Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Designer Benzodiazepines’ Activity on Opioid Receptors: A Docking Study

Author(s): Valeria Catalani*, Michelle Botha, John Martin Corkery, Amira Guirguis, Alessandro Vento and Fabrizio Schifano

Volume 28, Issue 32, 2022

Published on: 22 September, 2022

Page: [2639 - 2652] Pages: 14

DOI: 10.2174/1381612828666220510153319

Price: $65

Abstract

Background: Previous studies have reported that benzodiazepines (BZDs) seem to enhance euphoric and reinforcing properties of opioids in opioid users so that a direct effect on opioid receptors has been postulated, together with a possible synergistic induction of severe side effects due to co use of BDZs and opioids. This is particularly worrisome given the appearance on the market of designer benzodiazepines (DBZDs), whose activity/toxicity profiles are scarcely known.

Objectives: This study aimed to evaluate, through computational studies, the binding affinity (or lack thereof) of 101 DBZDs identified online on the kappa, mu, and delta opioid receptors (K, M, DOR); and to assess whether their mechanism of action could include activation of the latter.

Methods: MOE® was used for the computational studies. Pharmacophore mapping based on strong opioids agonist binders’ 3D chemical features was used to filter the DBZDs. Resultant DBZDs were docked into the crystallised 3D active conformation of KOR (PDB6B73), DOR (PDB6PT3) and MOR (PDB5C1M). Co-crystallised ligands and four strong agonists were used as reference compounds. A score (S, Kcal/mol) representative of the predicted binding affinity, and a description of ligand interactions were obtained from MOE®.

Results: The docking results, filtered for S < -8.0 and the interaction with the Asp residue, identified five DBZDs as putative binders of the three ORs : ciclotizolam, fluloprazolam, JQ1, Ro 48-6791, and Ro 48-8684.

Conclusion: It may be inferred that at least some DBZDs may have the potential to activate opioid receptors. This could mediate/increase their anxiolytic, analgesic, and addiction potentials, as well as worsen the side effects associated with opioid co-use.

Keywords: Designer benzodiazepines, docking, pharmacophore mapping, NPSfinder®, Kappa-delta-mu opioid receptors, MOE®.

[1]
EMCDDA Perspectives on drugs: The misuse of benzodiazepines among high-risk opioid users in Europe. Lisbon 2018.
[2]
EMCDDA European Drug Report 2020: Trends and Developments. Luxembourg 2020.
[3]
EMCDDA Benzodiazepines drug profile Available from: http://www.emcdda.europa.eu/publications/drug-profiles/benzo-diazepines_en (Accessed on Apr 12, 2020).
[4]
de Wet C, Reed L, Glasper A, Moran P, Bearn J, Gossop M. Benzodiazepine co-dependence exacerbates the opiate withdrawal syndrome. Drug Alcohol Depend 2004; 76(1): 31-5.
[http://dx.doi.org/10.1016/j.drugalcdep.2004.04.002] [PMID: 15380286]
[5]
EMCDDA European Drug Report 2021: Trends and Developments 2021. Available from: www.emcdda.europa.eu
[6]
Liu EY, Tamblyn R, Filion KB, Buckeridge DL. Concurrent prescriptions for opioids and benzodiazepines and risk of opioid overdose: Protocol for a retrospective cohort study using linked administrative data. BMJ Open 2021; 11(2): e042299.
[http://dx.doi.org/10.1136/bmjopen-2020-042299] [PMID: 33602708]
[7]
National Institute on Drug Abuse (NIDA) Benzodiazepines and Opioids. Available from: https://www.drugabuse.gov/drug-topics/opioids/benzodiazepines-opioids (Accessed on Nov 16, 2021).
[8]
UNODC. World Drug Report 2021; Vienna, 2021. https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html
[9]
Berro LF, Rowlett JK. GABAA receptor subtypes and the reinforcing effects of benzodiazepines in remifentanil-experienced rhesus monkeys. Drug Alcohol Depend 2020; 213: 108076.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.108076] [PMID: 32474260]
[10]
Poisnel G, Dhilly M, Le Boisselier R, Barre L, Debruyne D. Comparison of five benzodiazepine-receptor agonists on buprenorphine-induced μ-opioid receptor regulation. J Pharmacol Sci 2009; 110(1): 36-46.
[http://dx.doi.org/10.1254/jphs.08249FP] [PMID: 19443999]
[11]
Navaratnam V, Foong K. Opiate dependence–the role of benzodiazepines. Curr Med Res Opin 2008; 11: 620-30.
[http://dx.doi.org/10.1185/03007999009112688]
[12]
Moore JJ, Saadabadi A. Selegiline StatPearls 2020.
[13]
Goodchild CS, Serrao JM. Intrathecal midazolam in the rat: Evidence for spinally-mediated analgesia. Br J Anaesth 1987; 59(12): 1563-70.
[http://dx.doi.org/10.1093/bja/59.12.1563] [PMID: 3122809]
[14]
Rattan AK, McDonald JS, Tejwani GA. Differential effects of intrathecal midazolam on morphine-induced antinociception in the rat: Role of spinal opioid receptors. Anesth Analg 1991; 73(2): 124-31.
[http://dx.doi.org/10.1213/00000539-199108000-00004] [PMID: 1649558]
[15]
Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem 2004; 73: 953-90.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073940]
[16]
Algera MH, Kamp J, van der Schrier R, et al. Opioid-induced respiratory depression in humans: A review of pharmacokinetic-pharmacodynamic modelling of reversal. Br J Anaesth 2019; 122(6): e168-79.
[http://dx.doi.org/10.1016/j.bja.2018.12.023] [PMID: 30915997]
[17]
Ehrlich AT, Kieffer BL, Darcq E. Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opin Ther Targets 2019; 23(4): 315-26.
[http://dx.doi.org/10.1080/14728222.2019.1586882]
[18]
Severino A, Chen W, Hakimian JK, et al. Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain. Pain 2018; 159(8): 1607-20.
[http://dx.doi.org/10.1097/j.pain.0000000000001247] [PMID: 29677019]
[19]
Beck TC, Hapstack MA, Beck KR, Dix TA. Therapeutic potential of kappa opioid agonists. Pharmaceuticals (Basel) 2019; 12(2): E95.
[http://dx.doi.org/10.3390/ph12020095] [PMID: 31226764]
[20]
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for developing kappa opioid receptor agonists for the treatment of pain with fewer side-effects. J Pharmacol Exp Ther 2020; 375(2): 332-48.
[http://dx.doi.org/10.1124/jpet.120.000134] [PMID: 32913006]
[21]
Butelman ER, Picetti R, Reed B, Yuferov V, Kreek MJ. Addictions. In: Neurobiology of brain disorders: Biological basis of neurological and psychiatric disorders. Academic Press 2015; pp. 570-84.
[22]
Contet C, Kieffer BL, Befort K. Mu opioid receptor: A gateway to drug addiction. Curr Opin Neurobiol 2004; 14(3): 370-8.
[http://dx.doi.org/10.1016/j.conb.2004.05.005] [PMID: 15194118]
[23]
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89(4): 1379-412.
[http://dx.doi.org/10.1152/physrev.00005.2009] [PMID: 19789384]
[24]
Cox RF, Collins MA. The effects of benzodiazepines on human opioid receptor binding and function. Anesth Analg 2001; 93(2): 354-8.
[http://dx.doi.org/10.1213/00000539-200108000-00024] [PMID: 11473860]
[25]
Primeaux SD, Wilson SP, McDonald AJ, Mascagni F, Wilson MA. The role of delta opioid receptors in the anxiolytic actions of benzodiazepines. Pharmacol Biochem Behav 2006; 85(3): 545-54.
[http://dx.doi.org/10.1016/j.pbb.2006.09.025] [PMID: 17109943]
[26]
Billingsley ML, Kubena RK. The effects of naloxone and picrotoxin on the sedative and anticonflict effects of benzodiazepines. Life Sci 1978; 22(10): 897-906.
[http://dx.doi.org/10.1016/0024-3205(78)90614-8] [PMID: 642704]
[27]
Tsuda M, Suzuki T, Misawa M, Nagase H. Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 1996; 307(1): 7-14.
[http://dx.doi.org/10.1016/0014-2999(96)00219-1] [PMID: 8831097]
[28]
Richardson DK, Reynolds SM, Cooper SJ, Berridge KC. Opioid agonists and benzodiazepine agonists each increase food intake. Both also increase hedonic “liking” reactions to sweet tastes in rats. Do opioids and benzodiazepines share overlapping mechanisms of hedonic impact? Pharmacol Biochem Behav 2005; 81: 657-63.
[http://dx.doi.org/10.1016/j.pbb.2005.05.006] [PMID: 15961147]
[29]
Herling S. Naltrexone blocks the response-latency increasing effects but not the discriminative effects of diazepam in rats. Eur J Pharmacol 1983; 88(1): 121-4.
[http://dx.doi.org/10.1016/0014-2999(83)90400-4] [PMID: 6303805]
[30]
Cappelli A, Anzini M, Vomero S, et al. Synthesis, biological evaluation, and quantitative receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as novel tifluadom-like ligands with high affinity and selectivity for kappa-opioid receptors. J Med Chem 1996; 39(4): 860-72.
[http://dx.doi.org/10.1021/jm950423p] [PMID: 8632410]
[31]
Anzini M, Canullo L, Braile C, et al. Synthesis, biological evaluation, and receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as kappa-opioid receptor agonists endowed with antinociceptive and antiamnesic activity. J Med Chem 2003; 46(18): 3853-64.
[http://dx.doi.org/10.1021/jm0307640] [PMID: 12930147]
[32]
Afzal A, Kiyatkin EA. Interactions of benzodiazepines with heroin: Respiratory depression, temperature effects, and behavior. Neuropharmacology 2019; 158: 107677.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107677] [PMID: 31228487]
[33]
Boon M, van Dorp E, Broens S, Overdyk F. Combining opioids and benzodiazepines: Effects on mortality and severe adverse respiratory events. Ann Palliat Med 2020; 9(2): 542-57.
[http://dx.doi.org/10.21037/apm.2019.12.09] [PMID: 32036672]
[34]
Medicines and Healthcare products Regulatory Agency Benzodiazepines and opioids: Reminder of risk of potentially fatal respiratory depression. Available from: https://www.gov.uk/drug-safety-update/benzodiazepines-and-opioids-reminder-of-risk-of-potentially-fatal-respiratory-depression (Accessed on Oct 11, 2021).
[35]
Arillotta D, Schifano F, Napoletano F, et al. Novel opioids: Systematic web crawling within the e-psychonauts’ scenario. Front Neurosci 2020; 14: 149.
[http://dx.doi.org/10.3389/fnins.2020.00149] [PMID: 32256304]
[36]
Catalani V, Botha M, Corkery JM, Guirguis A, Vento A, Schifano F. Cognitive enhancers: Computational models on benzodiazepines and racetams identified online. In: Amalytical Toxicology for Novel Psychoactive Substances Webinar. ISSED 2021.
[37]
Schifano F. Recent changes in drug abuse scenarios: The new/novel psychoactive substances (NPS) phenomenon. Brain Sci 2018; 8(12): 8.
[http://dx.doi.org/10.3390/brainsci8120221] [PMID: 30551554]
[38]
Lovrecic B, Lovrecic M, Gabrovec B, et al. Non-medical use of novel synthetic opioids: A new challenge to public health. Int J Environ Res Public Health 2019; 16(2): 16.
[http://dx.doi.org/10.3390/ijerph16020177] [PMID: 30634521]
[39]
Orsolini L, Corkery JM, Chiappini S, et al. “New/Designer Benzodiazepines”: An analysis of the literature and psychonauts’ trip reports. Curr Neuropharmacol 2020; 18(9): 809-37.
[http://dx.doi.org/10.2174/1570159X18666200110121333] [PMID: 31933443]
[40]
Advisory Council on the Misuse of Drugs. Novel Benzodiazepines A review of the evidence of use and harms of Novel Benzodiazepines London ACMD. 2020 https://assets. publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/881969/ACMD_report_-_a_review_of_the_ evidence_of_use_and_harms_of_novel_benzodiazepines.pdf
[41]
Carpenter JE, Murray BP, Dunkley C, Kazzi ZN, Gittinger MH. Designer benzodiazepines: A report of exposures recorded in the national poison data system, 2014-2017. Clin Toxicol (Phila) 2019; 57(4): 282-6.
[http://dx.doi.org/10.1080/15563650.2018.1510502] [PMID: 30430874]
[42]
UNODC. Non-medical use of benzodiazepines : A growing threat to public health? Global Smart Update 2017; 18: 2-11.
[43]
UNODC. Current NPS Threats. United Nations Office on Drugs and Crime. Vienna 2020; III: 1-4. Availabile from: https://www.unodc.org/documents/scientific/Current_NPS_Threats_Vol.3.pdf
[44]
Catalani V, Botha M, Corkery JM, et al. The psychonauts’ benzodiazepines; quantitative structure-activity relationship (QSAR) analysis and docking prediction of their biological activity. Pharm 2021; 14: 720.
[http://dx.doi.org/10.3390/ph14080720]
[45]
European Database on New Drugs. Available from: https://ednd2.emcdda.europa.eu/ednd/login (Accessed on Nov 18, 2019).
[46]
UNODC Early Warning Advisory (EWA) on New Psychoactive Substances (NPS). Available from: https://www.unodc.org/LSS/Home/NPS (Accessed on Feb 4, 2021).
[47]
Valerio LG Jr, Choudhuri S. Chemoinformatics and chemical genomics: Potential utility of in silico methods. J Appl Toxicol 2012; 32(11): 880-9.
[http://dx.doi.org/10.1002/jat.2804] [PMID: 22886396]
[48]
EMBL-EBI. ChEMBL Database. Available from: https://www.ebi.ac.uk/chembl/ (Accessed on Oct 1, 2021).
[49]
ChEMBL. Kappa opioid receptor. Target Report Card Available from: https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL237/ (Accessed on Oct 13, 2021).
[50]
ChEMBL. Delta opioid receptor. Target Report Card. Available from: https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL236/ (Accessed on Oct 18, 2021).
[51]
ChEMBL. Mu opioid receptor. Target Report Card Available from: https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL233/ (Accessed on Oct 13, 2021).
[52]
Chemical Computing Group. Molecular Operating Enviroment (MOE) 2021. https://www.chemcomp.com/Products.htm
[53]
Gerber PR, Müller K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J Comput Aided Mol Des 1995; 9(3): 251-68.
[http://dx.doi.org/10.1007/BF00124456] [PMID: 7561977]
[54]
RCSB PDB: Homepage. Available from: https://www.rcsb.org/ (Accessed on February 4, 2021).
[55]
Ellis CR, Kruhlak NL, Kim MT, Hawkins EG, Stavitskaya L. Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking. PLoS One 2018; 13(5): e0197734.
[http://dx.doi.org/10.1371/journal.pone.0197734] [PMID: 29795628]
[56]
Isomer Design. Available from: https://isomerdesign.com (Accessed on Nov 17, 2021).
[57]
Huang W, Manglik A, Venkatakrishnan AJ, et al. Structural insights into µ-opioid receptor activation. Nature 2015; 524(7565): 315-21.
[http://dx.doi.org/10.1038/nature14886] [PMID: 26245379]
[58]
RCSB PDB 5C1M: Crystal structure of active mu-opioid receptor bound to the agonist BU72. Available from: https://www.rcsb.org/structure/5C1M (Accessed on Oct 12, 2021).
[59]
Claff T, Yu J, Blais V, et al. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci Adv 2019; 5(11): eaax9115.
[http://dx.doi.org/10.1126/sciadv.aax9115] [PMID: 31807708]
[60]
RCSB PDB 6PT3: Crystal structure of the active delta opioid receptor in complex with the small molecule agonist DPI-287. Available from: https://www.rcsb.org/structure/6PT3 (Accessed on Oct 12, 2021).
[61]
Che T, Majumdar S, Zaidi SA, et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 2018; 172(1-2): 55-67.e15.
[http://dx.doi.org/10.1016/j.cell.2017.12.011] [PMID: 29307491]
[62]
RCSB PDB 6B73: Crystal Structure of a nanobody-stabilized active state of the kappa-opioid receptor. Available from: https://www.rcsb.org/structure/6B73 (Accessed on Oct 12, 2021).
[63]
Krumm BE, Grisshammer R. Peptide ligand recognition by G protein-coupled receptors. Front Pharmacol 2015; 6: 48.
[http://dx.doi.org/10.3389/fphar.2015.00048] [PMID: 25852552]
[64]
Shim J, Coop A, MacKerell AD Jr. Molecular details of the activation of the μ opioid receptor. J Phys Chem B 2013; 117(26): 7907-17.
[http://dx.doi.org/10.1021/jp404238n] [PMID: 23758404]
[65]
Vandeputte MM, Van Uytfanghe K, Layle NK, St Germaine DM, Iula DM, Stove CP. Synthesis, chemical characterization, and μ-opioid receptor activity assessment of the emerging group of “Nitazene” 2-benzylbenzimidazole synthetic opioids. ACS Chem Neurosci 2021; 12(7): 1241-51.
[http://dx.doi.org/10.1021/acschemneuro.1c00064] [PMID: 33759494]
[66]
Casy AF, Parfitt RT. Opioid analgesics : Chemistry and receptors. 1st ed. New York: Springer US 1986.
[http://dx.doi.org/10.1007/978-1-4899-0585-7]
[67]
Manglik A. Molecular basis of opioid action: From structures to new leads. Biol Psychiatry 2020; 87(1): 6-14.
[http://dx.doi.org/10.1016/j.biopsych.2019.08.028] [PMID: 31653480]
[68]
Zimmerman DM, Leander JD. Selective opioid receptor agonists and antagonists: Research tools and potential therapeutic agents. J Med Chem 1990; 33(3): 895-902.
[http://dx.doi.org/10.1021/jm00165a002] [PMID: 2155322]
[69]
Shim J, Coop A, MacKerell AD Jr. Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative Conformationally Sampled Pharmacophore. J Phys Chem B 2011; 115(22): 7487-96.
[http://dx.doi.org/10.1021/jp202542g] [PMID: 21563754]
[70]
Singh N, Nolan TL, McCurdy CR. Chemical function-based pharmacophore development for novel, selective kappa opioid receptor agonists. J Mol Graph Model 2008; 27(2): 131-9.
[http://dx.doi.org/10.1016/j.jmgm.2008.03.007] [PMID: 18456526]
[71]
Zhang J, Liu G, Tang Y. Chemical function-based pharmacophore generation of selective kappa-opioid receptor agonists by catalyst and phase. J Mol Model 2009; 15(9): 1027-41.
[http://dx.doi.org/10.1007/s00894-008-0418-5] [PMID: 19205759]
[72]
Tricklebank MD, Honoré T, Iversen SD, et al. The pharmacological properties of the imidazobenzodiazepine, FG 8205, a novel partial agonist at the benzodiazepine receptor. Br J Pharmacol 1990; 101(3): 753-61.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb14152.x] [PMID: 1963808]
[73]
Krall J, Balle T, Krogsgaard-Larsen N, et al. GABAA receptor partial agonists and antagonists: Structure, binding mode, and pharmacology. Adv Pharmacol 2015; 72: 201-27.
[http://dx.doi.org/10.1016/bs.apha.2014.10.003] [PMID: 25600372]
[74]
Zhou S, Zhang S, Wang L, et al. BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncog 2020; 9: 1-14.
[http://dx.doi.org/10.1038/s41389-020-0218-z]
[75]
Prost-Marechal J. Imidazobenzodiazepines and their salt 1982.
[76]
Weber KH, Kuhn FJ, Böke-Kuhn K, et al. Pharmacological and neurochemical properties of 1,4-diazepines with two annelated heterocycles (‘hetrazepines’). Eur J Pharmacol 1985; 109(1): 19-31.
[http://dx.doi.org/10.1016/0014-2999(85)90535-7] [PMID: 2986988]
[77]
Godel T, Hunkeler W, Stadler H, Widmer U. Imidazodiazepines US5665718A 1997.
[78]
van Gerven JM, Roncari G, Schoemaker RC, et al. Integrated pharmacokinetics and pharmacodynamics of Ro 48-8684, a new benzodiazepine, in comparison with midazolam during first administration to healthy male subjects. Br J Clin Pharmacol 1997; 44(5): 487-93.
[http://dx.doi.org/10.1046/j.1365-2125.1997.t01-1-00613.x] [PMID: 9384466]
[79]
Hering W, Ihmsen H, Albrecht S, Schwilden H, Schüttler J. Ro 48-6791--a short acting benzodiazepine. Pharmacokinetics and pharmacodynamics in young and old subjects in comparison to midazolam. Anaesthesist 1996; 45(12): 1211-4.
[http://dx.doi.org/10.1007/s001010050360] [PMID: 9065257]
[80]
Wrigley PJ, Elliott DW, Blake D. A phase 2 clinical trial comparing Ro 48-6791, a new short-acting benzodiazepine, with propofol for induction of anaesthesia. Anaesth Intensive Care 1998; 26(5): 509-14.
[http://dx.doi.org/10.1177/0310057X9802600506]
[81]
Miller R, Gropper M. Miller’s Anesthesia. 9th ed. 2019; Vol. I-II.
[82]
Ramírez D, Caballero J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules 2018; 23(5): E1038.
[http://dx.doi.org/10.3390/molecules23051038] [PMID: 29710787]
[83]
Jakhar R, Dangi M, Khichi A, Chhillar AK. Relevance of molecular docking studies in drug designing. Curr Bioinform 2019; 15(4): 270-8.
[http://dx.doi.org/10.2174/1574893615666191219094216]
[84]
Manglik A, Kruse AC, Kobilka TS, et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nat 2012; 485: 321-6.
[http://dx.doi.org/10.1038/nature10954]
[85]
McKernan RM, Rosahl TW, Reynolds DS, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 2000; 3: 587-92.
[http://dx.doi.org/10.1038/75761]
[86]
Dripps IJ, Jutkiewicz EM. Delta opioid receptors and modulation of mood and emotion. In: Jutkiewicz, E. (eds) Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology. Cham: Springer 2017; 247: pp. 179-97.
[http://dx.doi.org/10.1007/164_2017_42]
[87]
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular pharmacology of δ-opioid receptors. Pharmacol Rev 2016; 68(3): 631-700.
[http://dx.doi.org/10.1124/pr.114.008979] [PMID: 27343248]
[88]
Jutkiewicz EM. The antidepressant -like effects of delta-opioid receptor agonists. Mol Interv 2006; 6(3): 162-9.
[http://dx.doi.org/10.1124/mi.6.3.7] [PMID: 16809477]
[89]
Rudolph U, Crestani F, Benke D, et al. Benzodiazepine actions mediated by specific γ-aminobutyric acid(A) receptor subtypes. Nature 1999; 401(6755): 796-800.
[http://dx.doi.org/10.1038/44579] [PMID: 10548105]
[90]
Reddy S, Patt RB. The benzodiazepines as adjuvant analgesics. J Pain Symptom Manage 1994; 9(8): 510-4.
[http://dx.doi.org/10.1016/0885-3924(94)90112-0] [PMID: 7531735]
[91]
Inoue A, Ishiguro J, Kitamura H, et al. TGFα shedding assay: An accurate and versatile method for detecting GPCR activation. Nat Methods 2012; 9: 1021-9.
[http://dx.doi.org/10.1038/nmeth.2172]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy