice seedlings inoculated by Magnaporthe oryzae (M. oryzae) were integrated.

Results: RNA-seq data revealed that 422, 460 and 466 genes were up-regulated at 12h, 24h and 48h after inoculation. ChIP-seq data showed that 60%-80% of blast up-regulated genes at different time points were marked with H3K9ac, which was prone to be enriched in both TSS and gene body region. However, the H3K9ac level at a rather small proportion of the up-regulated genes was elevated after M. oryzae inoculation. We found that seven WRKY genes induced by rice blast fungus harbor H3K9ac. For different WRKY genes, blast fungus induction led to the increase of H3K9ac in distinct regions, including promoter, TSS or gene body, indicating that histone acetylation may play diverse roles in the activation of defense-related genes. By searching DNA-binding motifs of transcription factors in the promoter of genes with increased H3K9ac after M. oryzae infection, we found that ERF family protein-binding motifs were enriched with high -log P-value (>20), including ERF1, DEAR3, DREB2C, RAP2.6, RRTF1_3ARY, all of which contain GCC-box (GCCGCC).

Conclusion: In this study, we revealed that the vast majority of genes induced by fungus M. oryzae were marked with H3K9ac preferring both TSS and gene body regions. However, H3K9ac enrichment was increased, responding to M. oryzae inoculation only at a low proportion of these genes, including several WRKY genes. Besides, for different genes, the increment of H3K9ac occurred in different regions. Finally, ERF proteins that have been proved to bind GCC-box might be one of the potential transcription factors for recruiting histone acetyltransferases to deposit histone acetylation at defenserelated genes in rice.

Keywords: Rice, Magnaporthe oryzae, histone acetylation, ERF, WRKY, H3K9ac.

Graphical Abstract

[1]
Soleymani, S.; Hadi, A.; Asgari, F.; Haghighipour, N.; Bolhassani, A. Combination of mechanical and chemical methods improves gene delivery in cell-based HIV vaccines. Curr. Drug Deliv., 2019, 16(9), 818-828.
[http://dx.doi.org/10.2174/1567201816666190923152914] [PMID: 31549593]
[2]
Bolhassani, A.; Shahbazi, S.; Agi, E.; Haghighipour, N.; Hadi, A.; Asgari, F. Modified DCs and MSCs with HPV E7 antigen and small Hsps: Which one is the most potent strategy for eradication of tumors? Mol. Immunol., 2019, 108, 102-110.
[http://dx.doi.org/10.1016/j.molimm.2019.02.016] [PMID: 30802787]
[3]
Hadi, A.; Rastgoo, A.; Haghighipour, N.; Bolhassani, A.; Asgari, F.; Soleymani, S. Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. PLoS One, 2018, 13(12), e0209199.
[http://dx.doi.org/10.1371/journal.pone.0209199] [PMID: 30592721]
[4]
Hadi, A.; Rastgoo, A.; Eskandarian, M.; Haghighipour, N.; Bolhassani, A. Development of delivery systems enhances the potency of cell-based HIV-1 therapeutic vaccine candidates. J. Immunol. Res., 2021, 2021, 5538348.
[PMID: 33997055]
[5]
Lu, H.; Wei, T.; Lou, H.; Shu, X.; Chen, Q. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J. Fungi (Basel), 2021, 7(9), 719.
[http://dx.doi.org/10.3390/jof7090719] [PMID: 34575757]
[6]
Li, J.; Zhang, H.; Yang, R.; Zeng, Q.; Han, G.; Du, Y.; Yang, J.; Yang, G.; Luo, Q. Identification of miRNAs contributing to the broad-spectrum and durable blast resistance in the yunnan local rice germplasm. Front. Plant Sci., 2021, 12, 749919.
[http://dx.doi.org/10.3389/fpls.2021.749919] [PMID: 34721478]
[7]
Abd. Kharim, M.N. Wayayok, A.; Abdullah, A.F.; Shariff, A.R.M. Effect of variable rate application on rice leaves burn and chlorosis in system of rice intensification. Malaysian J. Sustain. Agric., 2020, 4(2), 66-70.
[http://dx.doi.org/10.26480/mjsa.02.2020.66.70]
[8]
Nicholas, H. An economic analysis of anthropogenic climate change on rice production in malaysia. Masters Thesis, Universiti Utara Malaysia: Kedah July. 2017.
[9]
Dhami, P.; Saffrey, P.; Bruce, A.W.; Dillon, S.C.; Chiang, K.; Bonhoure, N.; Koch, C.M.; Bye, J.; James, K.; Foad, N.S.; Ellis, P.; Watkins, N.A.; Ouwehand, W.H.; Langford, C.; Andrews, R.M.; Dunham, I.; Vetrie, D. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution. PLoS One, 2010, 5(8), e12339.
[http://dx.doi.org/10.1371/journal.pone.0012339] [PMID: 20808788]
[10]
Tsuda, K.; Somssich, I.E. Transcriptional networks in plant immunity. New Phytol., 2015, 206(3), 932-947.
[http://dx.doi.org/10.1111/nph.13286] [PMID: 25623163]
[11]
Spitz, F.; Furlong, E.E. Transcription factors: From enhancer binding to developmental control. Nat. Rev. Genet., 2012, 13(9), 613-626.
[http://dx.doi.org/10.1038/nrg3207] [PMID: 22868264]
[12]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[13]
Kumar, V.; Thakur, J.K.; Prasad, M. Histone acetylation dynamics regulating plant development and stress responses. Cell. Mol. Life Sci., 2021, 78(10), 4467-4486.
[http://dx.doi.org/10.1007/s00018-021-03794-x] [PMID: 33638653]
[14]
Wang, Z.; Zang, C.; Rosenfeld, J.A.; Schones, D.E.; Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.Y.; Peng, W.; Zhang, M.Q.; Zhao, K. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 2008, 40(7), 897-903.
[http://dx.doi.org/10.1038/ng.154] [PMID: 18552846]
[15]
Stockinger, E.J.; Mao, Y.; Regier, M.K.; Triezenberg, S.J.; Thomashow, M.F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res., 2001, 29(7), 1524-1533.
[http://dx.doi.org/10.1093/nar/29.7.1524] [PMID: 11266554]
[16]
Kong, L.; Qiu, X.; Kang, J.; Wang, Y.; Chen, H.; Huang, J.; Qiu, M.; Zhao, Y.; Kong, G.; Ma, Z.; Wang, Y.; Ye, W.; Dong, S.; Ma, W.; Wang, Y. A phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr. Biol., 2017, 27(7), 981-991.
[http://dx.doi.org/10.1016/j.cub.2017.02.044] [PMID: 28318979]
[17]
Li, S.; Lin, Y.J.; Wang, P.; Zhang, B.; Li, M.; Chen, S.; Shi, R.; Tunlaya-Anukit, S.; Liu, X.; Wang, Z.; Dai, X.; Yu, J.; Zhou, C.; Liu, B.; Wang, J.P.; Chiang, V.L.; Li, W. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell, 2019, 31(3), 663-686.
[http://dx.doi.org/10.1105/tpc.18.00437] [PMID: 30538157]
[18]
Zhou, S.; Jiang, W.; Long, F.; Cheng, S.; Yang, W.; Zhao, Y.; Zhou, D-X. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell, 2017, 29(5), 1088-1104.
[http://dx.doi.org/10.1105/tpc.16.00908] [PMID: 28487409]
[19]
Kim, S.; Piquerez, S.J.M.; Ramirez-Prado, J.S.; Mastorakis, E.; Veluchamy, A.; Latrasse, D.; Manza-Mianza, D.; Brik-Chaouche, R.; Huang, Y.; Rodriguez-Granados, N.Y.; Concia, L.; Blein, T.; Citerne, S.; Bendahmane, A.; Bergounioux, C.; Crespi, M.; Mahfouz, M.M.; Raynaud, C.; Hirt, H.; Ntoukakis, V.; Benhamed, M. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Res., 2020, 48(11), 5953-5966.
[http://dx.doi.org/10.1093/nar/gkaa369] [PMID: 32396165]
[20]
Wang, T.; Xing, J.; Liu, X.; Yao, Y.; Hu, Z.; Peng, H.; Xin, M.; Zhou, D.X.; Zhang, Y.; Ni, Z. GCN5 contributes to stem cuticular wax biosynthesis by histone acetylation of CER3 in Arabidopsis. J. Exp. Bot., 2018, 69(12), 2911-2922.
[http://dx.doi.org/10.1093/jxb/ery077] [PMID: 29506042]
[21]
Jin, H.; Choi, S.M.; Kang, M.J.; Yun, S.H.; Kwon, D.J.; Noh, Y.S.; Noh, B. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Res., 2018, 46(22), 11712-11725.
[http://dx.doi.org/10.1093/nar/gky847] [PMID: 30239885]
[22]
Choi, S.M.; Song, H.R.; Han, S.K.; Han, M.; Kim, C.Y.; Park, J.; Lee, Y.H.; Jeon, J.S.; Noh, Y.S.; Noh, B. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J., 2012, 71(1), 135-146.
[http://dx.doi.org/10.1111/j.1365-313X.2012.04977.x] [PMID: 22381007]
[23]
Kim, K-C.; Lai, Z.; Fan, B.; Chen, Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20(9), 2357-2371.
[http://dx.doi.org/10.1105/tpc.107.055566] [PMID: 18776063]
[24]
Wang, Y.; Hu, Q.; Wu, Z.; Wang, H.; Han, S.; Jin, Y.; Zhou, J.; Zhang, Z.; Jiang, J.; Shen, Y.; Shi, H.; Yang, W. Histone Deacetylase 6 represses pathogen defence responses in Arabidopsis thaliana. Plant Cell Environ., 2017, 40(12), 2972-2986.
[http://dx.doi.org/10.1111/pce.13047] [PMID: 28770584]
[25]
Liu, J.; Zhi, P.; Wang, X.; Fan, Q.; Chang, C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. J. Exp. Bot., 2019, 70(1), 255-268.
[http://dx.doi.org/10.1093/jxb/ery330] [PMID: 30204899]
[26]
Zhi, P.; Kong, L.; Liu, J.; Zhang, X.; Wang, X.; Li, H.; Sun, M.; Li, Y.; Chang, C. Histone deacetylase TaHDT701 functions in TaHDA6-TaHOS15 complex to regulate wheat defense responses to Blumeria graminis f.sp. tritici. Int. J. Mol. Sci., 2020, 21(7), E2640.
[http://dx.doi.org/10.3390/ijms21072640] [PMID: 32290114]
[27]
Ding, B.; Bellizzi, M.R.; Ning, Y.; Meyers, B.C.; Wang, G.L. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell, 2012, 24(9), 3783-3794.
[http://dx.doi.org/10.1105/tpc.112.101972] [PMID: 22968716]
[28]
Yumni, R.M.I.; Karim, M.F.; Midin, M.R. Genome size determination of cucumber (Cucumis sativus), honeydew (Cucumis melo inodorus) and rock melon (Cucumis melo cantalupensis) via flow cytometry. Sci. Heritage J., 2021, 5(1), 14-16.
[http://dx.doi.org/10.26480/gws.01.2021.14.16]
[29]
Zhang, C.; Liu, X.; Liu, C.; Luo, X. Characterization of the Complete Mitochondrial Genome of Acanthacorydalis fruhstorferi van der Weele (Megaloptera: Corydalidae). J. Kans. Entomol. Soc., 2021, 93(4), 267.
[http://dx.doi.org/10.2317/0022-8567-93.4.267]
[30]
Nwankwoala, H.O.; Harry, M.T.; Warmate, T. Assessing aquifer vulnerability and contaminant plume at artisanal refining sites in parts of okrika and ogu-bolo local government areas, rivers state, Nigeria. Water Conservation and Management, 2020, 4(2), 68-72.
[31]
Yan, L.; Zhai, X.; Zhao, Z.; Fan, G. Whole-genome landscape of H3K4me3, H3K36me3 and H3K9ac and their association with gene expression during Paulownia witches' broom disease infection and recovery processes. 3 Biotech, 2020, 10(8), 336.
[32]
Hu, Y.; Lai, Y.; Chen, X.; Zhou, D.X.; Zhao, Y. Distribution pattern of histone marks potentially determines their roles in transcription and RNA processing in rice. J. Plant Physiol., 2020, 249, 153167.
[http://dx.doi.org/10.1016/j.jplph.2020.153167] [PMID: 32353606]
[33]
Lu, Y.; Tan, F.; Zhao, Y.; Zhou, S.; Chen, X.; Hu, Y.; Zhou, D.X. A chromodomain-helicase-DNA-binding factor functions in chromatin modification and gene regulation. Plant Physiol., 2020, 183(3), 1035-1046.
[http://dx.doi.org/10.1104/pp.20.00453] [PMID: 32439720]
[34]
Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol., 2019, 50, 114-120.
[http://dx.doi.org/10.1016/j.pbi.2019.03.015] [PMID: 31163394]
[35]
Ashikari, M.; Sakakibara, H.; Lin, S.; Yamamoto, T.; Takashi, T.; Nishimura, A.; Angeles, E.R.; Qian, Q.; Kitano, H.; Matsuoka, M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735), 741-745.
[http://dx.doi.org/10.1126/science.1113373] [PMID: 15976269]
[36]
Iwai, T.; Miyasaka, A.; Seo, S.; Ohashi, Y. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol., 2006, 142(3), 1202-1215.
[http://dx.doi.org/10.1104/pp.106.085258] [PMID: 17012402]
[37]
Zhang, W.; Gao, S.; Zhou, X.; Chellappan, P.; Chen, Z.; Zhou, X.; Zhang, X.; Fromuth, N.; Coutino, G.; Coffey, M.; Jin, H. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol., 2011, 75(1-2), 93-105.
[http://dx.doi.org/10.1007/s11103-010-9710-8] [PMID: 21153682]
[38]
Liu, M.; Zhang, S.; Hu, J.; Sun, W.; Padilla, J.; He, Y.; Li, Y.; Yin, Z.; Liu, X.; Wang, W.; Shen, D.; Li, D.; Zhang, H.; Zheng, X.; Cui, Z.; Wang, G.L.; Wang, P.; Zhou, B.; Zhang, Z. Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proc. Natl. Acad. Sci. USA, 2019, 116(35), 17572-17577.
[http://dx.doi.org/10.1073/pnas.1905123116] [PMID: 31405986]
[39]
Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol., 2015, 206(3), 948-964.
[http://dx.doi.org/10.1111/nph.13325] [PMID: 25659829]
[40]
Ji, X.; Hou, C.; Shi, M.; Yan, Y.; Liu, Y. An Insight into the research concerning panax ginseng c. a. meyer polysaccharides: A review. Food Rev. Int., 2020, 2020, 1771363.
[http://dx.doi.org/10.1080/87559129.2020.1771363]
[41]
Ji, X.; Peng, B.; Ding, H.; Cui, B.; Nie, H.; Yan, Y. Purification, structure and biological activity of pumpkin polysaccharides: A review. Food Rev. Int., 2021, 2021, 1904973.
[http://dx.doi.org/10.1080/87559129.2021.1904973]
[42]
Peters, R.J. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry, 2006, 67(21), 2307-2317.
[http://dx.doi.org/10.1186/s12870-019-2156-5] [PMID: 31852430]
[43]
Toyomasu, T. Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci. Biotechnol. Biochem., 2008, 72(5), 1168-1175.
[http://dx.doi.org/10.1007/s00425-021-03625-0] [PMID: 33866432]
[44]
Toyomasu, T.; Usui, M.; Sugawara, C.; Otomo, K.; Hirose, Y.; Miyao, A.; Hirochika, H.; Okada, K.; Shimizu, T.; Koga, J.; Hasegawa, M.; Chuba, M.; Kawana, Y.; Kuroda, M.; Minami, E.; Mitsuhashi, W.; Yamane, H. Reverse-genetic approach to verify physiological roles of rice phytoalexins: Characterization of a knockdown mutant of OsCPS4 phytoalexin biosynthetic gene in rice. Physiol. Plant., 2014, 150(1), 55-62.
[http://dx.doi.org/10.1111/ppl.12066] [PMID: 23621683]
[45]
Takeda, Y.; Koshiba, T.; Tobimatsu, Y.; Suzuki, S.; Murakami, S.; Yamamura, M.; Rahman, M.M.; Takano, T.; Hattori, T.; Sakamoto, M.; Umezawa, T. Regulation of Coniferaldehyde 5-Hydroxylase expression to modulate cell wall lignin structure in rice. Planta, 2017, 246(2), 337-349.
[http://dx.doi.org/10.1007/s00425-017-2692-x] [PMID: 28421330]
[46]
Chen, H.C.; Song, J.; Wang, J.P.; Lin, Y.C.; Ducoste, J.; Shuford, C.M.; Liu, J.; Li, Q.; Shi, R.; Nepomuceno, A.; Isik, F.; Muddiman, D.C.; Williams, C.; Sederoff, R.R.; Chiang, V.L. Systems biology of lignin biosynthesis in Populus trichocarpa: Heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling. Plant Cell, 2014, 26(3), 876-893.
[http://dx.doi.org/10.1105/tpc.113.119685] [PMID: 24619612]
[47]
Hiroyuki Ito; Hiraga, S.; Tsugawa, H.; Matsui, H.; Honma, M.; Otsuki, Y.; Murakami, T.; Ohashi, Y., Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci., 2000, 155, 85-100.
[http://dx.doi.org/10.1111/pbi.12951] [PMID: 29781573]
[48]
Sharoni, A.M.; Nuruzzaman, M.; Satoh, K.; Shimizu, T.; Kondoh, H.; Sasaya, T.; Choi, I.R.; Omura, T.; Kikuchi, S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol., 2011, 52(2), 344-360.
[http://dx.doi.org/10.1093/pcp/pcq196] [PMID: 21169347]
[49]
Delteil, A.; Zhang, J.; Lessard, P.; Morel, J-B. Potential candidate genes for improving rice disease resistance. Rice (N. Y.), 2010, 3(1), 56-71.
[http://dx.doi.org/10.1007/s12284-009-9035-x]
[50]
Viana, V.E.; Busanello, C.; da Maia, L.C.; Pegoraro, C.; Costa de, ; Oliveira, A. Activation of rice WRKY transcription factors: An army of stress fighting soldiers? Curr. Opin. Plant Biol., 2018, 45(Pt B), 268-275.
[http://dx.doi.org/10.1016/j.pbi.2018.07.007]
[51]
Chakraborty, J.; Ghosh, P.; Sen, S.; Das, S. Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Plant Sci., 2018, 276, 250-267.
[http://dx.doi.org/10.1016/j.plantsci.2018.07.014] [PMID: 30348325]
[52]
Li, X.; Guo, W.; Li, J.; Yue, P.; Bu, H.; Jiang, J.; Liu, W.; Xu, Y.; Yuan, H.; Li, T.; Wang, A. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiol., 2020, 182(4), 2035-2046.
[http://dx.doi.org/10.1104/pp.20.00002] [PMID: 32047049]
[53]
Chujo, T.; Miyamoto, K.; Shimogawa, T.; Shimizu, T.; Otake, Y.; Yokotani, N.; Nishizawa, Y.; Shibuya, N.; Nojiri, H.; Yamane, H.; Minami, E.; Okada, K. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol. Biol., 2013, 82(1-2), 23-37.
[http://dx.doi.org/10.1007/s11103-013-0032-5] [PMID: 23462973]
[54]
Inoue, H.; Hayashi, N.; Matsushita, A.; Xinqiong, L.; Nakayama, A.; Sugano, S.; Jiang, C-J.; Takatsuji, H. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc. Natl. Acad. Sci. USA, 2013, 110(23), 9577-9582.
[http://dx.doi.org/10.1073/pnas.1222155110] [PMID: 23696671]
[55]
Yokotani, N.; Sato, Y.; Tanabe, S.; Chujo, T.; Shimizu, T.; Okada, K.; Yamane, H.; Shimono, M.; Sugano, S.; Takatsuji, H.; Kaku, H.; Minami, E.; Nishizawa, Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot., 2013, 64(16), 5085-5097.
[http://dx.doi.org/10.1093/jxb/ert298] [PMID: 24043853]
[56]
Bonnet, J.; Wang, C.Y.; Baptista, T.; Vincent, S.D.; Hsiao, W.C.; Stierle, M.; Kao, C.F.; Tora, L.; Devys, D. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev., 2014, 28(18), 1999-2012.
[http://dx.doi.org/10.1101/gad.250225.114] [PMID: 25228644]
[57]
Bhuiyan, T.; Timmers, H.T.M. Promoter Recognition: Putting TFIID on the Spot. Trends Cell Biol., 2019, 29(9), 752-763.
[http://dx.doi.org/10.1016/j.tcb.2019.06.004] [PMID: 31300188]
[58]
Gates, L.A.; Shi, J.; Rohira, A.D.; Feng, Q.; Zhu, B.; Bedford, M.T.; Sagum, C.A.; Jung, S.Y.; Qin, J.; Tsai, M.J.; Tsai, S.Y.; Li, W.; Foulds, C.E.; O’Malley, B.W. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J. Biol. Chem., 2017, 292(35), 14456-14472.
[http://dx.doi.org/10.1074/jbc.M117.802074] [PMID: 28717009]
[59]
Huang, P.Y.; Catinot, J.; Zimmerli, L. Ethylene response factors in Arabidopsis immunity. J. Exp. Bot., 2016, 67(5), 1231-1241.
[http://dx.doi.org/10.1093/jxb/erv518] [PMID: 26663391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy