Research Article

(-)-表没食子儿茶素没食子酸酯可减轻大鼠臂丛神经根撕脱引起的脊髓性动螨死亡

卷 29, 期 30, 2022

发表于: 15 June, 2022

页: [5139 - 5154] 页: 16

弟呕挨: 10.2174/0929867329666220509204151

价格: $65

摘要

背景:最近的研究表明,表没食子儿茶素没食子酸酯(EGCG)有益于各种神经损伤。本研究旨在研究SD大鼠臂丛神经根撕脱术后EGCG的神经保护作用。 方法:将120只SD大鼠随机分为以下3组:EGCG组、撕脱组和Sham组。每组有40只大鼠。EGCG(100mg / kg,i.p.)或生理盐水在损伤后立即给予大鼠。治疗从第1天持续到第7天,并在术后第3天、第7天、第14天和第28天处死动物,用于收获脊髓样本,用于Nissl染色、免疫组织化学(半胱天冬酶-3、p-JNK、p-c-Jun)和蛋白质印迹分析(p-JNK、JNK、p-c-Jun)。 结果:与对照动物相比,EGCG治疗导致第14天和第28天存活的运动神经元百分比显着增加(p<0.05)。在撕脱后第3天和第7天,EGCG处理的动物中半胱天冬酶-3阳性运动神经元的数量明显少于对照动物(p<0.05)。损伤后撕脱组和EGCG治疗组的p-JNK阳性运动神经元数量和p-JNK/JNK比例均无显著差异。EGCG治疗组的p-c-Jun阳性运动神经元数量和p-c-Jun/c-Jun的比例均显著低于损伤后3d和7d的撕脱组(p<0.05)。 结论:EGCG保护动神经元免受臂丛神经根撕裂诱导的细胞死亡,且该作用与抑制c-Jun磷酸化相关。

关键词: 根撕裂,臂丛神经,表没食子儿茶素没食子酸酯,c-Jun磷酸化,运动神经元死亡,EGCG。

« Previous
[1]
Midha, R. Epidemiology of brachial plexus injuries in a multitrauma population. Neurosurgery, 1997, 40(6), 1182-1188.
[http://dx.doi.org/10.1097/00006123-199706000-00014] [PMID: 9179891]
[2]
Carlstedt, T. Nerve root replantation. Neurosurg. Clin. N. Am., 2009, 20(1), 39-50, vi.
[http://dx.doi.org/10.1016/j.nec.2008.07.020] [PMID: 19064178]
[3]
Eggers, R.; Tannemaat, M.R.; De Winter, F.; Malessy, M.J.; Verhaagen, J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur. J. Neurosci., 2016, 43(3), 318-335.
[http://dx.doi.org/10.1111/ejn.13089] [PMID: 26415525]
[4]
El-Gammal, T.A.; Fathi, N.A. Outcomes of surgical treatment of brachial plexus injuries using nerve grafting and nerve transfers. J. Reconstr. Microsurg., 2002, 18(1), 7-15.
[http://dx.doi.org/10.1055/s-2002-19703] [PMID: 11917959]
[5]
Carlstedt, T.P.; Hallin, R.G.; Hedström, K.G.; Nilsson-Remahl, I.A. Functional recovery in primates with brachial plexus injury after spinal cord implantation of avulsed ventral roots. J. Neurol. Neurosurg. Psychiatry, 1993, 56(6), 649-654.
[http://dx.doi.org/10.1136/jnnp.56.6.649] [PMID: 8509779]
[6]
Terzis, J.K.; Vekris, M.D.; Soucacos, P.N. Outcomes of brachial plexus reconstruction in 204 patients with devastating paralysis. Plast. Reconstr. Surg., 1999, 104(5), 1221-1240.
[http://dx.doi.org/10.1097/00006534-199910000-00001] [PMID: 10513901]
[7]
Narakas, A.O. [Injuries of the brachial plexus and neighboring peripheral nerves in vertebral fractures and other trauma of the cervical spine. Orthopade, 1987, 16(1), 81-86.
[PMID: 3574946]
[8]
Zhang, X.; Liu, X.D.; Xian, Y.F.; Zhang, F.; Huang, P.Y.; Tang, Y.; Yuan, Q.J.; Lin, Z.X. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radic. Biol. Med., 2019, 143, 454-470.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.08.029] [PMID: 31472247]
[9]
Teixeira, M.J.; da Paz, M.G.; Bina, M.T.; Santos, S.N.; Raicher, I.; Galhardoni, R.; Fernandes, D.T.; Yeng, L.T.; Baptista, A.F.; de Andrade, D.C. Neuropathic pain after brachial plexus avulsion--central and peripheral mechanisms. BMC Neurol., 2015, 15, 73.
[http://dx.doi.org/10.1186/s12883-015-0329-x] [PMID: 25935556]
[10]
Jerome, J.T.; Rajmohan, B. Axillary nerve neurotization with the anterior deltopectoral approach in brachial plexus injuries. Microsurgery, 2012, 32(6), 445-451.
[http://dx.doi.org/10.1002/micr.21973] [PMID: 22434572]
[11]
Gu, H.Y.; Chai, H.; Zhang, J.Y.; Yao, Z.B.; Zhou, L.H.; Wong, W.M.; Bruce, I.C.; Wu, W.T. Survival, regeneration and functional recovery of motoneurons after delayed reimplantation of avulsed spinal root in adult rat. Exp. Neurol., 2005, 192(1), 89-99.
[http://dx.doi.org/10.1016/j.expneurol.2004.10.019] [PMID: 15698622]
[12]
Carlstedt, T.; Aldskogius, H.; Hallin, R.G.; Nilsson-Remahl, I. Novel surgical strategies to correct neural deficits following experimental spinal nerve root lesions. Brain Res. Bull., 1993, 30(3-4), 447-451.
[http://dx.doi.org/10.1016/0361-9230(93)90277-I] [PMID: 8457894]
[13]
Carlstedt, T.; Grane, P.; Hallin, R.G.; Norén, G. Return of function after spinal cord implantation of avulsed spinal nerve roots. Lancet, 1995, 346(8986), 1323-1325.
[http://dx.doi.org/10.1016/S0140-6736(95)92342-X] [PMID: 7475770]
[14]
Kimura, M.; Umegaki, K.; Kasuya, Y.; Sugisawa, A.; Higuchi, M. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur. J. Clin. Nutr., 2002, 56(12), 1186-1193.
[http://dx.doi.org/10.1038/sj.ejcn.1601471] [PMID: 12494303]
[15]
Mielgo-Ayuso, J.; Barrenechea, L.; Alcorta, P.; Larrarte, E.; Margareto, J.; Labayen, I. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: Randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr., 2014, 111(7), 1263-1271.
[http://dx.doi.org/10.1017/S0007114513003784] [PMID: 24299662]
[16]
Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(6)(Suppl.), 1698S-1702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[17]
Granja, A.; Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res. Int., 2017, (2017), 5813793.
[http://dx.doi.org/10.1155/2017/5813793] [PMID: 28791306]
[18]
Lin, Y.L.; Lin, J.K. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol., 1997, 52(3), 465-472.
[http://dx.doi.org/10.1124/mol.52.3.465] [PMID: 9281609]
[19]
Suganuma, M.; Okabe, S.; Oniyama, M.; Tada, Y.; Ito, H.; Fujiki, H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis, 1998, 19(10), 1771-1776.
[http://dx.doi.org/10.1093/carcin/19.10.1771] [PMID: 9806157]
[20]
Lin, L.C.; Wang, M.N.; Tseng, T.Y.; Sung, J.S.; Tsai, T.H. Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J. Agric. Food Chem., 2007, 55(4), 1517-1524.
[http://dx.doi.org/10.1021/jf062816a] [PMID: 17256961]
[21]
van Acker, S.A.; Tromp, M.N.; Haenen, G.R.; van der Vijgh, W.J.; Bast, A. Flavonoids as scavengers of nitric oxide radical. Biochem. Biophys. Res. Commun., 1995, 214(3), 755-759.
[http://dx.doi.org/10.1006/bbrc.1995.2350] [PMID: 7575540]
[22]
Diao, Y.; Zhao, W.; Li, Y. Radiolabeling of EGCG with 125I and its biodistribution in mice. J. Radioanal. Nucl. Chem., 2014, 301(1), 167-173.
[http://dx.doi.org/10.1007/s10967-014-3124-z]
[23]
Zhang, B.; Rusciano, D.; Osborne, N.N. Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro . Brain Res., 2008, 1198, 141-152.
[http://dx.doi.org/10.1016/j.brainres.2007.12.015] [PMID: 18255049]
[24]
Zhang, B.; Safa, R.; Rusciano, D.; Osborne, N.N. Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Res., 2007, 1159, 40-53.
[http://dx.doi.org/10.1016/j.brainres.2007.05.029] [PMID: 17573045]
[25]
Xie, J.; Jiang, L.; Zhang, T.; Jin, Y.; Yang, D.; Chen, F. Neuroprotective effects of Epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats. Neurosci. Lett., 2010, 479(1), 26-30.
[http://dx.doi.org/10.1016/j.neulet.2010.05.020] [PMID: 20471452]
[26]
Wei, I.H.; Tu, H.C.; Huang, C.C.; Tsai, M.H.; Tseng, C.Y.; Shieh, J.Y. (-)-Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury. BMC Neurosci., 2011, 12, 52.
[http://dx.doi.org/10.1186/1471-2202-12-52] [PMID: 21627848]
[27]
Khalatbary, A.R.; Tiraihi, T.; Boroujeni, M.B.; Ahmadvand, H.; Tavafi, M.; Tamjidipoor, A. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res., 2010, 1306, 168-175.
[http://dx.doi.org/10.1016/j.brainres.2009.09.109] [PMID: 19815005]
[28]
Khalatbary, A.R.; Ahmadvand, H. Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iran. Biomed. J., 2011, 15(1-2), 31-37.
[PMID: 21725497]
[29]
Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of green tea catechins in the brain: epigallocatechin gallate and its metabolites. Int. J. Mol. Sci., 2019, 20(15), E3630.
[http://dx.doi.org/10.3390/ijms20153630] [PMID: 31349535]
[30]
Chen, S.; Hou, Y.; Zhao, Z.; Luo, Y.; Lv, S.; Wang, Q.; Li, J.; He, L.; Zhou, L.; Wu, W. Neuregulin-1 accelerates functional motor recovery by improving motoneuron survival after brachial plexus root avulsion in mice. Neuroscience, 2019, 404, 510-518.
[http://dx.doi.org/10.1016/j.neuroscience.2019.01.054] [PMID: 30731156]
[31]
Ge, R.; Zhu, Y.; Diao, Y.; Tao, L.; Yuan, W.; Xiong, X.C. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res., 2013, 1527, 40-46.
[http://dx.doi.org/10.1016/j.brainres.2013.06.009] [PMID: 23831998]
[32]
Wu, W. Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp. Neurol., 1993, 120(2), 153-159.
[http://dx.doi.org/10.1006/exnr.1993.1050] [PMID: 7684000]
[33]
Zhou, L.; Wu, W. Antisense oligos to neuronal nitric oxide synthase aggravate motoneuron death induced by spinal root avulsion in adult rat. Exp. Neurol., 2006, 197(1), 84-92.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.019] [PMID: 16246329]
[34]
Zhou, L.H.; Wu, W. Survival of injured spinal motoneurons in adult rat upon treatment with glial cell line-derived neurotrophic factor at 2 weeks but not at 4 weeks after root avulsion. J. Neurotrauma, 2006, 23(6), 920-927.
[http://dx.doi.org/10.1089/neu.2006.23.920] [PMID: 16774476]
[35]
Zhou, L.H.; Han, S.; Xie, Y.Y.; Wang, L.L.; Yao, Z.B. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Brain Cell Biol., 2008, 36(5-6), 213-227.
[http://dx.doi.org/10.1007/s11068-009-9040-4] [PMID: 19238548]
[36]
Li, X.; Huo, X.; Zhang, C.; Ma, X.; Han, F.; Wang, G. Role of continuous high thoracic epidural anesthesia in hippocampal apoptosis after global cerebral ischemia in rats. Cell. Physiol. Biochem., 2014, 34(4), 1227-1240.
[http://dx.doi.org/10.1159/000366334] [PMID: 25277843]
[37]
Manabe, Y.; Nagano, I.; Gazi, M.S.; Murakami, T.; Shiote, M.; Shoji, M.; Kitagawa, H.; Abe, K. Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol. Res., 2003, 25(2), 195-200.
[http://dx.doi.org/10.1179/016164103101201193] [PMID: 12635522]
[38]
Cheng, X.; Liu, F.L.; Zhang, J.; Wang, L.L.; Li, F.L.; Liu, S.; Zhou, L.H. EGb761 protects motoneurons against avulsion-induced oxidative stress in rats. J. Brachial Plex. Peripher. Nerve Inj., 2010, 5, 12.
[PMID: 20497551]
[39]
Wu, W.; Li, L. Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neurosci. Lett., 1993, 153(2), 121-124.
[http://dx.doi.org/10.1016/0304-3940(93)90303-3] [PMID: 7687046]
[40]
Narakas, A.O. The treatment of brachial plexus injuries. Int. Orthop., 1985, 9(1), 29-36.
[http://dx.doi.org/10.1007/BF00267034] [PMID: 4018968]
[41]
Wu, W. Potential roles of gene expression change in adult rat spinal motoneurons following axonal injury: A comparison among c-jun, off-affinity nerve growth factor receptor (LNGFR), and nitric oxide synthase (NOS). Exp. Neurol., 1996, 141(2), 190-200.
[http://dx.doi.org/10.1006/exnr.1996.0153] [PMID: 8812152]
[42]
Cheng, X.; Fu, R.; Gao, M.; Liu, S.; Li, Y.Q.; Song, F.H.; Bruce, I.C.; Zhou, L.H.; Wu, W. Intrathecal application of short interfering RNA knocks down c-jun expression and augments spinal motoneuron death after root avulsion in adult rats. Neuroscience, 2013, 241, 268-279.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.006] [PMID: 23506737]
[43]
Aldskogius, H.; Barron, K.D.; Regal, R. Axon reaction in hypoglossal and dorsal motor vagal neurons of adult rat: Incorporation of [3H]leucine. Exp. Neurol., 1984, 85(1), 139-151.
[http://dx.doi.org/10.1016/0014-4886(84)90168-7] [PMID: 6203773]
[44]
Zhong, L.Y.; Wang, A.P.; Hong, L.; Chen, S.H.; Wang, X.Q.; Lv, Y.C.; Peng, T.H. Microanatomy of the brachial plexus roots and its clinical significance. Surg. Radiol. Anat., 2017, 39(6), 601-610.
[http://dx.doi.org/10.1007/s00276-016-1784-9] [PMID: 27866248]
[45]
Clifton, W.E. Delayed myelopathy in patients with traumatic preganglionic brachial plexus avulsion injuries. World Neurosurgery, 2019, 122, e1562-e1569.
[46]
Li, L.; Wu, W.; Lin, L.F. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA, 1995, 92(21), 9771-9775.
[http://dx.doi.org/10.1073/pnas.92.21.9771] [PMID: 7568215]
[47]
Wu, Q.; Jing, Y.; Yuan, X.; Zhang, X.; Li, B.; Liu, M.; Wang, B.; Li, H.; Liu, S.; Xiu, R. Melatonin treatment protects against acute spinal cord injury-induced disruption of blood spinal cord barrier in mice. J. Mol. Neurosci., 2014, 54(4), 714-722.
[http://dx.doi.org/10.1007/s12031-014-0430-4] [PMID: 25303856]
[48]
Novikov, L.; Novikova, L.; Kellerth, J.O. Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci. Lett., 1995, 200(1), 45-48.
[http://dx.doi.org/10.1016/0304-3940(95)12078-I] [PMID: 8584263]
[49]
Araújo, M.R.; Kyrylenko, S.; Spejo, A.B.; Castro, M.V.; Ferreira Junior, R.S.; Barraviera, B.; Oliveira, A.L.R. Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion. Exp. Neurol., 2017, 294, 45-57.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.009] [PMID: 28450050]
[50]
Barbizan, R.; Castro, M.V.; Barraviera, B.; Ferreira, R.S., Jr; Oliveira, A.L. Influence of delivery method on neuroprotection by bone marrow mononuclear cell therapy following ventral root reimplantation with fibrin sealant. PLoS One, 2014, 9(8), e105712.
[http://dx.doi.org/10.1371/journal.pone.0105712] [PMID: 25157845]
[51]
Oliveira, A.L.; Thams, S.; Lidman, O.; Piehl, F.; Hökfelt, T.; Kärre, K.; Lindå, H.; Cullheim, S. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17843-17848.
[http://dx.doi.org/10.1073/pnas.0408154101] [PMID: 15591351]
[52]
Gomes-Leal, W.; Corkill, D.J.; Freire, M.A.; Picanço-Diniz, C.W.; Perry, V.H. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp. Neurol., 2004, 190(2), 456-467.
[http://dx.doi.org/10.1016/j.expneurol.2004.06.028] [PMID: 15530884]
[53]
Galloway, D.A.; Williams, J.B.; Moore, C.S. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann. Clin. Transl. Neurol., 2017, 4(6), 381-391.
[http://dx.doi.org/10.1002/acn3.414] [PMID: 28589165]
[54]
Spejo, A.B.; Chiarotto, G.B.; Ferreira, A.D.F.; Gomes, D.A.; Ferreira, R.S., Jr; Barraviera, B.; Oliveira, A.L.R. Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells. J. Neuroinflammation, 2018, 15(1), 230.
[http://dx.doi.org/10.1186/s12974-018-1268-4] [PMID: 30107848]
[55]
Tom, V.J.; Steinmetz, M.P.; Miller, J.H.; Doller, C.M.; Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci., 2004, 24(29), 6531-6539.
[http://dx.doi.org/10.1523/JNEUROSCI.0994-04.2004] [PMID: 15269264]
[56]
Wang, D.D.; Bordey, A. The astrocyte odyssey. Prog. Neurobiol., 2008, 86(4), 342-367.
[PMID: 18948166]
[57]
Eggers, R.; Tannemaat, M.R.; Ehlert, E.M.; Verhaagen, J. A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp. Neurol., 2010, 223(1), 207-220.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.021] [PMID: 19646436]
[58]
Hallin, R.G.; Carlstedt, T.; Nilsson-Remahl, I.; Risling, M. Spinal cord implantation of avulsed ventral roots in primates; correlation between restored motor function and morphology. Exp. Brain Res., 1999, 124(3), 304-310.
[http://dx.doi.org/10.1007/s002210050627] [PMID: 9989436]
[59]
Doubell, T.P.; Woolf, C.J. Growth-associated protein 43 immunoreactivity in the superficial dorsal horn of the rat spinal cord is localized in atrophic C-fiber, and not in sprouted A-fiber, central terminals after peripheral nerve injury. J. Comp. Neurol., 1997, 386(1), 111-118.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970915)386:1<111::AID-CNE10>3.0.CO;2-N] [PMID: 9303528]
[60]
Bertelli, J.A.; Ghizoni, M.F. Nerve root grafting and distal nerve transfers for C5-C6 brachial plexus injuries. J. Hand Surg. Am., 2010, 35(5), 769-775.
[http://dx.doi.org/10.1016/j.jhsa.2010.01.004] [PMID: 20346595]
[61]
Wang, L.; Zhao, X.; Gao, K.; Lao, J.; Gu, Y.D. Reinnervation of thenar muscle after repair of total brachial plexus avulsion injury with contralateral C7 root transfer: Report of five cases. Microsurgery, 2011, 31(4), 323-326.
[http://dx.doi.org/10.1002/micr.20836] [PMID: 21557307]
[62]
Fox, I.K.; Brenner, M.J.; Johnson, P.J.; Hunter, D.A.; Mackinnon, S.E. Axonal regeneration and motor neuron survival after microsurgical nerve reconstruction. Microsurgery, 2012, 32(7), 552-562.
[http://dx.doi.org/10.1002/micr.22036] [PMID: 22806696]
[63]
Fournier, H.D.; Mercier, P.; Menei, P. Repair of avulsed ventral nerve roots by direct ventral intraspinal implantation after brachial plexus injury. Hand Clin., 2005, 21(1), 109-118.
[http://dx.doi.org/10.1016/j.hcl.2004.09.001] [PMID: 15668071]
[64]
Carlstedt, T.; Norén, G. Repair of ruptured spinal nerve roots in a brachial plexus lesion. Case report. J. Neurosurg., 1995, 82(4), 661-663.
[http://dx.doi.org/10.3171/jns.1995.82.4.0661] [PMID: 7897534]
[65]
Wang, S.; Yiu, H.W.; Li, P.; Li, Y.; Wang, H.; Pan, Y. Contralateral C7 nerve root transfer to neurotize the upper trunk via a modified prespinal route in repair of brachial plexus avulsion injury. Microsurgery, 2012, 32(3), 183-188.
[http://dx.doi.org/10.1002/micr.20963] [PMID: 22002908]
[66]
Cullheim, S.; Wallquist, W.; Hammarberg, H.; Lindå, H.; Piehl, F.; Carlstedt, T.; Risling, M. Properties of motoneurons underlying their regenerative capacity after axon lesions in the ventral funiculus or at the surface of the spinal cord. Brain Res. Brain Res. Rev., 2002, 40(1-3), 309-316.
[http://dx.doi.org/10.1016/S0165-0173(02)00213-8] [PMID: 12589929]
[67]
Yamada, S.; Lonser, R.R.; Colohan, A.R.; Yamada, S.M.; Won, D.J. Bypass coaptation for cervical root avulsion: Indications for optimal outcome. Neurosurgery, 2009, 65(4)(Suppl.), A203-A211.
[http://dx.doi.org/10.1227/01.NEU.0000358615.92344.D1] [PMID: 19927070]
[68]
Pintér, S.; Gloviczki, B.; Szabó, A.; Márton, G.; Nógrádi, A. Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root. J. Neurotrauma, 2010, 27(12), 2273-2282.
[http://dx.doi.org/10.1089/neu.2010.1445] [PMID: 20939695]
[69]
McKay Hart, A.; Brannstrom, T.; Wiberg, M.; Terenghi, G. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: Timecourse of cell death and elimination. Exp. Brain Res., 2002, 142(3), 308-318.
[http://dx.doi.org/10.1007/s00221-001-0929-0] [PMID: 11819038]
[70]
Frisén, J.; Fried, K.; Sjögren, A.M.; Risling, M. Growth of ascending spinal axons in CNS scar tissue. Int. J. Dev. Neurosci., 1993, 11(4), 461-475.
[http://dx.doi.org/10.1016/0736-5748(93)90020-E] [PMID: 7694445]
[71]
Kim, T.H.; Lim, J.M.; Kim, S.S.; Kim, J.; Park, M.; Song, J.H. Effects of (-) epigallocatechin-3-gallate on Na(+) currents in rat dorsal root ganglion neurons. Eur. J. Pharmacol., 2009, 604(1-3), 20-26.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.015] [PMID: 19111536]
[72]
Deng, H.M.; Yin, S.T.; Yan, D.; Tang, M.L.; Li, C.C.; Chen, J.T.; Wang, M.; Ruan, D.Y. Effects of EGCG on voltage-gated sodium channels in primary cultures of rat hippocampal CA1 neurons. Toxicology, 2008, 252(1-3), 1-8.
[http://dx.doi.org/10.1016/j.tox.2008.07.053] [PMID: 18706964]
[73]
Renno, W.M.; Al-Khaledi, G.; Mousa, A.; Karam, S.M.; Abul, H.; Asfar, S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology, 2014, 77, 100-119.
[http://dx.doi.org/10.1016/j.neuropharm.2013.09.013] [PMID: 24071567]
[74]
Yao, C.; Zhang, J.; Liu, G.; Chen, F.; Lin, Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol. Med. Rep., 2014, 9(1), 69-76.
[http://dx.doi.org/10.3892/mmr.2013.1778] [PMID: 24193141]
[75]
Renno, W.M.; Al-Maghrebi, M.; Alshammari, A.; George, P. (-)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem. Int., 2013, 62(3), 221-231.
[http://dx.doi.org/10.1016/j.neuint.2012.12.018] [PMID: 23313191]
[76]
Silva, K.C.; Rosales, M.A.; Hamassaki, D.E.; Saito, K.C.; Faria, A.M.; Ribeiro, P.A.; Faria, J.B.; Faria, J.M. Green tea is neuroprotective in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2013, 54(2), 1325-1336.
[http://dx.doi.org/10.1167/iovs.12-10647] [PMID: 23299475]
[77]
Itoh, T.; Tabuchi, M.; Mizuguchi, N.; Imano, M.; Tsubaki, M.; Nishida, S.; Hashimoto, S.; Matsuo, K.; Nakayama, T.; Ito, A.; Munakata, H.; Satou, T. Neuroprotective effect of (-)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J. Neural Transm. (Vienna), 2013, 120(5), 767-783.
[http://dx.doi.org/10.1007/s00702-012-0918-4] [PMID: 23180302]
[78]
Raivich, G. c-Jun expression, activation and function in neural cell death, inflammation and repair. J. Neurochem., 2008, 107(4), 898-906.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05684.x] [PMID: 18793328]
[79]
Bogoyevitch, M.A.; Arthur, P.G. Inhibitors of c-Jun N-terminal kinases: JuNK no more? Biochim. Biophys. Acta, 2008, 1784(1), 76-93.
[http://dx.doi.org/10.1016/j.bbapap.2007.09.013] [PMID: 17964301]
[80]
Vogel, J.; Anand, V.S.; Ludwig, B.; Nawoschik, S.; Dunlop, J.; Braithwaite, S.P. The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology, 2009, 57(5-6), 539-550.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.021] [PMID: 19628001]
[81]
Barnat, M.; Enslen, H.; Propst, F.; Davis, R.J.; Soares, S.; Nothias, F. Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J. Neurosci., 2010, 30(23), 7804-7816.
[http://dx.doi.org/10.1523/JNEUROSCI.0372-10.2010] [PMID: 20534829]
[82]
Herdegen, T.; Waetzig, V. AP-1 proteins in the adult brain: Facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene, 2001, 20(19), 2424-2437.
[http://dx.doi.org/10.1038/sj.onc.1204387] [PMID: 11402338]
[83]
Sommer, C.; Gass, P.; Kiessling, M. Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol., 1995, 5(2), 135-144.
[http://dx.doi.org/10.1111/j.1750-3639.1995.tb00587.x] [PMID: 7670654]
[84]
McTigue, D.M.; Horner, P.J.; Stokes, B.T.; Gage, F.H. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J. Neurosci., 1998, 18(14), 5354-5365.
[http://dx.doi.org/10.1523/JNEUROSCI.18-14-05354.1998] [PMID: 9651218]
[85]
Raivich, G.; Bohatschek, M.; Da Costa, C.; Iwata, O.; Galiano, M.; Hristova, M.; Nateri, A.S.; Makwana, M.; Riera-Sans, L.; Wolfer, D.P.; Lipp, H.P.; Aguzzi, A.; Wagner, E.F.; Behrens, A. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 2004, 43(1), 57-67.
[http://dx.doi.org/10.1016/j.neuron.2004.06.005] [PMID: 15233917]
[86]
Wu, W.; Li, L.; Yick, L.W.; Chai, H.; Xie, Y.; Yang, Y.; Prevette, D.M.; Oppenheim, R.W. GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneuron death following spinal root avulsion in adult rats. J. Neurotrauma, 2003, 20(6), 603-612.
[http://dx.doi.org/10.1089/089771503767168528] [PMID: 12906744]
[87]
Dragunow, M.; Young, D.; Hughes, P.; MacGibbon, G.; Lawlor, P.; Singleton, K.; Sirimanne, E.; Beilharz, E.; Gluckman, P. Is c-Jun involved in nerve cell death following status epilepticus and hypoxic-ischaemic brain injury? Brain Res. Mol. Brain Res., 1993, 18(4), 347-352.
[http://dx.doi.org/10.1016/0169-328X(93)90101-T] [PMID: 8326831]
[88]
Ploia, C.; Antoniou, X.; Sclip, A.; Grande, V.; Cardinetti, D.; Colombo, A.; Canu, N.; Benussi, L.; Ghidoni, R.; Forloni, G.; Borsello, T. JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models. J. Alzheimers Dis., 2011, 26(2), 315-329.
[http://dx.doi.org/10.3233/JAD-2011-110320] [PMID: 21628793]
[89]
Wang, L.L.; Zhao, X.C.; Yan, L.F.; Wang, Y.Q.; Cheng, X.; Fu, R.; Zhou, L.H. C-jun phosphorylation contributes to down regulation of neuronal nitric oxide synthase protein and motoneurons death in injured spinal cords following root-avulsion of the brachial plexus. Neuroscience, 2011, 189, 397-407.
[http://dx.doi.org/10.1016/j.neuroscience.2011.04.070] [PMID: 21596101]
[90]
Wu, D.; Li, Q.; Zhu, X.; Wu, G.; Cui, S. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats. Microsurgery, 2013, 33(7), 551-559.
[http://dx.doi.org/10.1002/micr.22130] [PMID: 23843283]
[91]
Herdegen, T.; Leah, J.D.; Manisali, A.; Bravo, R.; Zimmermann, M. c-JUN-like immunoreactivity in the CNS of the adult rat: Basal and transynaptically induced expression of an immediate-early gene. Neuroscience, 1991, 41(2-3), 643-654.
[http://dx.doi.org/10.1016/0306-4522(91)90356-S] [PMID: 1908067]
[92]
Palmada, M.; Kanwal, S.; Rutkoski, N.J.; Gustafson-Brown, C.; Johnson, R.S.; Wisdom, R.; Carter, B.D. c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. J. Cell Biol., 2002, 158(3), 453-461.
[http://dx.doi.org/10.1083/jcb.200112129] [PMID: 12163468]
[93]
Yuan, Q.; Hu, B.; Wu, Y.; Chu, T.H.; Su, H.; Zhang, W.; So, K.F.; Lin, Z.; Wu, W. Induction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury. Brain Res., 2010, 1320, 7-15.
[http://dx.doi.org/10.1016/j.brainres.2010.01.038] [PMID: 20096669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy