Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Developments in the Synthesis and Anticancer Activity of Indole and Its Derivatives

Author(s): Balwinder Kaur, Sneha Venugopal, Anil Verma, Sanjeev Kumar Sahu, Pankaj Wadhwa*, Deepak Kumar and Ajit Sharma

Volume 20, Issue 4, 2023

Published on: 21 September, 2022

Page: [376 - 394] Pages: 19

DOI: 10.2174/1570179419666220509215722

Price: $65

Abstract

Heterocyclic compounds are a class of compounds that is deeply intertwined with biological processes and is found in about 90% of commercially available medicines. They serve a critical function in medicinal chemistry and are focused in the field of medication development for their intensive research due to their broad variety of biological effects because of their intriguing molecular architecture, such as indoles are good candidates for drug development. It is a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring with several pharmacophores that yield a library of different lead compounds. Human cancer cells have been demonstrated to be inhibited by indoles in the development of new anticancer medicines. This is the first comprehensive review to focus on current methodologies for incorporating indole moiety, with their mechanistic targets as anticancer drugs, in order to shed light on the logical development of indole-based anticancer treatment options with high efficacy. This compiled data may serve as a benchmark for modifying existing ligands in order to design novel potent molecules through excellent yield synthesis techniques.

Keywords: Anticancer, heterocycles, histone deacetylase inhibitors, indole, palladium catalyzed synthesis, metastalis.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[2]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[3]
Koning, G.A.; Eggermont, A.M.; Lindner, L.H.; ten Hagen, T.L. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res., 2010, 27(8), 1750-1754.
[http://dx.doi.org/10.1007/s11095-010-0154-2] [PMID: 20424894]
[4]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmyb, A.; El-Sayeda, A. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem., 2010, 2, 400-417.
[5]
Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H.; Banerjee, M. Indole: The molecule of diverse biological activities. Asian J. Pharm. Clin. Res., 2012, 5(1), 1-6.
[6]
Archna, Pathania S.; Chawla, P.A. Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg. Chem., 2020, 101, 104026.
[http://dx.doi.org/10.1016/j.bioorg.2020.104026] [PMID: 32599369]
[7]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[8]
Macdonough, M.T.; Strecker, T.E.; Hamel, E.; Hall, J.J.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(3′-hydroxy-4′-methoxyphenyl)-3-(3″,4″,5″-trimethoxybenzoyl)-6-methoxyindole (OXi8006). Bioorg. Med. Chem., 2013, 21(21), 6831-6843.
[http://dx.doi.org/10.1016/j.bmc.2013.07.028] [PMID: 23993969]
[9]
Wang, Z.Y.; Xu, S.; Wang, K.K.; Kong, N.; Liu, X. Recent studies of bifunctionalization of simple indoles. Asian J. Org. Chem., 2021, 10(7), 1580-1594.
[http://dx.doi.org/10.1002/ajoc.202100280]
[10]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma Chem., 2017, 9(13), 141-147.
[11]
Megna, B.W.; Carney, P.R.; Nukaya, M.; Geiger, P.; Kennedy, G.D. Indole-3-carbinol induces tumor cell death: Function follows form. J. Surg. Res., 2016, 204(1), 47-54.
[http://dx.doi.org/10.1016/j.jss.2016.04.021] [PMID: 27451867]
[12]
Sherer, C.; Snape, T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem., 2015, 97, 552-560.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.007] [PMID: 25466446]
[13]
Ali, I.; Mukhtar, S.D.; Hsieh, M.F.; Alothman, Z.A.; Alwarthan, A. Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Advances, 2018, 8(66), 37905-37914.
[http://dx.doi.org/10.1039/C8RA07060A]
[14]
Dulla, B.; Sailaja, E. CH, U.R.; Aeluri, M.; Kalle, M.; Bhavani, S.; Rambabu, D.; Rao, M.B.; Pal, M. Synthesis of indole based novel small molecules and their in vitro anti-proliferative effects on various cancer cell lines. Tetrahedron Lett., 2014, 55(4), 921-926.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.050]
[15]
Yet, L. Privileged structures in drug discovery: Medicinal chemistry and synthesis; John Wiley & Sons, 2018.
[http://dx.doi.org/10.1002/9781118686263]
[16]
Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev., 2018, 47(11), 3831-3848.
[http://dx.doi.org/10.1039/C7CS00508C] [PMID: 29632917]
[17]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ali, M.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors in vitro. Bioorg. Chem., 2018, 79, 350-354.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.004] [PMID: 29807208]
[18]
Yu, Y.; Zhong, J.S.; Xu, K.; Yuan, Y.; Ye, K.Y. Recent advances in the electrochemical synthesis and functionalization of indole derivatives. Adv. Synth. Catal., 2020, 362(11), 2102-2119.
[http://dx.doi.org/10.1002/adsc.201901520]
[19]
Rago, A.J.; Dong, G. Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation. Green Synthesis Catalysis, 2021, 2(2), 216-227.
[http://dx.doi.org/10.1016/j.gresc.2021.02.001]
[20]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[21]
Özkaya, B.; Bub, C.L.; Patureau, F.W. Step and redox efficient nitroarene to indole synthesis. Chem. Commun. (Camb.), 2020, 56(86), 13185-13188.
[http://dx.doi.org/10.1039/D0CC03258A] [PMID: 33020764]
[22]
Zheng, Y-T.; Song, J.; Xu, H-C. Electrocatalytic dehydrogenative cyclization of 2-vinylanilides for the synthesis of indoles. J. Org. Chem., 2021, 86(22), 16001-16007.
[http://dx.doi.org/10.1021/acs.joc.1c00988] [PMID: 34314192]
[23]
Yang, W.; Dong, P.; Xu, J.; Yang, J.; Liu, X.; Feng, X. Enantioselective synthesis of 3-substituted 3-amino-2-oxindoles by amination with anilines. Chemistry, 2021, 27(36), 9272-9275.
[http://dx.doi.org/10.1002/chem.202100829] [PMID: 33749905]
[24]
Zeidan, N.; Bognar, S.; Lee, S.; Lautens, M. Palladium-Catalyzed synthesis of 2-cyanoindoles from 2-gem-dihalovinylanilines. Org. Lett., 2017, 19(19), 5058-5061.
[http://dx.doi.org/10.1021/acs.orglett.7b02244] [PMID: 28901154]
[25]
Yu, S.; Qi, L.; Hu, K.; Gong, J.; Cheng, T.; Wang, Q.; Chen, J.; Wu, H. The development of a palladium-catalyzed tandem addition/cyclization for the construction of indole skeletons. J. Org. Chem., 2017, 82(7), 3631-3638.
[http://dx.doi.org/10.1021/acs.joc.7b00148] [PMID: 28288278]
[26]
Vickerman, K.L.; Stanley, L.M. Catalytic, enantioselective synthesis of polycyclic nitrogen, oxygen, and sulfur heterocycles via Rh-catalyzed alkene hydroacylation. Org. Lett., 2017, 19(19), 5054-5057.
[http://dx.doi.org/10.1021/acs.orglett.7b02230] [PMID: 28933168]
[27]
Shi, P.; Wang, L.; Guo, S.; Chen, K.; Wang, J.; Zhu, J. A C-H activation-based strategy for N-Amino azaheterocycle synthesis. Org. Lett., 2017, 19(16), 4359-4362.
[http://dx.doi.org/10.1021/acs.orglett.7b02066] [PMID: 28777581]
[28]
Hu, Z.; Tong, X.; Liu, G. Rhodium(III)-catalyzed cascade cyclization/Electrophilic amidation for the synthesis of 3-amidoindoles and 3-amidofurans. Org. Lett., 2016, 18(9), 2058-2061.
[http://dx.doi.org/10.1021/acs.orglett.6b00689] [PMID: 27151555]
[29]
Sosoe, J. Synthèse, caractérisation et évaluation des performances de photosensibilisateurs à base de cuivre en synthèse organique. 2020.
[30]
Zoller, J.; Fabry, D.C.; Ronge, M.A.; Rueping, M. Synthesis of indoles using visible light: Photoredox catalysis for palladium-catalyzed C-H activation. Angew. Chem. Int. Ed. Engl., 2014, 53(48), 13264-13268.
[http://dx.doi.org/10.1002/anie.201405478] [PMID: 25284332]
[31]
Jia, R.; Li, B.; Zhang, X.; Fan, X. Selective synthesis of 2-indolyl-3-oxoindolines or 2-(2-aminophenyl) quinolines through Cu (II)-or Bi (III)-catalyzed tunable dimerizations of 2-alkynylanilines. Org. Lett., 2020, 22(17), 6810-6815.
[http://dx.doi.org/10.1021/acs.orglett.0c02323] [PMID: 32794759]
[32]
Yan, J.; Zhang, J.; Chen, X.; Malola, S.; Zhou, B.; Selenius, E.; Zhang, X.; Yuan, P.; Deng, G.; Liu, K. Thiol-stabilized atomically precise, superatomic silver nanoparticles for catalysing cycloisomerization of alkynyl amines. Natl. Sci. Rev., 2018, 5(5), 694-702.
[http://dx.doi.org/10.1093/nsr/nwy034]
[33]
Miao, B.; Li, S.; Li, G.; Ma, S. Cyclic anti-azacarboxylation of 2-alkynylanilines with carbon dioxide. Org. Lett., 2016, 18(11), 2556-2559.
[http://dx.doi.org/10.1021/acs.orglett.6b00884] [PMID: 27214662]
[34]
Abbiati, G.; Marinelli, F.; Rossi, E.; Arcadi, A. synthesis of indole derivatives from 2‐alkynylanilines by means of gold catalysis. Isr. J. Chem., 2013, 53(11‐12), 856-868.
[http://dx.doi.org/10.1002/ijch.201300040]
[35]
Wang, W-Y.; Wu, W-Y.; Li, A-L.; Liu, Q-S.; Sun, Y.; Gu, W. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid. Bioorg. Chem., 2021, 109, 104705.
[http://dx.doi.org/10.1016/j.bioorg.2021.104705] [PMID: 33618252]
[36]
Li, A.L.; Hao, Y.; Wang, W-Y.; Liu, Q-S.; Sun, Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel indole derivatives of ursolic acid as potential topoisomerase II inhibitors. Int. J. Mol. Sci., 2020, 21(8), 2876.
[http://dx.doi.org/10.3390/ijms21082876] [PMID: 32326071]
[37]
Wang, L-M.; Jiao, N.; Qiu, J.; Yu, J-J.; Liu, J-Q.; Guo, F-L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron, 2010, 66(1), 339-343.
[http://dx.doi.org/10.1016/j.tet.2009.10.091]
[38]
Jain, R.; Sharma, K.; Kumar, D. A greener, facile and scalable synthesis of indole derivatives in water: Reactions of indole-2, 3-diones with 1, 2-difunctionalized benzene. Tetrahedron Lett., 2012, 53(46), 6236-6240.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.013]
[39]
Nikoofar, K.; Peyrovebaghi, S.S. 1-Butyl-2-methylpipyridinium iodide ([BMPPY] I): Novel ionic liquid for the synthesis of 6-hydroxy-6-(1H-indol-3-yl) indolo [2, 1-b] quinazolin-12 (6H)-ones under green solvent-free conditions. Res. Chem. Intermed., 2019, 45(9), 4287-4298.
[http://dx.doi.org/10.1007/s11164-019-03831-2]
[40]
Sheikholeslami-Farahani, F.; Karami, H.; Salimifard, M.; Abad, S.A.S.; Eslami, A.A. ZnO nanorod-catalyzed three-component reaction of euparin, aldehyde, and dialkyl acetylenedicarboxylate: Green synthesis of chromene derivatives. Chem. Heterocycl. Compd., 2018, 54(6), 593-597.
[http://dx.doi.org/10.1007/s10593-018-2313-z]
[41]
Sayyed-Alangi, S.Z.; Hossaini, Z. ZnO nanorods as an efficient catalyst for the green synthesis of indole derivatives using isatoic anhydride. Chem. Heterocycl. Compd., 2015, 51(6), 541-544.
[http://dx.doi.org/10.1007/s10593-015-1734-1]
[42]
Abe, T.; Itoh, T.; Choshi, T.; Hibino, S.; Ishikura, M. One-pot synthesis of tryptanthrin by the Dakin oxidation of indole-3-carbaldehyde. Tetrahedron Lett., 2014, 55(38), 5268-5270.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.113]
[43]
Kumar, I.; Kumar, R.; Sharma, U. Recent advances in the regioselective synthesis of indoles via c–h activation/functionalization. Synthesis, 2018, 50(14), 2655-2677.
[http://dx.doi.org/10.1055/s-0037-1609733]
[44]
Li, X.; Sun, J. Organocatalytic enantioselective synthesis of chiral allenes: remote asymmetric 1,8-addition of indole imine methides. Angew. Chem. Int. Ed. Engl., 2020, 59(39), 17049-17054.
[http://dx.doi.org/10.1002/anie.202006137] [PMID: 32558012]
[45]
Anderson, L.L.; Kroc, M.A.; Reidl, T.W.; Son, J. Cascade reactions of nitrones and allenes for the synthesis of indole derivatives. J. Org. Chem., 2016, 81(20), 9521-9529.
[http://dx.doi.org/10.1021/acs.joc.6b01758] [PMID: 27682854]
[46]
Islam, M.S.; Al Majid, A.M.; Al-Othman, Z.A.; Barakat, A. Highly enantioselective Friedel–Crafts alkylation of indole with electron deficient trans-β-nitroalkenes using Zn (II)–oxazoline–imidazoline catalysts. Tetrahedron Asymmetry, 2014, 25(3), 245-251.
[http://dx.doi.org/10.1016/j.tetasy.2013.11.018]
[47]
Barakat, A.; Islam, M.S.; Al Majid, A.M.; Al-Othman, Z.A. Highly enantioselective Friedel–Crafts alkylation of indoles with α, β-unsaturated ketones with simple Cu (II)–oxazoline–imidazoline catalysts. Tetrahedron, 2013, 69(25), 5185-5192.
[http://dx.doi.org/10.1016/j.tet.2013.04.063]
[48]
Taha, M.; Rahim, F.; Khan, A.A.; Anouar, E.H.; Ahmed, N.; Shah, S.A.A.; Ibrahim, M.; Zakari, Z.A. Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Sci. Rep., 2020, 10(1), 7969.
[http://dx.doi.org/10.1038/s41598-020-64729-3] [PMID: 32409737]
[49]
Rahim, F.; Ullah, H.; Javid, M.T.; Wadood, A.; Taha, M.; Ashraf, M.; Shaukat, A.; Junaid, M.; Hussain, S.; Rehman, W.; Mehmood, R.; Sajid, M.; Khan, M.N.; Khan, K.M. Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorg. Chem., 2015, 62, 15-21.
[http://dx.doi.org/10.1016/j.bioorg.2015.06.006] [PMID: 26162519]
[50]
Almutairi, M.S.; Zakaria, A.S.; Ignasius, P.P.; Al-Wabli, R.I.; Joe, I.H.; Attia, M.I. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. J. Mol. Struct., 2018, 1153, 333-345.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.025]
[51]
Baharudin, M.S.; Taha, M.; Imran, S.; Ismail, N.H.; Rahim, F.; Javid, M.T.; Khan, K.M.; Ali, M. Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorg. Chem., 2017, 72, 323-332.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.005] [PMID: 28505547]
[52]
Kilic-Kurt, Z.; Acar, C.; Ergul, M.; Bakar-Ates, F.; Altuntas, T.G. Novel indole hydrazide derivatives: Synthesis and their antiproliferative activities through inducing apoptosis and DNA damage. Arch. Pharm. (Weinheim), 2020, 353(8), e2000059.
[http://dx.doi.org/10.1002/ardp.202000059] [PMID: 32419228]
[53]
Lafayette, E.A.; de Almeida, S.M.V.; Cavalcanti Santos, R.V.; de Oliveira, J.F.; Amorim, C.A.D.C.; da Silva, R.M.F.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Moura, R.O.; de Carvalho Júnior, L.B.; de Melo Rêgo, M.J.B.; de Lima, M.D.C.A. Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur. J. Med. Chem., 2017, 136, 511-522.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.012] [PMID: 28531811]
[54]
Bakherad, Z.; Safavi, M.; Fassihi, A.; Sadeghi-Aliabadi, H.; Bakherad, M.; Rastegar, H.; Saeedi, M.; Ghasemi, J.B.; Saghaie, L.; Mahdavi, M. design and synthesis of novel cytotoxic indole-thiosemicarbazone derivatives: biological evaluation and docking study. Chem. Biodivers., 2019, 16(4), e1800470.
[http://dx.doi.org/10.1002/cbdv.201800470] [PMID: 30845369]
[55]
Karaaslan, C.; Kadri, H.; Coban, T.; Suzen, S.; Westwell, A.D. Synthesis and antioxidant properties of substituted 2-phenyl-1H-indoles. Bioorg. Med. Chem. Lett., 2013, 23(9), 2671-2674.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.090] [PMID: 23540647]
[56]
Taha, M.; Aldhamin, E.A.J.; Almandil, N.B.; Anouar, E.H.; Uddin, N.; Alomari, M.; Rahim, F.; Adalat, B.; Ibrahim, M.; Nawaz, F.; Iqbal, N.; Alghanem, B.; Altolayyan, A.; Khan, K.M. Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorg. Chem., 2020, 98, 103745.
[http://dx.doi.org/10.1016/j.bioorg.2020.103745] [PMID: 32200327]
[57]
Attia, M.I.; Eldehna, W.M.; Afifi, S.A.; Keeton, A.B.; Piazza, G.A.; Abdel-Aziz, H.A. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One, 2017, 12(7), e0181241.
[http://dx.doi.org/10.1371/journal.pone.0181241] [PMID: 28742842]
[58]
Abdel-Aziz, H.A.; Eldehna, W.M.; Keeton, A.B.; Piazza, G.A.; Kadi, A.A.; Attwa, M.W.; Abdelhameed, A.S.; Attia, M.I. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling. Drug Des. Devel. Ther., 2017, 11, 2333-2346.
[http://dx.doi.org/10.2147/DDDT.S140164] [PMID: 28848327]
[59]
Eldehna, W.M.; Al-Wabli, R.I.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Abdel-Aziz, H.A.; Attia, M.I. Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 867-878.
[http://dx.doi.org/10.1080/14756366.2018.1462802] [PMID: 29707975]
[60]
Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy & Environment, 2020, 5(1), 8-21.
[http://dx.doi.org/10.1016/j.gee.2019.03.002]
[61]
Mjalli, F.S.; Murshid, G.; Al-Zakwani, S.; Hayyan, A. Monoethanolamine-based deep eutectic solvents, their synthesis and characterization. Fluid Phase Equilib., 2017, 448, 30-40.
[http://dx.doi.org/10.1016/j.fluid.2017.03.008]
[62]
Karimi, M.; Eshraghi, M.; Jahangir, V. A facile and green synthetic approach based on deep eutectic solvents toward synthesis of CZTS nanoparticles. Mater. Lett., 2016, 171, 100-103.
[http://dx.doi.org/10.1016/j.matlet.2016.02.065]
[63]
Doroshenko, T.; Samsoniya, S.; Chikvaidze, L. Bisindole derivatives: Synthesis of bis (1H-indol-5-yl) methane new derivatives. LAP; LAMBERT Academic Publisher, 2011.
[64]
Azizi, N.; Manocheri, Z. Eutectic salts promote green synthesis of bis (indolyl) methanes. Res. Chem. Intermed., 2012, 38(7), 1495-1500.
[http://dx.doi.org/10.1007/s11164-011-0479-4]
[65]
Ganesan, A.; Kothandapani, J.; Nanubolu, J.B.; Ganesan, S.S. Oleic acid: A benign Brønsted acidic catalyst for densely substituted indole derivative synthesis. RSC Advances, 2015, 5(36), 28597-28600.
[http://dx.doi.org/10.1039/C5RA02906F]
[66]
Butler, R.N.; Coyne, A.G. Water: Nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[67]
Kamogawa, K.; Okudaira, G.; Matsumoto, M.; Sakai, T.; Sakai, H.; Abe, M. Preparation of oleic acid/water emulsions in surfactant-free condition by sequential processing using midsonic-megasonic waves. Langmuir, 2004, 20(6), 2043-2047.
[http://dx.doi.org/10.1021/la030160z] [PMID: 15835646]
[68]
Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles. Bioorg. Chem., 2020, 100, 103929.
[http://dx.doi.org/10.1016/j.bioorg.2020.103929] [PMID: 32464404]
[69]
Ates-Alagoz, Z.; Coleman, N.; Martin, M.; Wan, A.; Adejare, A. Syntheses and in vitro anticancer properties of novel radiosensitizers. Chem. Biol. Drug Des., 2012, 80(6), 853-861.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01442.x] [PMID: 22747663]
[70]
Walia, R.; Hedaitullah, M.; Naaz, S.F.; Iqbal, K.; Lamba, H. Benzimidazole derivatives-an overview. Int. J. Res. Pharm. Chem., 2011, 1(3), 565-574.
[71]
Ateş-Alagöz, Z.; Kuş, C.; Çoban, T. Synthesis and antioxidant properties of novel benzimidazoles containing substituted indole or 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene fragments. J. Enzyme Inhib. Med. Chem., 2005, 20(4), 325-331.
[http://dx.doi.org/10.1080/14756360500131706] [PMID: 16206826]
[72]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[73]
Kumar, D.; Kumar, N.M.; Noel, B.; Shah, K. A series of 2-arylamino-5-(indolyl)-1,3,4-thiadiazoles as potent cytotoxic agents. Eur. J. Med. Chem., 2012, 55, 432-438.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.047] [PMID: 22818039]
[74]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[75]
Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res., 2007, 17(3), 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[76]
Cea, M.; Soncini, D.; Fruscione, F.; Raffaghello, L.; Garuti, A.; Emionite, L.; Moran, E.; Magnone, M.; Zoppoli, G.; Reverberi, D.; Caffa, I.; Salis, A.; Cagnetta, A.; Bergamaschi, M.; Casciaro, S.; Pierri, I.; Damonte, G.; Ansaldi, F.; Gobbi, M.; Pistoia, V.; Ballestrero, A.; Patrone, F.; Bruzzone, S.; Nencioni, A. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS One, 2011, 6(7), e22739.
[http://dx.doi.org/10.1371/journal.pone.0022739] [PMID: 21818379]
[77]
Chen, X.; Zhao, S.; Li, H.; Wang, X.; Geng, A.; Cui, H.; Lu, T.; Chen, Y.; Zhu, Y. Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2019, 168, 110-122.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.032] [PMID: 30802729]
[78]
Richardson, P.G.; Laubach, J.P.; Lonial, S.; Moreau, P.; Yoon, S-S.; Hungria, V.T.; Dimopoulos, M.A.; Beksac, M.; Alsina, M.; San-Miguel, J.F. Panobinostat: A novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma. Expert Rev. Anticancer Ther., 2015, 15(7), 737-748.
[http://dx.doi.org/10.1586/14737140.2015.1047770] [PMID: 26051506]
[79]
Liu, T.; Liu, P.Y.; Marshall, G.M. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res., 2009, 69(5), 1702-1705.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3365] [PMID: 19244112]
[80]
Park, E.Y.; Woo, Y.; Kim, S.J.; Kim, D.H.; Lee, E.K.; De, U.; Kim, K.S.; Lee, J.; Jung, J.H.; Ha, K-T.; Choi, W.S.; Kim, I.S.; Lee, B.M.; Yoon, S.; Moon, H.R.; Kim, H.S. Anticancer effects of a new SIRT inhibitor, MHY2256, against human breast cancer MCF-7 cells via regulation of MDM2-p53 binding. Int. J. Biol. Sci., 2016, 12(12), 1555-1567.
[http://dx.doi.org/10.7150/ijbs.13833] [PMID: 27994519]
[81]
Layek, M.; Kumar, Y.S.; Islam, A.; Karavarapu, R.; Sengupta, A.; Halder, D.; Mukkanti, K.; Pal, M. Alkynylation of N-(3-iodopyridin-2-yl) sulfonamide under Pd/C–Cu catalysis: A direct one pot synthesis of 7-azaindoles and their pharmacological evaluation as potential inhibitors of sirtuins. MedChemComm, 2011, 2(6), 478-485.
[http://dx.doi.org/10.1039/c1md00029b]
[82]
Rambabu, D.; Raja, G.; Yogi Sreenivas, B.; Seerapu, G.P.; Lalith Kumar, K.; Deora, G.S.; Haldar, D.; Rao, M.V.; Pal, M. Spiro heterocycles as potential inhibitors of SIRT1: Pd/C-mediated synthesis of novel N-indolylmethyl spiroindoline-3,2′-quinazolines. Bioorg. Med. Chem. Lett., 2013, 23(5), 1351-1357.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.089] [PMID: 23410798]
[83]
Wan, Y.; Dai, N.; Tang, Z.; Fang, H. Small-molecule Mcl-1 inhibitors: Emerging anti-tumor agents. Eur. J. Med. Chem., 2018, 146, 471-482.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.076] [PMID: 29407973]
[84]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[85]
Wertz, I.E.; Kusam, S.; Lam, C.; Okamoto, T.; Sandoval, W.; Anderson, D.J.; Helgason, E.; Ernst, J.A.; Eby, M.; Liu, J.; Belmont, L.D.; Kaminker, J.S.; O’Rourke, K.M.; Pujara, K.; Kohli, P.B.; Johnson, A.R.; Chiu, M.L.; Lill, J.R.; Jackson, P.K.; Fairbrother, W.J.; Seshagiri, S.; Ludlam, M.J.; Leong, K.G.; Dueber, E.C.; Maecker, H.; Huang, D.C.; Dixit, V.M. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011, 471(7336), 110-114.
[http://dx.doi.org/10.1038/nature09779] [PMID: 21368834]
[86]
Yap, J.L.; Chen, L.; Lanning, M.E.; Fletcher, S. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the antiapoptotic Bcl-2 proteins by small molecules: Miniperspective. J. Med. Chem., 2017, 60(3), 821-838.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01888] [PMID: 27749061]
[87]
Friberg, A.; Vigil, D.; Zhao, B.; Daniels, R.N.; Burke, J.P.; Garcia-Barrantes, P.M.; Camper, D.; Chauder, B.A.; Lee, T.; Olejniczak, E.T.; Fesik, S.W. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J. Med. Chem., 2013, 56(1), 15-30.
[http://dx.doi.org/10.1021/jm301448p] [PMID: 23244564]
[88]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PIM kinase inhibitors: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2019, 172, 95-108.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.050] [PMID: 30954777]
[89]
Nawijn, M.C.; Alendar, A.; Berns, A. For better or for worse: The role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer, 2011, 11(1), 23-34.
[http://dx.doi.org/10.1038/nrc2986] [PMID: 21150935]
[90]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[91]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole–pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616] [PMID: 26177395]
[92]
Su, T-P.; Hayashi, T.; Maurice, T.; Buch, S.; Ruoho, A.E. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci., 2010, 31(12), 557-566.
[http://dx.doi.org/10.1016/j.tips.2010.08.007] [PMID: 20869780]
[93]
Bai, T.; Wang, S.; Zhao, Y.; Zhu, R.; Wang, W.; Sun, Y. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2017, 491(4), 919-925.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.136] [PMID: 28756230]
[94]
Mach, R.H.; Zeng, C.; Hawkins, W.G. The σ2 receptor: A novel protein for the imaging and treatment of cancer. J. Med. Chem., 2013, 56(18), 7137-7160.
[http://dx.doi.org/10.1021/jm301545c] [PMID: 23734634]
[95]
Cortesi, M.; Zamagni, A.; Pignatta, S.; Zanoni, M.; Arienti, C.; Rossi, D.; Collina, S.; Tesei, A. Pan-Sigma Receptor Modulator RC-106 Induces Terminal Unfolded Protein Response In In Vitro Pancreatic Cancer Model. Int. J. Mol. Sci., 2020, 21(23), 9012.
[http://dx.doi.org/10.3390/ijms21239012] [PMID: 33260926]
[96]
Yarim, M.; Koksal, M.; Schepmann, D.; Wünsch, B. Synthesis and in vitro evaluation of novel indole‐based sigma receptors ligands. Chem. Biol. Drug Des., 2011, 78(5), 869-875.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01215.x] [PMID: 21848665]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy